1
|
Xiong S, Zhang Y, Zhou X, Pant V, Mirani A, Gencel-Augusto J, Chau G, You MJ, Lozano G. Dependence on Mdm2 for Mdm4 inhibition of p53 activity. Cancer Lett 2025; 621:217622. [PMID: 40081463 DOI: 10.1016/j.canlet.2025.217622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Both Mdm2 and Mdm4 inhibit p53 activity by masking of its transcriptional activation domain. In addition, Mdm2 functions as an E3 ubiquitin ligase, targeting p53 for degradation. The amino terminus of Mdm4 binds wild type and mutant p53 while its RING domain, which lacks E3 ligase activity, is required for heterodimerization with Mdm2. To determine how these domains of Mdm4 regulate p53, we generated mouse models with either a deletion of the Mdm4 RING domain (Mdm4ΔR) or all of Mdm4 (Mdm4─) on a hypomorphic (p53neo) background. Mdm4ΔR mice exhibited elevated p53 levels and activity, albeit to a lesser extent than mice with complete Mdm4 loss, indicating that the amino terminus of Mdm4 contributes to p53 inhibition. Moreover, in the absence of Mdm2, neither the deletion of the Mdm4 RING domain nor the complete loss of Mdm4 further increased p53 protein levels on a mutant p53 background, indicating that Mdm4 modulates Mdm2 in its regulation of p53 stability. Collectively, our findings suggest that Mdm4 contributes to p53 inhibition by modulating Mdm2 activity via both its amino terminus and RING domains.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yun Zhang
- Department of Pharmaceutical Sciences, Joan M. Lafleur College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Xin Zhou
- Department of Pediatrics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Vinod Pant
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Akshita Mirani
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Gilda Chau
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guillermina Lozano
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Yu S, Si Y, Yu J, Jiang C, Cheng F, Xu M, Fan Z, Liu F, Liu C, Wang Y, Wang N, Liu C, Bi C, Sun H. SNRPB2 promotes triple-negative breast cancer progression by controlling alternative splicing of MDM4 pre-mRNA. Cancer Sci 2024; 115:3915-3927. [PMID: 39329452 PMCID: PMC11611762 DOI: 10.1111/cas.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alternative splicing generates cancer-specific transcripts and is now recognized as a hallmark of cancer. However, the critical oncogenic spliceosome-related proteins involved in triple-negative breast cancer (TNBC) remain elusive. Here, we explored the expression pattern of spliceosome-related proteins in TNBC, non-TNBC, and normal breast tissues from The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort, revealing higher expression of nearly half of spliceosome-related proteins in TNBC than their counterparts. Among these TNBC-specific spliceosome-related proteins, the expression of SNRPB2 was associated with poor prognosis in patients with TNBC. In TNBC cells, the knockdown of SNRPB2 strongly suppressed cell proliferation and invasion and induced cell cycle arrest. Mechanistically, transcriptome data showed that SNRPB2 knockdown inactivated E2F1 signaling, which regulated the cell cycle. We further validated the downregulation of several cell cycle genes in SNRPB2 knockdown cells. Moreover, the analysis showed that SNRPB2 knockdown triggered the alteration of many alternative splicing events, most of which were skipping of exon. In TNBC cells, it was found that SNRPB2 knockdown led to the skipping of exon 6 in MDM4 pre-mRNA, generating MDM4-S transcript and downregulating MDM4 protein expression. More importantly, downregulation of MDM4 decreased retinoblastoma 1 (Rb1) protein expression, which is a target of MDM4 and a regulator of E2F1 signaling. In summary, the current study revealed an SNRPB2/MDM4/Rb axis in promoting the progression of TNBC, providing novel insights and novel targets for combating TNBC.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Yue Si
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Jianzhong Yu
- Department of Internal MedicineHaian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNantongChina
| | - Chengyang Jiang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fei Cheng
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Miao Xu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Zhehao Fan
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Fangchen Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chang Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Ying Wang
- Department of Thyroid and Breast SurgeryThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Ning Wang
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Chenxu Liu
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Caili Bi
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Haibo Sun
- Institute of Translational MedicineMedical College, Yangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental and Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| |
Collapse
|
3
|
Liu J, Wei X, Xie Y, Yan Y, Xue S, Wang X, Chen H, Pan Q, Yan S, Zheng X, Huang Q. MDM4 inhibits ferroptosis in p53 mutant colon cancer via regulating TRIM21/GPX4 expression. Cell Death Dis 2024; 15:825. [PMID: 39543140 PMCID: PMC11564821 DOI: 10.1038/s41419-024-07227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
MDM4 is one of the major regulators of p53. The biological effect of MDM4 on tumor is controversial, its role and molecular mechanism in colon cancer progression and prognosis are still unclear. In this study, we identify that MDM4 is significantly overexpressed in human colon cancer and high MDM4 expression was associated with poor prognosis of colon cancer with mutant p53. MDM4 inhibits the ubiquitination of the ferroptosis marker protein GPX4 at K167 and K191 by upregulating the protein expression level of the E3 ubiquitin ligase TRIM21, which promotes the polyubiquitination of GPX4 transfer from K48- to K63- linked ubiquitination. Thereby, MDM4 enhances the stability of GPX4 protein, inhibiting ferroptosis, increasing the resistance of colon cancer patients to chemotherapy, and promoting colon cancer progression. These findings elucidate the ferroptosis inhibition effect of MDM4 via regulating TRIM21/GPX4 on p53-mutated colon cancer and provide a potential therapeutic strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopic Center, The Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xujin Wei
- Endoscopic Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Sihui Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Endoscopic Center, The Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Sisi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoling Zheng
- Department of Endoscopic Center, The Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
5
|
Liu J, Yang J, Pan Q, Wang X, Wang X, Chen H, Zheng X, Huang Q. MDM4 was associated with poor prognosis and tumor-immune infiltration of cancers. Eur J Med Res 2024; 29:79. [PMID: 38281029 PMCID: PMC10821240 DOI: 10.1186/s40001-024-01684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
MDM4 is one of the MDM protein family and is generally recognized as the key negative regulator of p53. As a cancer-promoting factor, it plays a non-negligible role in tumorigenesis and development. In this article, we analyzed the expression levels of MDM4 in pan-cancer through multiple databases. We also investigated the correlations between MDM4 expression and prognostic value, immune features, genetic mutation, and tumor-related pathways. We found that MDM4 overexpression is often accompanied by adverse clinical features, poor prognosis, oncogenic mutations, tumor-immune infiltration and aberrant activation of oncogenic signaling pathways. We also conducted transcriptomic sequencing to investigate the effect of MDM4 on transcript levels in colon cancer and performed qPCR to verify this. Finally, we carried out some in vitro experiments including colony formation assay, chemoresistance and senescence-associated β-galactosidase activity assay to study the anti-tumor treatment effect of small molecule MDM4 inhibitor, NSC146109. Our research confirmed that MDM4 is a prognostic biomarker and potential therapeutic target for a variety of malignancies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Jie Yang
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Xinyin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoling Zheng
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
- The Graduate School of Fujian Medical University, Fuzhou, China.
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
7
|
Potential Impact of PI3K-AKT Signaling Pathway Genes, KLF-14, MDM4, miRNAs 27a, miRNA-196a Genetic Alterations in the Predisposition and Progression of Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15041281. [PMID: 36831624 PMCID: PMC9954638 DOI: 10.3390/cancers15041281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Genome-wide association studies have reported link between SNPs and risk of breast cancer. This study investigated the association of the selected gene variants by predicting them as possible target genes. Molecular technique advances with the availability of whole-exome sequencing (WES), now offer opportunities for simultaneous investigations of many genes. The experimental protocol for PI3K, AKT-1, KLF-14, MDM4, miRNAs 27a, and miR-196a genotyping was done by ARMS-PCR and sanger sequencing. The novel and known gene variants were studied by Whole-exome sequencing using Illumina NovaSeq 6000 platform. This case control study reports significant association between BC patients, healthy controls with the polymorphic variants of PI3K C > T, AKT-1 G > A KLF 14 C > T, MDM4 A > G, miR-27a A > G, miR-196a-2 C > T genes (p < 0.05). MDM4 A > G genotypes were strongly associated with BC predisposition with OR 2.08 & 2.15, p < 0.05) in codominant and dominant models respectively. MDM4 A allele show the same effective (OR1.76, p < 0.05) whereas it remains protective in recessive model for BC risk. AKT1G > A genotypes were strongly associated with the BC susceptibility in all genetic models whereas PI3K C > T genotypes were associated with breast cancer predisposition in recessive model OR 6.96. Polymorphic variants of KLF-14 A > G, MDM4G > A, MiR-27aA >G, miR-196a-C > T were strongly associated with stage, tamoxifen treatment. Risk variants have been reported by whole exome sequencing in our BC patients. It was concluded that a strong association between the PI3K-AKT signaling pathway gene variants with the breast cancer susceptibility and progression. Similarly, KLF 14-AA, MDM4-GA, miR27a-GG and miR-196a-CT gene variants were associated with the higher risk probability of BC and were strongly correlated with staging of the BC patients. This study also reported Low, novel, and intermediate-genetic-risk variants of PI3K, AKT-1, MDM4G & KLF-14 by utilizing whole-exome sequencing. These variants should be further investigated in larger cohorts' studies.
Collapse
|
8
|
Cuciniello R, Di Meo F, Sulli M, Demurtas OC, Tanori M, Mancuso M, Villano C, Aversano R, Carputo D, Baldi A, Diretto G, Filosa S, Crispi S. Aglianico Grape Seed Semi-Polar Extract Exerts Anticancer Effects by Modulating MDM2 Expression and Metabolic Pathways. Cells 2023; 12:cells12020210. [PMID: 36672146 PMCID: PMC9856309 DOI: 10.3390/cells12020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Grapevine (Vitis vinifera L.) seeds are rich in polyphenols including proanthocyanidins, molecules with a variety of biological effects including anticancer action. We have previously reported that the grape seed semi-polar extract of Aglianico cultivar (AGS) was able to induce apoptosis and decrease cancer properties in different mesothelioma cell lines. Concomitantly, this extract resulted in enriched oligomeric proanthocyanidins which might be involved in determining the anticancer activity. Through transcriptomic and metabolomic analyses, we investigated in detail the anticancer pathway induced by AGS. Transcriptomics analysis and functional annotation allowed the identification of the relevant causative genes involved in the apoptotic induction following AGS treatment. Subsequent biological validation strengthened the hypothesis that MDM2 could be the molecular target of AGS and that it could act in both a p53-dependent and independent manner. Finally, AGS significantly inhibited tumor progression in a xenograft mouse model of mesothelioma, confirming also in vivo that MDM2 could act as molecular player responsible for the AGS antitumor effect. Our findings indicated that AGS, exerting a pro-apoptotic effect by hindering MDM2 pathway, could represent a novel source of anticancer molecules.
Collapse
Affiliation(s)
- Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
- Department of Medicine, Indiana University School of Medicine, 975 W Walnut Street, Indianapolis, IN 46202, USA
| | - Maria Sulli
- Division of Biotechnology and Agroindustry, Biotechnology Laboratory, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Olivia Costantina Demurtas
- Division of Biotechnology and Agroindustry, Biotechnology Laboratory, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Mirella Tanori
- Division of Health Protection Technologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Alfonso Baldi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, 81055 Caserta, Italy
| | - Gianfranco Diretto
- Division of Biotechnology and Agroindustry, Biotechnology Laboratory, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
- Correspondence: (G.D.); (S.C.)
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
- Correspondence: (G.D.); (S.C.)
| |
Collapse
|
9
|
Heijkants RC, Teunisse AFAS, de Jong D, Glinkina K, Mei H, Kielbasa SM, Szuhai K, Jochemsen AG. MDMX Regulates Transcriptional Activity of p53 and FOXO Proteins to Stimulate Proliferation of Melanoma Cells. Cancers (Basel) 2022; 14:cancers14184482. [PMID: 36139642 PMCID: PMC9496676 DOI: 10.3390/cancers14184482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We have investigated the transcriptional changes occurring in uveal and cutaneous melanoma cell lines upon depletion of MDMX (aka:MDM4). Computational analyses of the mRNAs/genes affected upon MDMX depletion determined that many were containing a p53-bindingsite, but even more contained a FOX recognition site(s). Since connections between MDM2 and FOXO1 had already been published, we investigated whether indeed a subset of the MDMX-regulated genes are dependent on FOXO1/FOXO3 expression. Indeed, a number of such target genes, i.e., PIK3IP1, MXD4 and ZMAT3, were found to be FOXO target genes in our cell models. Some of these genes were recently identified as indirect p53-target genes, and their expression was found to be regulated by RFX7 transcription factor, which was found activated upon pharmacological activation of p53, e.g., by Nutlin-3. However, a clear involvement of RFX7 in our model could not be established, but an interplay between FOXO and RFX7 factors seems evident. Abstract The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.
Collapse
Affiliation(s)
- Renier C. Heijkants
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amina F. A. S. Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danielle de Jong
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kseniya Glinkina
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Szymon M. Kielbasa
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Mejía-Hernández JO, Keam SP, Saleh R, Muntz F, Fox SB, Byrne D, Kogan A, Pang L, Huynh J, Litchfield C, Caramia F, Lozano G, He H, You JM, Sandhu S, Williams SG, Haupt Y, Haupt S. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis 2022; 13:777. [PMID: 36075907 PMCID: PMC9465983 DOI: 10.1038/s41419-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Telix Pharmaceuticals Ltd, Melbourne, VIC 3051 Australia
| | - Simon P. Keam
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1135.60000 0001 1512 2287Present Address: CSL Innovation, CSL Ltd, Melbourne, VIC 3052 Australia
| | - Reem Saleh
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Fenella Muntz
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Stephen B. Fox
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - David Byrne
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1055.10000000403978434Pathology Department, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Arielle Kogan
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Lokman Pang
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Jennifer Huynh
- grid.1018.80000 0001 2342 0938Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084 Australia
| | - Cassandra Litchfield
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Franco Caramia
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Guillermina Lozano
- grid.240145.60000 0001 2291 4776Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX USA ,grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA
| | - Hua He
- grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - James M. You
- grid.267308.80000 0000 9206 2401University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX USA
| | - Shahneen Sandhu
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000 Australia
| | - Scott G. Williams
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Ygal Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,Present Address: Vittail Ltd, Melbourne, VIC 3146 Australia
| | - Sue Haupt
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1055.10000000403978434Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| |
Collapse
|
11
|
Mejía-Hernández JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, Russo A, Gamell C, Fox SB, Mitchell C, Takano EA, Byrne D, Miranda PJ, Saleh R, Thorne H, Sandhu S, Williams SG, Keam SP, Haupt Y, Haupt S. Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers (Basel) 2022; 14:3947. [PMID: 36010941 PMCID: PMC9405814 DOI: 10.3390/cancers14163947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dinesh Raghu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Fujihara
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Riseborough
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amina Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | | | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Andrea Russo
- Surgical Pathology Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Cristina Gamell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Catherine Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Elena A. Takano
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - David Byrne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Panimaya Jeffreena Miranda
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Scott G. Williams
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Simon P. Keam
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Antonie LM, Soliman KFA. Thymoquinone Alterations of the Apoptotic Gene Expressions and Cell Cycle Arrest in Genetically Distinct Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:2120. [PMID: 35631261 PMCID: PMC9144154 DOI: 10.3390/nu14102120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.S.M.); (E.T.); (R.B.B.); (L.M.A.)
| |
Collapse
|
13
|
Wang L, Zhai Q, Lu Q, Lee K, Zheng Q, Hong R, Wang S. Clinical genomic profiling to identify actionable alterations for very early relapsed triple-negative breast cancer patients in the Chinese population. Ann Med 2021; 53:1358-1369. [PMID: 34396843 PMCID: PMC8381897 DOI: 10.1080/07853890.2021.1966086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents about 19% of all breast cancer cases in the Chinese population. Lack of targeted therapy contributes to the poorer outcomes compared with other breast cancer subtypes. Comprehensive genomic profiling helps to explore the clinically relevant genomic alterations (CRGAs) and potential therapeutic targets in very-early-relapsed TNBC patients. METHODS Formalin-fixed paraffin-embedded (FFPE) tumour tissue specimens from 23 patients with very-early-relapsed TNBC and 13 patients with disease-free survival (DFS) more than 36 months were tested by FoundationOne CDx (F1CDx) in 324 genes and select gene rearrangements, along with genomic signatures including microsatellite instability (MSI) and tumour mutational burden (TMB). RESULTS In total, 137 CRGAs were detected in the 23 very-early-relapsed TNBC patients, averaging six alterations per sample. The mean TMB was 4 Muts/Mb, which was higher than that in non-recurrence patients, and is statistically significant. The top-ranked altered genes were TP53 (83%), PTEN (35%), RB1 (30%), PIK3CA (26%) and BRCA1 (22%). RB1 mutation carriers had shorter DFS. Notably, 100% of these patients had at least one CRGA, and 87% of patients had at least one actionable alteration. In pathway analysis, patients who carried a mutation in the cell cycle pathway were more likely to experience very early recurrence. Strikingly, we detected one patient with ERBB2 amplification and one patient with ERBB2 exon20 insertion, both of which were missed by immunohistochemistry (IHC). We also detected novel alterations of ROS1-EPHA7 fusion for the first time, which has not been reported in breast cancer before. CONCLUSIONS The comprehensive genomic profiling can identify novel treatment targets and address the limited options in TNBC patients. Therefore, incorporating F1CDx into TNBC may shed light on novel therapeutic opportunities for these very-early-relapsed TNBC patients.
Collapse
Affiliation(s)
- Liye Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qinglian Zhai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qianyi Lu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Kaping Lee
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Qiufan Zheng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Ruoxi Hong
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| |
Collapse
|
14
|
MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc Natl Acad Sci U S A 2021; 118:2102420118. [PMID: 34716260 DOI: 10.1073/pnas.2102420118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.
Collapse
|
15
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
16
|
Bartnykaitė A, Savukaitytė A, Ugenskienė R, Daukšaitė M, Korobeinikova E, Gudaitienė J, Juozaitytė E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. J Clin Med 2021; 10:jcm10040866. [PMID: 33669778 PMCID: PMC7922970 DOI: 10.3390/jcm10040866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is one of the most common cancers worldwide. Single nucleotide polymorphisms (SNPs) in MDM2 and MDM4 have been associated with various cancers. However, the influence on clinical characteristics of breast cancer has not been sufficiently investigated yet. Thus, this study aimed to investigate the relationship between SNPs in MDM2 (rs2279744, rs937283, rs937282) and MDM4 (rs1380576, rs4245739) and I-II stage breast cancer. For analysis, the genomic DNA was extracted from 100 unrelated women peripheral blood. Polymorphisms were analyzed with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The study showed that MDM2 rs937283 and rs937282 were significantly associated with estrogen receptor status and human epidermal growth factor receptor 2 (HER2) status. SNPs rs1380576 and rs4245739, located in MDM4, were significantly associated with status of estrogen and progesterone receptors. Our findings suggest that rs937283 AG, rs937282 CG, rs1380576 CC, and rs4245739 AA genotypes were linked to hormonal receptor positive breast cancer and may be useful genetic markers for disease assessment.
Collapse
Affiliation(s)
- Agnė Bartnykaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Correspondence: ; Tel.: +3-703-778-7317
| | - Aistė Savukaitytė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Monika Daukšaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (A.S.); (R.U.); (M.D.)
| | - Erika Korobeinikova
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Jurgita Gudaitienė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| | - Elona Juozaitytė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania; (E.K.); (J.G.); (E.J.)
| |
Collapse
|
17
|
Pellegrino R, Thavamani A, Calvisi DF, Budczies J, Neumann A, Geffers R, Kroemer J, Greule D, Schirmacher P, Nordheim A, Longerich T. Serum Response Factor (SRF) Drives the Transcriptional Upregulation of the MDM4 Oncogene in HCC. Cancers (Basel) 2021; 13:E199. [PMID: 33429878 PMCID: PMC7829828 DOI: 10.3390/cancers13020199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023] Open
Abstract
Different molecular mechanisms support the overexpression of the mouse double minute homolog 4 (MDM4), a functional p53 inhibitor, in human hepatocellular carcinoma (HCC). However, the transcription factors (TFs) leading to its transcriptional upregulation remain unknown. Following promoter and gene expression analyses, putative TFs were investigated using gene-specific siRNAs, cDNAs, luciferase reporter assays, chromatin immunoprecipitation, and XI-011 drug treatment in vitro. Additionally, MDM4 expression was investigated in SRF-VP16iHep transgenic mice. We observed a copy-number-independent upregulation of MDM4 in human HCCs. Serum response factor (SRF), ELK1 and ELK4 were identified as TFs activating MDM4 transcription. While SRF was constitutively detected in TF complexes at the MDM4 promoter, presence of ELK1 and ELK4 was cell-type dependent. Furthermore, MDM4 was upregulated in SRF-VP16-driven murine liver tumors. The pharmacological inhibitor XI-011 exhibited anti-MDM4 activity by downregulating the TFs driving MDM4 transcription, which decreased HCC cell viability and increased apoptosis. In conclusion, SRF drives transcriptional MDM4 upregulation in HCC, acting in concert with either ELK1 or ELK4. The transcriptional regulation of MDM4 may be a promising target for precision oncology of human HCC, as XI-011 treatment exerts anti-MDM4 activity independent from the MDM4 copy number and the p53 status.
Collapse
Affiliation(s)
- Rossella Pellegrino
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| | - Abhishek Thavamani
- Department for Molecular Biology, Interfaculty Institute of Cell Biology, University of Tuebingen, 72074 Tuebingen, Germany; (A.T.); (A.N.)
| | - Diego F. Calvisi
- Institute of Pathology, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| | - Ariane Neumann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jasmin Kroemer
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| | - Damaris Greule
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| | - Alfred Nordheim
- Department for Molecular Biology, Interfaculty Institute of Cell Biology, University of Tuebingen, 72074 Tuebingen, Germany; (A.T.); (A.N.)
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.B.); (A.N.); (J.K.); (D.G.); (P.S.); (T.L.)
| |
Collapse
|
18
|
Faldoni FLC, Villacis RAR, Canto LM, Fonseca-Alves CE, Cury SS, Larsen SJ, Aagaard MM, Souza CP, Scapulatempo-Neto C, Osório CABT, Baumbach J, Marchi FA, Rogatto SR. Inflammatory Breast Cancer: Clinical Implications of Genomic Alterations and Mutational Profiling. Cancers (Basel) 2020; 12:2816. [PMID: 33007869 PMCID: PMC7650681 DOI: 10.3390/cancers12102816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive type of breast cancer whose molecular basis is poorly understood. We performed a comprehensive molecular analysis of 24 IBC biopsies naïve of treatment, using a high-resolution microarray platform and targeted next-generation sequencing (105 cancer-related genes). The genes more frequently affected by gains were MYC (75%) and MDM4 (71%), while frequent losses encompassed TP53 (71%) and RB1 (58%). Increased MYC and MDM4 protein expression levels were detected in 18 cases. These genes have been related to IBC aggressiveness, and MDM4 is a potential therapeutic target in IBC. Functional enrichment analysis revealed genes associated with inflammatory regulation and immune response. High homologous recombination (HR) deficiency scores were detected in triple-negative and metastatic IBC cases. A high telomeric allelic imbalance score was found in patients having worse overall survival (OS). The mutational profiling was compared with non-IBC (TCGA, n = 250) and IBC (n = 118) from four datasets, validating our findings. Higher frequency of TP53 and BRCA2 variants were detected compared to non-IBC, while PIKC3A showed similar frequency. Variants in mismatch repair and HR genes were associated with worse OS. Our study provided a framework for improved diagnosis and therapeutic alternatives for this aggressive tumor type.
Collapse
Affiliation(s)
- Flávia L. C. Faldoni
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Rolando A. R. Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, Brazil;
| | - Luisa M. Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu 18618-681, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu 18618-689, Brazil;
| | - Simon J. Larsen
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
| | - Mads M. Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
| | - Cristiano P. Souza
- Department of Breast and Gynecologic Oncology, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14784-390, Brazil;
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos SP 14784-400, Brazil;
- Diagnósticos da América (DASA), Barueri 01525-001, Brazil
| | | | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark; (S.J.L.); (J.B.)
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Fabio A. Marchi
- International Research Center, A.C.Camargo Cancer Center, São Paulo 01508-010, Brazil; (F.L.C.F.); (F.A.M.)
| | - Silvia R. Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (L.M.C.); (M.M.A.)
- Institute of Regional Health Research, University of Southern Denmark, 500 Odense, Denmark
| |
Collapse
|
19
|
Duffy MJ, Synnott NC, O'Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol 2020; 79:58-67. [PMID: 32741700 DOI: 10.1016/j.semcancer.2020.07.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the TP53 (p53) gene occurs in most if not all human malignancies. Two principal mechanisms are responsible for this dysfunction; mutation and downregulation of wild-type p53 mediated by MDM2/MDM4. Because of its almost universal inactivation in malignancy, p53 is a highly attractive target for the development of new anticancer drugs. Although multiple strategies have been investigated for targeting dysfunctional p53 for cancer treatment, only 2 of these have so far yielded compounds for testing in clinical trials. These strategies include the identification of compounds for reactivating the mutant form of p53 back to its wild-type form and compounds for inhibiting the interaction between wild-type p53 and MDM2/MDM4. Currently, multiple p53-MDM2/MDM4 antagonists are undergoing clinical trials, the most advanced being idasanutlin which is currently undergoing testing in a phase III clinical trial in patients with relapsed or refractory acute myeloid leukemia. Two mutant p53-reactivating compounds have progressed to clinical trials, i.e., APR-246 and COTI-2. Although promising data has emerged from the testing of both MDM2/MDM4 inhibitors and mutant p53 reactivating compounds in preclinical models, it is still unclear if these agents have clinical efficacy. However, should any of the compounds currently being evaluated in clinical trials be shown to have efficacy, it is likely to usher in a new era in cancer treatment, especially as p53 dysfunction is so prevalent in human cancers.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| | - Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Division of Cancer Epidemiology and Genetics, and Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
20
|
Huang Q, Chen L, Schonbrunn E, Chen J. MDMX inhibits casein kinase 1α activity and stimulates Wnt signaling. EMBO J 2020; 39:e104410. [PMID: 32511789 DOI: 10.15252/embj.2020104410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Casein kinase 1 alpha (CK1α) is a serine/threonine kinase with numerous functions, including regulating the Wnt/β-catenin and p53 pathways. CK1α has a well-established role in inhibiting the p53 tumor suppressor by binding to MDMX and stimulating MDMX-p53 interaction. MDMX purified from cells contains near-stoichiometric amounts of CK1α, suggesting that MDMX may in turn regulate CK1α function. We present evidence that MDMX is a potent competitive inhibitor of CK1α kinase activity (Ki = 8 nM). Depletion of MDMX increases CK1α activity and β-catenin S45 phosphorylation, whereas ectopic MDMX expression inhibits CK1α activity and β-catenin phosphorylation. The MDMX acidic domain and zinc finger are necessary and sufficient for binding and inhibition of CK1α. P53 binding to MDMX disrupts an intramolecular auto-regulatory interaction and enhances its ability to inhibit CK1α. P53-null mice expressing the MDMXW 200S/W201G mutant, defective in CK1α binding, exhibit reduced Wnt/β-catenin target gene expression and delayed tumor development. Therefore, MDMX is a physiological inhibitor of CK1α and has a role in modulating cellular response to Wnt signaling. The MDMX-CK1α interaction may account for certain p53-independent functions of MDMX.
Collapse
Affiliation(s)
- Qingling Huang
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Lihong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Ernst Schonbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
21
|
Dobbelstein M, Levine AJ. Mdm2: Open questions. Cancer Sci 2020; 111:2203-2211. [PMID: 32335977 PMCID: PMC7385351 DOI: 10.1111/cas.14433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
The Mdm2 oncoprotein and its association with p53 were discovered 30 years ago, and a cornucopia of activities and regulatory pathways have been associated with it. In this review, we will raise questions about Mdm2 and its cousin Mdm4 that we consider worth pursuing in future research, reaching from molecular structures and intracellular activities all the way to development, evolution, and cancer therapy. We anticipate that such research will not only close a few gaps in our knowledge but could add new dimensions to our current view. This compilation of questions contributes to the preparation for the 10th Mdm2 Workshop in Tokyo.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
22
|
Chen J, Liu T, Wang H, Wang Z, Lv Y, Zhao Y, Yang N, Yuan X. Elevation in the Expression of circ_0079586 Predicts Poor Prognosis and Accelerates Progression in Glioma via Interactions with the miR-183-5p/ MDM4 Signaling Pathway. Onco Targets Ther 2020; 13:5135-5143. [PMID: 32606734 PMCID: PMC7292368 DOI: 10.2147/ott.s234758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Glioma (GM) usually presents with an aggressive behavior and has a poor survival outcome. The abnormal expression of circular RNAs (circRNAs) has already been detected in GM, and circ_0079586 was found to have an increased expression in GM tumors. Patients and Methods We assessed the differences in the expression of circ_0079586 in GM tissues (N=60) and cell lines (N=5) using qRT-PCR. The clinical value of circ_0079586 was measured by Fisher’s exact test and Kaplan–Meier and Cox regression analyses. Circ_0079586 siRNA and vector were transfected into LN229 and U251 cells, respectively, and the transfection was verified by qRT-PCR. Cell growth was evaluated by cell counting kit-8 (CCK-8). Cell apoptosis was measured using flow cytometric assay. Cell metastatic properties were measured by wound scratch and transwell experiments. Subcellular fractionation was used to identify the location of circ_0079586. Dual-luciferase reporter test was utilized to confirm the interaction between miR-183-5p and circ_0079586/MDM4 3ʹ-UTR. Results The expression of circ_0079586 was elevated in GM samples and cells and correlated with the clinical severity and unfavorable prognosis of the patients. The elevated expression of circ_0079586 led to an increase in cell growth, migration and invasion but inhibited apoptosis in U251 cells, whereas its down-regulation reversed these effects in the LN229 cells. Mechanistically, we found circ_0079586 to be primarily located in the cytoplasm of GM cells. Furthermore, circ_0079586 could act as a sponge for miR-183-5p and elevate MDM4 expression at the posttranscriptional level. Conclusion In summary, circ_0079586 was found to be up-regulated in GM that increased the proliferation, migration and invasion in GM cells via interaction with the miR-183-5p/MDM4 axis. We anticipate that our study would provide newer insights into the mechanism and treatment of GM.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, People's Republic of China
| | - Tianyi Liu
- Department of Pathology, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China
| | - Hui Wang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong Province 250117, People's Republic of China
| | - Zhipeng Wang
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, People's Republic of China
| | - Yanju Lv
- Department of Oncology, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China
| | - Yuying Zhao
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, People's Republic of China
| | - Ning Yang
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, People's Republic of China
| | - Xueli Yuan
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, People's Republic of China
| |
Collapse
|
23
|
Wohlberedt K, Klusmann I, Derevyanko PK, Henningsen K, Choo JAMY, Manzini V, Magerhans A, Giansanti C, Eischen CM, Jochemsen AG, Dobbelstein M. Mdm4 supports DNA replication in a p53-independent fashion. Oncogene 2020; 39:4828-4843. [PMID: 32427989 PMCID: PMC7521021 DOI: 10.1038/s41388-020-1325-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
The Mdm4 (alias MdmX) oncoprotein, like its paralogue and interaction partner Mdm2, antagonizes the tumor suppressor p53. p53-independent roles of the Mdm proteins are emerging, and we have reported the ability of Mdm2 to modify chromatin and to support DNA replication by suppressing the formation of R-loops (DNA/RNA-hybrids). We show here that the depletion of Mdm4 in p53-deficient cells compromises DNA replication fork progression as well. Among various deletion mutants, only full-length Mdm4 was able to support DNA replication fork progression. Co-depletion of Mdm4 and Mdm2 further impaired DNA replication, and the overexpression of each partially compensated for the other's loss. Despite impairing replication, Mdm4 depletion only marginally hindered cell proliferation, likely due to compensation through increased firing of replication origins. However, depleting Mdm4 sensitized p53-/- cells to the nucleoside analog gemcitabine, raising the future perspective of using Mdm4 inhibitors as chemosensitizers. Mechanistically, Mdm4 interacts with members of the Polycomb Repressor Complexes and supports the ubiquitination of H2A, thereby preventing the accumulation of DNA/RNA-hybrids. Thus, in analogy to previously reported activities of Mdm2, Mdm4 enables unperturbed DNA replication through the avoidance of R-loops.
Collapse
Affiliation(s)
- Kai Wohlberedt
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Ina Klusmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Polina K Derevyanko
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Kester Henningsen
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Josephine Ann Mun Yee Choo
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Anna Magerhans
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Celeste Giansanti
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aart G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany.
| |
Collapse
|
24
|
Cao L, Basudan A, Sikora MJ, Bahreini A, Tasdemir N, Levine KM, Jankowitz RC, McAuliffe PF, Dabbs D, Haupt S, Haupt Y, Lucas PC, Lee AV, Oesterreich S, Atkinson JM. Frequent amplifications of ESR1, ERBB2 and MDM4 in primary invasive lobular breast carcinoma. Cancer Lett 2019; 461:21-30. [PMID: 31229512 PMCID: PMC6682463 DOI: 10.1016/j.canlet.2019.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023]
Abstract
Invasive lobular carcinoma (ILC) is the second most common histological subtype of breast cancer following invasive ductal carcinoma (IDC). To identify potential genetic drivers of ILC progression, we used NanoString nCounter technology to investigate the DNA copy number (CN) in 70 well-curated primary ILC samples. We confirmed prior observations of frequent amplification of CCND1 (33%), and MYC (17%) in ILC, but additionally identified a substantial subset of ILCs with ESR1 and ERBB2 (19%) amplifications. Of interest, tumors with ESR1 CN gains (14%) and amplification (10%) were more likely to recur compared to those with normal CN. Finally, we observed that MDM4 (MDMX) was amplified in 17% of ILC samples. MDM4 knockdown in TP53 wild-type ILC cell lines caused increased apoptosis, decreased proliferation associated with cell cycle arrest, and concomitant activation of TP53 target genes. Similar effects were seen in TP53 mutant cells, indicting a TP53-independent role for MDM4 in ILC. To conclude, amplification of ESR1 and MDM4 are potential genetic drivers of ILC. These amplifications may represent actionable, targetable tumor dependencies, and thus have potential clinical implications and warrant further study.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- DNA Copy Number Variations
- Estrogen Receptor alpha/genetics
- Female
- Follow-Up Studies
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, ErbB-2/genetics
- Retrospective Studies
- Survival Rate
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Lan Cao
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics and Gynecology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ahmed Basudan
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Clinical Laboratory Sciences, King Saud University, Saudi Arabia
| | - Matthew J Sikora
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amir Bahreini
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Genetics and Molecular Biology; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nilgun Tasdemir
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Levine
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachel C. Jankowitz
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology Oncology; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla F McAuliffe
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, Pittsburgh, PA
| | - David Dabbs
- Division of Breast and Gynecologic Pathology, Department of Pathology, Pittsburgh, PA
| | - Sue Haupt
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer M Atkinson
- Women’s Cancer Research Center, Magee-Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology; University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Gao C, Xiao G, Bargonetti J. Contemplations on MDMX (MDM4) driving triple negative breast cancer circulating tumor cells and metastasis. Oncotarget 2019; 10:5007-5010. [PMID: 31489110 PMCID: PMC6707941 DOI: 10.18632/oncotarget.27134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/25/2022] Open
Abstract
MDMX (MDM4) is emerging as an important breast cancer (BC) biomarker, and oncoprotein, that can be targeted in combination with its well-known family member MDM2. While MDM2 has previously been implicated in driving BC metastasis, information about the role of MDMX in driving circulating tumor cells (CTCs) and BC metastasis is lacking. BCs often have alterations of MDM2, MDMX, and mutant p53 (mtp53). Therefore, the role of MDM2 and MDMX in the context of mtp53 in BCs requires further clarification. Our group has recently reported that triple negative breast cancer (TNBC) metastasis is dependent on both MDM2 and MDMX, and depleting MDM2 results in increased MDMX, but depleting MDMX does not cause an increase in MDM2. In the context of human TNBC expressing mtp53 in an orthotopic mouse model the down-regulation of MDMX virtually cleared CTCs from the blood. Contemplations, using the available literature, suggest that disrupting the stability and/or function of MDMX protein (and its downstream targets), in the context of mtp53 expressing BCs, might be beneficial for patient survival. It remains to be determined if blocking mtp53-MDMX pathways can inhibit early stage TNBC and eliminate CTCs that have the potential to form metastatic lesions.
Collapse
Affiliation(s)
- Chong Gao
- The Department of Biological Sciences at Hunter College, Belfer Building, City University of New York, New York, NY, USA.,The Graduate Center Biology Program of City University of New York, New York, NY, USA
| | - Gu Xiao
- The Department of Biological Sciences at Hunter College, Belfer Building, City University of New York, New York, NY, USA
| | - Jill Bargonetti
- The Department of Biological Sciences at Hunter College, Belfer Building, City University of New York, New York, NY, USA.,The Graduate Center Biology Program of City University of New York, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College New York, New York, NY, USA
| |
Collapse
|
26
|
Di Agostino S, Fontemaggi G, Strano S, Blandino G, D'Orazi G. Targeting mutant p53 in cancer: the latest insights. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:290. [PMID: 31277687 PMCID: PMC6612074 DOI: 10.1186/s13046-019-1302-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023]
Abstract
This commentary wishes to highlight the latest discoveries in the mutant p53 field that have been discussed in the 8th p53 Mutant Workshop 2019, held in Lyon. TP53 mutant (mutp53) proteins are involved in the pathogenesis of most human cancers. Mutp53 proteins not only lose wild-typ53 function but, in some circumstances, may acquire novel oncogenic functions, namely gain-of-function (GOF), which lead to aberrant cell proliferation, chemoresistance, disruption of tissue architecture, migration, invasion and metastasis. Decoding the TP53 mutational spectrum and mutp53 interaction with additional transcription factors will therefore help to developing and testing novel and hopefully more efficient combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gabriella D'Orazi
- Department of Medical Science, University 'G. D'Annunzio, 66013, Chieti, Italy. .,Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
27
|
Jiang K, Sun F, Zhu J, Luo G, Ban Y, Zhang P. miR-33a inhibits cell growth in renal cancer by downregulation of MDM4 expression. Mol Genet Genomic Med 2019; 7:e833. [PMID: 31250570 PMCID: PMC6687894 DOI: 10.1002/mgg3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/08/2019] [Accepted: 05/31/2019] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNA‐33a (miR‐33a) plays the role of the tumor suppressor gene by regulating the expression level of downstream genes. However, the effects of miR‐33a in renal cell cancer (RCC) remain unknown. Our study was designed to investigate the expression level and potential function of miR‐33a in RCC. Methods RT‐qPCR was applied to measure the levels of miR‐33a in RCC tissues and cell lines. Western blotting and luciferase reporter assay were used to detect the relationship between miR‐33a and Mouse double minute 4 (MDM4) in RCC cells. CCK‐8 and flow cytometry were applied to detected cell viability and cell cycle. Animal models and TUNEL assay were applied to detect the effect of miR‐33a on the growth of RCC and cell apoptosis. Results We found that the levels of miR‐33a were significantly decreased in RCC tissues and cell lines. Moreover, the low expression of miR‐33a in RCC patients indicated a shorter overall survival (OS). Notably, MDM4 as a direct target of miR‐33a in RCC, the expression level of MDM4 was significantly increased in RCC cells group than the control group. Furthermore, miR‐33a overexpression significantly inhibited RCC cells growth than the control group, while the inhibitory effects of miR‐33a were reversed upon the overexpression of MDM4. Luciferase reporter assays showed that there was a direct interaction between miR‐33a and 3′ UTR of MDM4 mRNA. In vivo, tumor volumes and weight were significantly decreased in the transfected miR‐33a mimics group than the control group. Conclusion Taken together, our study indicates that miR‐33a inhibits RCC cell growth by targeting MDM4.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yong Ban
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Peng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
28
|
Zhang L, Wang K, Wu Q, Jin L, Lu H, Shi Y, Liu L, Yang L, Lv L. Let-7 inhibits the migration and invasion of extravillous trophoblast cell via targeting MDM4. Mol Cell Probes 2019; 45:48-56. [DOI: 10.1016/j.mcp.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023]
|
29
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Gao C, Xiao G, Piersigilli A, Gou J, Ogunwobi O, Bargonetti J. Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. Breast Cancer Res 2019; 21:5. [PMID: 30642351 PMCID: PMC6332579 DOI: 10.1186/s13058-018-1094-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Many human breast cancers overexpress the E3 ubiquitin ligase MDM2 and its homolog MDMX. Expression of MDM2 and MDMX occurs in estrogen receptor α-positive (ERα+) breast cancer and triple-negative breast cancer (TNBC). There are p53-independent influences of MDM2 and MDMX, and 80% of TNBC express mutant p53 (mtp53). MDM2 drives TNBC circulating tumor cells (CTCs) in mice, but the context-dependent influences of MDM2 and MDMX on different subtypes of breast cancers expressing mtp53 have not been determined. METHODS To assess the context-dependent roles, we carried out MDM2 and MDMX knockdown in orthotopic tumors of TNBC MDA-MB-231 cells expressing mtp53 R280K and MDM2 knockdown in ERα+ T47D cells expressing mtp53 L194F. The corresponding cell proliferation was scored in vitro by growth curves and in vivo by orthotopic tumor volumes. Cell migration was assessed in vitro by wound-healing assays and cell intravasation in vivo by sorting GFP-positive CTCs by flow cytometry. The metastasis gene targets were determined by an RT-PCR array card screen and verified by qRT-PCR and Western blot analysis. RESULTS Knocking down MDMX or MDM2 in MDA-MB-231 cells reduced cell migration and CTC detection, but only MDMX knockdown reduced tumor volumes at early time points. This is the first report of MDMX overexpression in TNBC enhancing the CTC phenotype with correlated upregulation of CXCR4. Experiments were carried out to compare MDM2-knockdown outcomes in nonmetastatic ERα+ T47D cells. The knockdown of MDM2 in ERα+ T47D orthotopic tumors decreased primary tumor volumes, supporting our previous finding that estrogen-activated MDM2 increases cell proliferation. CONCLUSIONS This is the first report showing that the expression of MDM2 in ERα+ breast cancer and TNBC can result in different tumor-promoting outcomes. Both MDMX and MDM2 overexpression in TNBC MDA-MB-231 cells enhanced the CTC phenotype. These data indicate that both MDM2 and MDMX can promote TNBC metastasis and that it is important to consider the context-dependent roles of MDM2 family members in different subtypes of breast cancer.
Collapse
Affiliation(s)
- Chong Gao
- Graduate Center Biology Program, Hunter College, City University of New York, Belfer Building, New York, NY, USA
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA
| | - Gu Xiao
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiangtao Gou
- Department of Mathematics and Statistics, Hunter College, City University of New York, Belfer Building, New York, NY, USA
| | - Olorunseun Ogunwobi
- Graduate Center Biology Program, Hunter College, City University of New York, Belfer Building, New York, NY, USA
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA
| | - Jill Bargonetti
- Graduate Center Biology Program, Hunter College, City University of New York, Belfer Building, New York, NY, USA.
- Department of Biological Sciences, Hunter College and Weill Cornell Medical College, City University of New York, 413 East 69th Street, Belfer Building, New York, NY, 10021, USA.
| |
Collapse
|
31
|
Wang Y, Ding Q, Lu YC, Cao SY, Liu QX, Zhang L. Interferon-stimulated gene 15 enters posttranslational modifications of p53. J Cell Physiol 2018; 234:5507-5518. [PMID: 30317575 DOI: 10.1002/jcp.27347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu-Chen Lu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Shi-Yang Cao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Qing-Xue Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Disease, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 2018; 9:34554-34566. [PMID: 30349649 PMCID: PMC6195371 DOI: 10.18632/oncotarget.26177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose The identification of genes with synthetic lethality in the context of mutant TP53 is a promising strategy for the treatment of basal-like triple negative breast cancer (TNBC). This study investigated regulators of mutant TP53 (R248Q) in basal-like TNBC and their impact on tumorigenesis. Experimental Design TNBC cells were analyzed by RNA-seq, and synthetic-lethal shRNA knock-down screening, to identify genes related to the expression of mutant TP53. A tissue microarray of 232 breast cancer samples, that included 66 TNBC cases, was used to assess clinicopathological correlates of tumor protein expression. Functional assays were performed in vitro and in vivo to assess the role of ADORA2B in TNBC. Results Transcriptome profiling identified ADORA2B as up-regulated in basal-like TNBC cell lines with R248Q-mutated TP53, with shRNA-screening suggesting the potential for a synthetic-lethal interaction between these genes. In clinical samples, ADORA2B was highly expressed in 39.4% (26/66) of TNBC patients. ADORA2B-expression was significantly correlated with ER (P < 0.01), PgR (P = 0.027), EGFR (P < 0.01), and tumor size (P = 0.037), and was an independent prognostic factor for outcome (P = 0.036). In line with this, ADORA2B-transduced TNBC cells showed increased tumorigenesis, and ADORA2B knockdown, along with mutant p53 knockdown, decreased metastasis both in vitro and in vivo. Notably, the cytotoxic cyclic peptide SA-I suppressed ADORA2B expression and tumorigenesis in TNBC cell lines. Conclusions ADORA2B expression increases the oncogenic potential of basal-like TNBC and is an independent factor for poor outcome. These data suggest that ADORA2B could serve as a prognostic biomarker and a potential therapeutic target for basal-like TNBC.
Collapse
|
33
|
Chai H, Liang Y, Wang S, Shen HW. A novel logistic regression model combining semi-supervised learning and active learning for disease classification. Sci Rep 2018; 8:13009. [PMID: 30158596 PMCID: PMC6115447 DOI: 10.1038/s41598-018-31395-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Traditional supervised learning classifier needs a lot of labeled samples to achieve good performance, however in many biological datasets there is only a small size of labeled samples and the remaining samples are unlabeled. Labeling these unlabeled samples manually is difficult or expensive. Technologies such as active learning and semi-supervised learning have been proposed to utilize the unlabeled samples for improving the model performance. However in active learning the model suffers from being short-sighted or biased and some manual workload is still needed. The semi-supervised learning methods are easy to be affected by the noisy samples. In this paper we propose a novel logistic regression model based on complementarity of active learning and semi-supervised learning, for utilizing the unlabeled samples with least cost to improve the disease classification accuracy. In addition to that, an update pseudo-labeled samples mechanism is designed to reduce the false pseudo-labeled samples. The experiment results show that this new model can achieve better performances compared the widely used semi-supervised learning and active learning methods in disease classification and gene selection.
Collapse
Affiliation(s)
- Hua Chai
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Yong Liang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| | - Sai Wang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Hai-Wei Shen
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| |
Collapse
|
34
|
Heijkants RC, Nieveen M, Hart KC', Teunisse AFAS, Jochemsen AG. Targeting MDMX and PKCδ to improve current uveal melanoma therapeutic strategies. Oncogenesis 2018; 7:33. [PMID: 29593251 PMCID: PMC5874255 DOI: 10.1038/s41389-018-0041-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 03/07/2018] [Indexed: 01/10/2023] Open
Abstract
Uveal melanoma (UM) is the most frequent ocular cancer in adults, accounting for ~5% of the total melanoma incidence. Although the primary tumor is well treatable, patients frequently develop metastases for which no curative therapy exists. Highly activated protein kinase C (PKC) is a common feature of UM and has shown potential as therapeutic intervention for UM patients. Unfortunately, PKC inhibition as single treatment appears to have only limited clinical benefit. Combining PKC inhibition with activation of p53, which is rarely mutated in UM, by MDM2 inhibitors has shown promising results in vitro and in vivo. However, clinical studies have shown strong adverse effects of MDM2 inhibition. Therefore, we investigated alternative approaches to achieve similar anticancer effects, but with potentially less adverse effects. We studied the potential of targeting MDMX, an essential p53 inhibitor during embryonal development but less universally expressed in adult tissues compared with MDM2. Therefore, targeting MDMX is predicted to have less adverse effects in patients. Depletion of MDMX, like the pharmacological activation of p53, inhibits the survival of UM cells, which is enhanced in combination with PKC inhibition. Also pan-PKC inhibitors elicit adverse effects in patients. As the PKC family consists of 10 different isoforms, it could be hypothesized that targeting a single PKC isoform would have less adverse effects compared with a pan-PKC inhibitor. Here we show that specifically depleting PKCδ inhibits UM cell growth, which can be further enhanced by p53 reactivation. In conclusion, our data show that the synergistic effects of p53 activation by MDM2 inhibition and broad spectrum PKC inhibition on survival of UM cells can also largely be achieved by the presumably less toxic combination of depletion of MDMX and targeting a specific PKC isoform, PKCδ.
Collapse
Affiliation(s)
- R C Heijkants
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Nieveen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - K C 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A F A S Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A G Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
35
|
Abstract
Crucial, natural protection against tumour onset in humans is orchestrated by the dynamic protein p53. The best-characterised functions of p53 relate to its cellular stress responses. In this review, we explore emerging insights into p53 activities and their functional consequences. We compare p53 in humans and elephants, in search of salient features of cancer protection.
Collapse
Affiliation(s)
- Sue Haupt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ygal Haupt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Department of Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|