1
|
Li M, Gao X, Lin X, Zhang Y, Peng W, Sun T, Shu W, Shi Y, Guan Y, Xia X, Yi X, Li Y, Jia J. Analysis of germline-somatic mutational connections in colorectal cancer reveals differential tumorigenic patterns and a novel predictive marker for germline mutation carriers. Cancer Lett 2025; 620:217637. [PMID: 40118241 DOI: 10.1016/j.canlet.2025.217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Colorectal cancer (CRC) genetic testing of regions beyond clinical guidelines has revealed a substantial number of likely pathogenic germline mutations (GMs). It remains largely undetermined whether and how these GMs, typically located in non-mismatch repair (non-MMR) genes, are associated with the tumorigenesis of CRC. This study aimed to identify CRC-predisposing GMs among 93 cancer susceptibility genes and investigate their potential influences on CRC somatic mutational features. We secondarily aimed to investigate whether somatic ERBB2 amplification contributes to identifying GM carriers. This study incorporated a total of 3,240 Chinese CRC patients and 10,588 control individuals. CRC patients were subjected to paired tumor-normal sequencing with a 1,021-gene panel. A case-control analysis was conducted to profile the GM-associated CRC risk. A comprehensive germline-somatic association analysis was performed among 2,405 patients, with key findings subsequently validated in an independent 835-patient cohort and the TCGA CRC cohort. The case-control results supported CRC-predisposing effects of GMs in certain homologous recombination repair (HRR) and DNA damage checkpoint factor (CPF) genes, such as BRCA1/2, RecQ helicase genes, ATM, and CHEK2. HRR GMs were associated with an increased copy number alteration burden, more TP53 clonal mutations, and a higher probability of carrying somatic ERBB2 amplification. CPF GMs were inferred to have synergistic effects with ARID1A and KDM6A somatic mutations in CRC tumorigenesis. Among patients with onset age ≥55 years, stable microsatellites, and no cancer family history, ERBB2 amplification was significantly predictive of GM carriers. Our findings elucidate different germline tumorigenic patterns not driven by deficient MMR. Somatic ERBB2 amplification in CRC can serve as an indicator for germline genetic testing when traditional risk features are absent.
Collapse
Affiliation(s)
- Mintao Li
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuan Gao
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, China
| | - Xiangchun Lin
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Tao Sun
- General Surgery Department, Peking University Third Hospital, Beijing, China
| | - Weiyang Shu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | | | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China.
| | - Yuan Li
- Department of Gastroenterology, Peking University International Hospital, Beijing, China; Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| |
Collapse
|
2
|
Joo JE, Viana-Errasti J, Buchanan DD, Valle L. Genetics, genomics and clinical features of adenomatous polyposis. Fam Cancer 2025; 24:38. [PMID: 40237887 PMCID: PMC12003455 DOI: 10.1007/s10689-025-00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025]
Abstract
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julen Viana-Errasti
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Doctoral Program in Biomedicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Collaborative Centre for Genomic Cancer Medicine, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Av. Gran Via 199- 203, Hospitalet de Llobregat, 08908, Spain.
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Avsievich E, Salimgereeva D, Maluchenko A, Antysheva Z, Voloshin M, Feidorov I, Glazova O, Abramov I, Maksimov D, Kaziakhmedova S, Bodunova N, Karnaukhov N, Volchkov P, Krupinova J. Pancreatic Neuroendocrine Tumor: The Case Report of a Patient with Germline FANCD2 Mutation and Tumor Analysis Using Single-Cell RNA Sequencing. J Clin Med 2024; 13:7621. [PMID: 39768544 PMCID: PMC11728285 DOI: 10.3390/jcm13247621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Neuroendocrine neoplasms are a rare and heterogeneous group of neoplasms. Small-sized (≤2 cm) pancreatic neuroendocrine tumors (PanNETs) are of particular interest as they are often associated with aggressive behavior, with no specific prognostic or progression markers. METHODS This article describes a clinical case characterized by a progressive growth of nonfunctional PanNET requiring surgical treatment in a patient with a germline FANCD2 mutation, previously not reported in PanNETs. The patient underwent whole exome sequencing and single-cell RNA sequencing. RESULTS The patient underwent surgical treatment. We confirmed the presence of the germline mutation FANCD2 and also detected the germline mutation WNT10A. The cellular composition of the PanNET was analyzed using single-cell sequencing, and the main cell clusters were identified. We analyzed the tumor genomics, and used the data to define the effect the germline FANCD2 mutation had. CONCLUSIONS Analysis of the mutational status of patients with PanNET may provide additional data that may influence treatment tactics, refine the plan for monitoring such patients, and provide more information about the pathogenesis of PanNET. PanNET research using scRNA-seq data may help in predicting the effect of therapy on neuroendocrine cells with FANCD2 mutations.
Collapse
Affiliation(s)
- Ekaterina Avsievich
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Olga Glazova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Ivan Abramov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Samira Kaziakhmedova
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Pavel Volchkov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Julia Krupinova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| |
Collapse
|
4
|
Young CL, Beichman AC, Mas Ponte D, Hemker SL, Zhu L, Kitzman JO, Shirts BH, Harris K. A maternal germline mutator phenotype in a family affected by heritable colorectal cancer. Genetics 2024; 228:iyae166. [PMID: 39403956 PMCID: PMC11631438 DOI: 10.1093/genetics/iyae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as "surrogate parents" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.
Collapse
Affiliation(s)
- Candice L Young
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Molecular and Cellular Biology, University of Washington, 1705 NE Pacific St, Seattle, WA 98195, USA
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - David Mas Ponte
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Shelby L Hemker
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109, USA
| | - Luke Zhu
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109, USA
| | - Brian H Shirts
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Young CL, Beichman AC, Mas-Ponte D, Hemker SL, Zhu L, Kitzman JO, Shirts BH, Harris K. A maternal germline mutator phenotype in a family affected by heritable colorectal cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.08.23299304. [PMID: 38196581 PMCID: PMC10775336 DOI: 10.1101/2023.12.08.23299304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as "surrogate parents" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.
Collapse
Affiliation(s)
- Candice L. Young
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
- Department of Molecular and Cellular Biology, University of Washington, 1705 NE Pacific St, Seattle, WA 98195
| | - Annabel C. Beichman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
| | - David Mas-Ponte
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
| | - Shelby L. Hemker
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109
| | - Luke Zhu
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
| | - Jacob O. Kitzman
- Department of Human Genetics, University of Michigan, 1241 Catherine St, Ann Arbor, MI 48109
| | - Brian H. Shirts
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109
| |
Collapse
|
6
|
Brosda S, Aoude LG, Bonazzi VF, Patel K, Lonie JM, Belle CJ, Newell F, Koufariotis LT, Addala V, Naeini MM, Pearson JV, Krause L, Waddell N, Barbour AP. Spatial intra-tumour heterogeneity and treatment-induced genomic evolution in oesophageal adenocarcinoma: implications for prognosis and therapy. Genome Med 2024; 16:90. [PMID: 39020404 PMCID: PMC11253399 DOI: 10.1186/s13073-024-01362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance. METHODS Whole-genome sequencing data from 59 treatment-naïve and 18 post-treatment samples from 29 OAC patients was analysed. Twenty-seven of these were enrolled in the DOCTOR trial, sponsored by the Australasian Gastro-Intestinal Trials Group. Two biopsies from each treatment-naïve tumour were assessed to define 'shared' (between both samples) and 'private' (present in one sample) mutations. RESULTS Mutational signatures SBS2/13 (APOBEC) and SBS3 (BRCA) were almost exclusively detected in private mutation populations of treatment-naïve tumours. Patients presenting these signatures had significantly worse disease specific survival. Furthermore, mutational signatures associated with platinum-based chemotherapy treatment as well as high platinum enrichment scores were only detected in post-treatment samples. Additionally, clones with high putative neoantigen binding scores were detected in some treatment-naïve samples suggesting immunoediting of clones. CONCLUSIONS This study demonstrates the high intra-tumour heterogeneity in OAC, as well as indicators for treatment-induced changes during tumour evolution. Intra-tumour heterogeneity remains a problem for successful treatment strategies in OAC.
Collapse
Affiliation(s)
- Sandra Brosda
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Vanessa F Bonazzi
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James M Lonie
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Clemence J Belle
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Marjan M Naeini
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Lutz Krause
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Microba Life Sciences, Brisbane, QLD, 4000, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew P Barbour
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
7
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG Syn-Anti Flips in Mutagenic 8OG·A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. J Phys Chem B 2024; 128:4087-4096. [PMID: 38644782 PMCID: PMC11993911 DOI: 10.1021/acs.jpcb.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter their propensities to form low-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn·Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly populated (pop. ∼ 5%) and short-lived (lifetime ∼50 ms) nonmutagenic 8OGanti·Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on the labeled partner adenine. The Watson-Crick-like 8OGsyn·Aanti mismatch also rescued the kinetics of Hoogsteen motions at distant A-T base pairs, which the G·A mismatch had slowed down. The results lend further support for 8OGanti·Aanti as a minor conformational state of 8OG·A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Nzitakera A, Surwumwe JB, Ndoricyimpaye EL, Uwamungu S, Uwamariya D, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Rugwizangoga B, Iwashita Y, Yamada H, Yoshimura K, Sugimura H, Shinmura K. The spectrum of TP53 mutations in Rwandan patients with gastric cancer. Genes Environ 2024; 46:8. [PMID: 38459566 PMCID: PMC10921722 DOI: 10.1186/s41021-024-00302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Gastric cancer is the sixth most frequently diagnosed cancer and third in causing cancer-related death globally. The most frequently mutated gene in human cancers is TP53, which plays a pivotal role in cancer initiation and progression. In Africa, particularly in Rwanda, data on TP53 mutations are lacking. Therefore, this study intended to obtain TP53 mutation status in Rwandan patients with gastric cancer. RESULTS Formalin-fixed paraffin-embedded tissue blocks of 95 Rwandan patients with histopathologically proven gastric carcinoma were obtained from the University Teaching Hospital of Kigali. After DNA extraction, all coding regions of the TP53 gene and the exon-intron boundary region of TP53 were sequenced using the Sanger sequencing. Mutated TP53 were observed in 24 (25.3%) of the 95 cases, and a total of 29 mutations were identified. These TP53 mutations were distributed between exon 4 and 8 and most of them were missense mutations (19/29; 65.5%). Immunohistochemical analysis for TP53 revealed that most of the TP53 missense mutations were associated with TP53 protein accumulation. Among the 29 mutations, one was novel (c.459_477delCGGCACCCGCGTCCGCGCC). This 19-bp deletion mutation in exon 5 caused the production of truncated TP53 protein (p.G154Wfs*10). Regarding the spectrum of TP53 mutations, G:C > A:T at CpG sites was the most prevalent (10/29; 34.5%) and G:C > T:A was the second most prevalent (7/29; 24.1%). Interestingly, when the mutation spectrum of TP53 was compared to three previous TP53 mutational studies on non-Rwandan patients with gastric cancer, G:C > T:A mutations were significantly more frequent in this study than in our previous study (p = 0.013), the TCGA database (p = 0.017), and a previous study on patients from Hong Kong (p = 0.006). Even after correcting for false discovery, statistical significance was observed. CONCLUSIONS Our results suggested that TP53 G:C > T:A transversion mutation in Rwandan patients with gastric cancer is more frequent than in non-Rwandan patients with gastric cancer, indicating at an alternative etiological and carcinogenic progression of gastric cancer in Rwanda.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Placide Kamali
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - François Ngabonziza
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kimio Yoshimura
- Department of Health Policy and Management, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine (HUSM), 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
9
|
Conlon S, Khuu C, Trasviña-Arenas CH, Xia T, Hamm ML, Raetz AG, David SS. Cellular Repair of Synthetic Analogs of Oxidative DNA Damage Reveals a Key Structure-Activity Relationship of the Cancer-Associated MUTYH DNA Repair Glycosylase. ACS CENTRAL SCIENCE 2024; 10:291-301. [PMID: 38435525 PMCID: PMC10906249 DOI: 10.1021/acscentsci.3c00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 03/05/2024]
Abstract
The base excision repair glycosylase MUTYH prevents mutations associated with the oxidatively damaged base, 8-oxo-7,8-dihydroguanine (OG), by removing undamaged misincorporated adenines from OG:A mispairs. Defects in OG:A repair in individuals with inherited MUTYH variants are correlated with the colorectal cancer predisposition syndrome known as MUTYH-associated polyposis (MAP). Herein, we reveal key structural features of OG required for efficient repair by human MUTYH using structure-activity relationships (SAR). We developed a GFP-based plasmid reporter assay to define SAR with synthetically generated OG analogs in human cell lines. Cellular repair results were compared with kinetic parameters measured by adenine glycosylase assays in vitro. Our results show substrates lacking the 2-amino group of OG, such as 8OI:A (8OI = 8-oxoinosine), are not repaired in cells, despite being excellent substrates in in vitro adenine glycosylase assays, new evidence that the search and detection steps are critical factors in cellular MUTYH repair functionality. Surprisingly, modification of the O8/N7H of OG, which is the distinguishing feature of OG relative to G, was tolerated in both MUTYH-mediated cellular repair and in vitro adenine glycosylase activity. The lack of sensitivity to alterations at the O8/N7H in the SAR of MUTYH substrates is distinct from previous work with bacterial MutY, indicating that the human enzyme is much less stringent in its lesion verification. Our results imply that the human protein relies almost exclusively on detection of the unique major groove position of the 2-amino group of OG within OGsyn:Aanti mispairs to select contextually incorrect adenines for excision and thereby thwart mutagenesis. These results predict that MUTYH variants that exhibit deficiencies in OG:A detection will be severely compromised in a cellular setting. Moreover, the reliance of MUTYH on the interaction with the OG 2-amino group suggests that disrupting this interaction with small molecules may provide a strategy to develop potent and selective MUTYH inhibitors.
Collapse
Affiliation(s)
- Savannah
G. Conlon
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cindy Khuu
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlos H. Trasviña-Arenas
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Tian Xia
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Michelle L. Hamm
- Department
of Chemistry, University of Richmond, 410 Westhampton Way, Richmond, Virginia 23173, United States
| | - Alan G. Raetz
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S. David
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Sasani TA, Quinlan AR, Harris K. Epistasis between mutator alleles contributes to germline mutation spectrum variability in laboratory mice. eLife 2024; 12:RP89096. [PMID: 38381482 PMCID: PMC10942616 DOI: 10.7554/elife.89096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.
Collapse
Affiliation(s)
- Thomas A Sasani
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Aaron R Quinlan
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
- Department of Biomedical Informatics, University of UtahSalt Lake CityUnited States
| | - Kelley Harris
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Herbold Computational Biology Program, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
11
|
Sholler GLS, Bergendahl G, Lewis EC, Kraveka J, Ferguson W, Nagulapally AB, Dykema K, Brown VI, Isakoff MS, Junewick J, Mitchell D, Rawwas J, Roberts W, Eslin D, Oesterheld J, Wada RK, Pastakia D, Harrod V, Ginn K, Saab R, Bielamowicz K, Glover J, Chang E, Hanna GK, Enriquez D, Izatt T, Halperin RF, Moore A, Byron SA, Hendricks WPD, Trent JM. Molecular-guided therapy for the treatment of patients with relapsed and refractory childhood cancers: a Beat Childhood Cancer Research Consortium trial. Genome Med 2024; 16:28. [PMID: 38347552 PMCID: PMC10860258 DOI: 10.1186/s13073-024-01297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Children with relapsed central nervous system (CNS tumors), neuroblastoma, sarcomas, and other rare solid tumors face poor outcomes. This prospective clinical trial examined the feasibility of combining genomic and transcriptomic profiling of tumor samples with a molecular tumor board (MTB) approach to make real‑time treatment decisions for children with relapsed/refractory solid tumors. METHODS Subjects were divided into three strata: stratum 1-relapsed/refractory neuroblastoma; stratum 2-relapsed/refractory CNS tumors; and stratum 3-relapsed/refractory rare solid tumors. Tumor samples were sent for tumor/normal whole-exome (WES) and tumor whole-transcriptome (WTS) sequencing, and the genomic data were used in a multi-institutional MTB to make real‑time treatment decisions. The MTB recommended plan allowed for a combination of up to 4 agents. Feasibility was measured by time to completion of genomic sequencing, MTB review and initiation of treatment. Response was assessed after every two cycles using Response Evaluation Criteria in Solid Tumors (RECIST). Patient clinical benefit was calculated by the sum of the CR, PR, SD, and NED subjects divided by the sum of complete response (CR), partial response (PR), stable disease (SD), no evidence of disease (NED), and progressive disease (PD) subjects. Grade 3 and higher related and unexpected adverse events (AEs) were tabulated for safety evaluation. RESULTS A total of 186 eligible patients were enrolled with 144 evaluable for safety and 124 evaluable for response. The average number of days from biopsy to initiation of the MTB-recommended combination therapy was 38 days. Patient benefit was exhibited in 65% of all subjects, 67% of neuroblastoma subjects, 73% of CNS tumor subjects, and 60% of rare tumor subjects. There was little associated toxicity above that expected for the MGT drugs used during this trial, suggestive of the safety of utilizing this method of selecting combination targeted therapy. CONCLUSIONS This trial demonstrated the feasibility, safety, and efficacy of a comprehensive sequencing model to guide personalized therapy for patients with any relapsed/refractory solid malignancy. Personalized therapy was well tolerated, and the clinical benefit rate of 65% in these heavily pretreated populations suggests that this treatment strategy could be an effective option for relapsed and refractory pediatric cancers. TRIAL REGISTRATION ClinicalTrials.gov, NCT02162732. Prospectively registered on June 11, 2014.
Collapse
Affiliation(s)
- Giselle L Saulnier Sholler
- Division of Pediatric Hematology/Oncology, Penn State Health Children's Hospital, 500 University Drive, MC-H085, Rm. C7621, Hershey, PA, 17033-0850, USA.
| | - Genevieve Bergendahl
- Division of Pediatric Hematology/Oncology, Penn State Health Children's Hospital, 500 University Drive, MC-H085, Rm. C7621, Hershey, PA, 17033-0850, USA
| | | | | | - William Ferguson
- Cardinal Glennon Children's Medical Center, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Abhinav B Nagulapally
- Division of Pediatric Hematology/Oncology, Penn State Health Children's Hospital, 500 University Drive, MC-H085, Rm. C7621, Hershey, PA, 17033-0850, USA
| | - Karl Dykema
- Levine Children's Hospital, Atrium Health, Charlotte, NC, USA
| | - Valerie I Brown
- Division of Pediatric Hematology/Oncology, Penn State Health Children's Hospital, 500 University Drive, MC-H085, Rm. C7621, Hershey, PA, 17033-0850, USA
| | | | - Joseph Junewick
- Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, MI, USA
| | - Deanna Mitchell
- Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, MI, USA
| | - Jawhar Rawwas
- Children's Hospitals and Clinics of Minnesota, Minneapolis, USA
| | - William Roberts
- Rady Children's Hospital-San Diego and UC San Diego School of Medicine, San Diego, CA, USA
| | - Don Eslin
- St. Joseph's Children's Hospital, Tampa, FL, USA
| | | | - Randal K Wada
- Kapiolani Medical Center for Women and Children, University of Hawaii, Honolulu, HI, USA
| | | | - Virginia Harrod
- Dell Children's Blood and Cancer Center, Ascension Dell Children's, Austin, TX, USA
| | | | - Raya Saab
- Stanford Medicine Children's Health, Palo Alto, CA, USA
| | | | | | | | - Gina K Hanna
- Orlando Health Cancer Institute, Orlando, FL, USA
| | | | - Tyler Izatt
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Abigail Moore
- Division of Pediatric Hematology/Oncology, Penn State Health Children's Hospital, 500 University Drive, MC-H085, Rm. C7621, Hershey, PA, 17033-0850, USA
| | - Sara A Byron
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | |
Collapse
|
12
|
Ohno M, Takano N, Hidaka K, Sasaki F, Yamauchi K, Aoki Y, Nohmi T, Nakabeppu Y, Nakatsu Y, Tsuzuki T. Oxidative stress accelerates intestinal tumorigenesis by enhancing 8-oxoguanine-mediated mutagenesis in MUTYH-deficient mice. Genome Res 2024; 34:47-56. [PMID: 38290979 PMCID: PMC10904009 DOI: 10.1101/gr.278326.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Oxidative stress-induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)-containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. All Mutyh -/- mice treated with >0.1% KBrO3 developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis of Mutyh -/-/rpsL transgenic mice revealed that G:C > T:A transversion was the only mutation type correlated positively with KBrO3 dose and tumor incidence. These mutations preferentially occurred at 5'G in GG and GAA sequences in rpsL This characteristic mutation pattern was also observed in the genomic region of Mutyh -/- tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers, Apc or Ctnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.
Collapse
Affiliation(s)
- Mizuki Ohno
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan;
| | - Noriko Takano
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kyoko Hidaka
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Center for Fundamental Education, The University of Kitakyushu, Kitakyushu, Fukuoka 802-8577, Japan
| | - Fumiko Sasaki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kazumi Yamauchi
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Radiobiology, Institute for Environmental Sciences, Kamikita, Aomori 039-3212, Japan
| | - Yasunobu Aoki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Japan Society for the Promotion of Science, San Francisco Office, Berkeley, California 94704, USA
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Sugiyama T, Sanyal MR. Biochemical analysis of H 2O 2-induced mutation spectra revealed that multiple damages were involved in the mutational process. DNA Repair (Amst) 2024; 134:103617. [PMID: 38154332 PMCID: PMC10842480 DOI: 10.1016/j.dnarep.2023.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Reactive oxygen species (ROS) are a major threat to genomic integrity and believed to be one of the etiologies of cancers. Here we developed a cell-free system to analyze ROS-induced mutagenesis, in which DNA was exposed to H2O2 and then subjected to translesion DNA synthesis by various DNA polymerases. Then, frequencies of mutations on the DNA products were determined by using next-generation sequencing technology. The majority of observed mutations were either C>A or G>A, caused by dAMP insertion at G and C residues, respectively. These mutations showed similar spectra to COSMIC cancer mutational signature 18 and 36, which are proposed to be caused by ROS. The in vitro mutations can be produced by replicative DNA polymerases (yeast DNA polymerase δ and ε), suggesting that ordinary DNA replication is sufficient to produce them. Very little G>A mutation was observed immediately after exposure to H2O2, but the frequency was increased during the 24 h after the ROS was removed, indicating that the initial oxidation product of cytosine needs to be maturated into a mutagenic lesion. Glycosylase-sensitivities of these mutations suggest that the C>A were made on 8-oxoguanine or Fapy-guanine, and that G>A were most likely made on 5-hydroxycytosine modification.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA.
| | - Mahima R Sanyal
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
14
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG syn-anti Flips in Mutagenic 8OG•A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575532. [PMID: 38293035 PMCID: PMC10827055 DOI: 10.1101/2024.01.15.575532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter the propensities to form lowly-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn•Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly-populated (pop. ~ 5%) and short-lived (lifetime ~ 50 ms) non-mutagenic 8OGanti•Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on a labeled partner adenine. The Watson-Crick-like 8OGsyn•Aanti mismatch also rescued the kinetics of Hoogsteen motions at distance A-T base pairs, which the G•A mismatch had slowed down. The results lend further support for 8OGanti•Aanti as a minor conformational state of 8OG•A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
16
|
Sasani TA, Quinlan AR, Harris K. Epistasis between mutator alleles contributes to germline mutation spectra variability in laboratory mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537217. [PMID: 37162999 PMCID: PMC10168256 DOI: 10.1101/2023.04.25.537217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair [1], mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs [2,3]. In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh [4]. Its effect depended on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci had greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.
Collapse
Affiliation(s)
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah; Department of Biomedical Informatics, University of Utah · Funded by NIH/NHGRI R01HG012252
| | - Kelley Harris
- Department of Genome Sciences, University of Washington · Funded by NIH/NIGMS R35GM133428; Burroughs Wellcome Career Award at the Scientific Interface; Searle Scholarship; Pew Scholarship; Sloan Fellowship; Allen Discovery Center for Cell Lineage Tracing
| |
Collapse
|
17
|
Sherwood K, Ward JC, Soriano I, Martin L, Campbell A, Rahbari R, Kafetzopoulos I, Sproul D, Green A, Sampson JR, Donaldson A, Ong KR, Heinimann K, Nielsen M, Thomas H, Latchford A, Palles C, Tomlinson I. Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair. Nat Commun 2023; 14:3636. [PMID: 37336879 PMCID: PMC10279637 DOI: 10.1038/s41467-023-39248-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
DNA repair defects underlie many cancer syndromes. We tested whether de novo germline mutations (DNMs) are increased in families with germline defects in polymerase proofreading or base excision repair. A parent with a single germline POLE or POLD1 mutation, or biallelic MUTYH mutations, had 3-4 fold increased DNMs over sex-matched controls. POLE had the largest effect. The DNMs carried mutational signatures of the appropriate DNA repair deficiency. No DNM increase occurred in offspring of MUTYH heterozygous parents. Parental DNA repair defects caused about 20-150 DNMs per child, additional to the ~60 found in controls, but almost all extra DNMs occurred in non-coding regions. No increase in post-zygotic mutations was detected, excepting a child with bi-allelic MUTYH mutations who was excluded from the main analysis; she had received chemotherapy and may have undergone oligoclonal haematopoiesis. Inherited DNA repair defects associated with base pair-level mutations increase DNMs, but phenotypic consequences appear unlikely.
Collapse
Affiliation(s)
- Kitty Sherwood
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Joseph C Ward
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ignacio Soriano
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lynn Martin
- Institute of Cancer and Genomic Sciences, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2JJ, UK
| | - Archie Campbell
- Centre for Genetics and Experimental Medicine, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ioannis Kafetzopoulos
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Duncan Sproul
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genomics and Cancer, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland and School of Medicine University College, Dublin, Ireland
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Alan Donaldson
- Bristol Regional Clinical Genetics Service, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Karl Heinimann
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, BS, Switzerland
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, 2333 ZA, Leiden, the Netherlands
| | - Huw Thomas
- St Mark's Hospital, Watford Road, Harrow, HA1 3UJ, UK
| | | | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham Medical School, Vincent Drive, Edgbaston, Birmingham, B15 2JJ, UK.
| | - Ian Tomlinson
- Dept of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
18
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
19
|
Körber V, Stainczyk SA, Kurilov R, Henrich KO, Hero B, Brors B, Westermann F, Höfer T. Neuroblastoma arises in early fetal development and its evolutionary duration predicts outcome. Nat Genet 2023; 55:619-630. [PMID: 36973454 PMCID: PMC10101850 DOI: 10.1038/s41588-023-01332-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
AbstractNeuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.
Collapse
|
20
|
Patterson A, Elbasir A, Tian B, Auslander N. Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications. Cancers (Basel) 2023; 15:1958. [PMID: 37046619 PMCID: PMC10093138 DOI: 10.3390/cancers15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Since the rise of next-generation sequencing technologies, the catalogue of mutations in cancer has been continuously expanding. To address the complexity of the cancer-genomic landscape and extract meaningful insights, numerous computational approaches have been developed over the last two decades. In this review, we survey the current leading computational methods to derive intricate mutational patterns in the context of clinical relevance. We begin with mutation signatures, explaining first how mutation signatures were developed and then examining the utility of studies using mutation signatures to correlate environmental effects on the cancer genome. Next, we examine current clinical research that employs mutation signatures and discuss the potential use cases and challenges of mutation signatures in clinical decision-making. We then examine computational studies developing tools to investigate complex patterns of mutations beyond the context of mutational signatures. We survey methods to identify cancer-driver genes, from single-driver studies to pathway and network analyses. In addition, we review methods inferring complex combinations of mutations for clinical tasks and using mutations integrated with multi-omics data to better predict cancer phenotypes. We examine the use of these tools for either discovery or prediction, including prediction of tumor origin, treatment outcomes, prognosis, and cancer typing. We further discuss the main limitations preventing widespread clinical integration of computational tools for the diagnosis and treatment of cancer. We end by proposing solutions to address these challenges using recent advances in machine learning.
Collapse
Affiliation(s)
- Andrew Patterson
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Bin Tian
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int J Mol Sci 2023; 24:ijms24032137. [PMID: 36768460 PMCID: PMC9916931 DOI: 10.3390/ijms24032137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is one of the most common tumors, and genetic predisposition is one of the key risk factors in the development of this malignancy. Lynch syndrome and familial adenomatous polyposis are the best-known genetic diseases associated with hereditary colorectal cancer. However, some other genetic disorders confer an increased risk of colorectal cancer, such as Li-Fraumeni syndrome (TP53 gene), MUTYH-associated polyposis (MUTYH gene), Peutz-Jeghers syndrome (STK11 gene), Cowden syndrome (PTEN gene), and juvenile polyposis syndrome (BMPR1A and SMAD4 genes). Moreover, the recent advances in molecular techniques, in particular Next-Generation Sequencing, have led to the identification of many new genes involved in the predisposition to colorectal cancers, such as RPS20, POLE, POLD1, AXIN2, NTHL1, MSH3, RNF43 and GREM1. In this review, we summarized the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and into the associated genetic disorders. Furthermore, we discussed the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
|
22
|
Zhivagui M, Hoda A, Valenzuela N, Yeh YY, Dai J, He Y, Nandi SP, Otlu B, Van Houten B, Alexandrov LB. DNA damage and somatic mutations in mammalian cells after irradiation with a nail polish dryer. Nat Commun 2023; 14:276. [PMID: 36650165 PMCID: PMC9845303 DOI: 10.1038/s41467-023-35876-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Ultraviolet A light is commonly emitted by UV-nail polish dryers with recent reports suggesting that long-term use may increase the risk for developing skin cancer. However, no experimental evaluation has been conducted to reveal the effect of radiation emitted by UV-nail polish dryers on mammalian cells. Here, we show that irradiation by a UV-nail polish dryer causes high levels of reactive oxygen species, consistent with 8-oxo-7,8-dihydroguanine damage and mitochondrial dysfunction. Analysis of somatic mutations reveals a dose-dependent increase of C:G>A:T substitutions in irradiated samples with mutagenic patterns similar to mutational signatures previously attributed to reactive oxygen species. In summary, this study demonstrates that radiation emitted by UV-nail polish dryers can both damage DNA and permanently engrave mutations on the genomes of primary mouse embryonic fibroblasts, human foreskin fibroblasts, and human epidermal keratinocytes.
Collapse
Affiliation(s)
- Maria Zhivagui
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Areebah Hoda
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
| | | | - Yi-Yu Yeh
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Jason Dai
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA. .,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA. .,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Pancotti C, Rollo C, Birolo G, Benevenuta S, Fariselli P, Sanavia T. Unravelling the instability of mutational signatures extraction via archetypal analysis. Front Genet 2023; 13:1049501. [PMID: 36685831 PMCID: PMC9846778 DOI: 10.3389/fgene.2022.1049501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
The high cosine similarity between some single-base substitution mutational signatures and their characteristic flat profiles could suggest the presence of overfitting and mathematical artefacts. The newest version (v3.3) of the signature database available in the Catalogue Of Somatic Mutations In Cancer (COSMIC) provides a collection of 79 mutational signatures, which has more than doubled with respect to previous version (30 profiles available in COSMIC signatures v2), making more critical the associations between signatures and specific mutagenic processes. This study both provides a systematic assessment of the de novo extraction task through simulation scenarios based on the latest version of the COSMIC signatures and highlights, through a novel approach using archetypal analysis, which COSMIC signatures are redundant and more likely to be considered as mathematical artefacts. 29 archetypes were able to reconstruct the profile of all the COSMIC signatures with cosine similarity > 0.8. Interestingly, these archetypes tend to group similar original signatures sharing either the same aetiology or similar biological processes. We believe that these findings will be useful to encourage the development of new de novo extraction methods avoiding the redundancy of information among the signatures while preserving the biological interpretation.
Collapse
|
24
|
Rahal Z, Sinjab A, Wistuba II, Kadara H. Game of clones: Battles in the field of carcinogenesis. Pharmacol Ther 2022; 237:108251. [PMID: 35850404 PMCID: PMC10249058 DOI: 10.1016/j.pharmthera.2022.108251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
Recent advances in bulk sequencing approaches as well as genomic decoding at the single-cell level have revealed surprisingly high somatic mutational burdens in normal tissues, as well as increased our understanding of the landscape of "field cancerization", that is, molecular and immune alterations in mutagen-exposed normal-appearing tissues that recapitulated those present in tumors. Charting the somatic mutational landscapes in normal tissues can have strong implications on our understanding of how tumors arise from mutagenized epithelium. Making sense of those mutations to understand the progression along the pathologic continuum of normal epithelia, preneoplasias, up to malignant tissues will help pave way for identification of ideal targets that can guide new strategies for preventing or eliminating cancers at their earliest stages of development. In this review, we will provide a brief history of field cancerization and its implications on understanding early stages of cancer pathogenesis and deviation from the pathologically "normal" state. The review will provide an overview of how mutations accumulating in normal tissues can lead to a patchwork of mutated cell clones that compete while maintaining an overall state of functional homeostasis. The review also explores the role of clonal competition in directing the fate of normal tissues and summarizes multiple mechanisms elicited in this phenomenon and which have been linked to cancer development. Finally, we highlight the importance of understanding mutations in normal tissues, as well as clonal competition dynamics (in both the epithelium and the microenvironment) and their significance in exploring new approaches to combatting cancer.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA.
| |
Collapse
|
25
|
Downie JM, Riaz M, Xie J, Lee M, Chan AT, Gibbs P, Orchard SG, Mahady SE, Sebra RP, Murray AM, Macrae F, Schadt E, Woods RL, McNeil JJ, Lacaze P, Gala M. Incident Cancer Risk and Signatures Among Older MUTYH Carriers: Analysis of Population-Based and Genomic Cohorts. Cancer Prev Res (Phila) 2022; 15:509-519. [PMID: 35609203 PMCID: PMC9356994 DOI: 10.1158/1940-6207.capr-22-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 02/03/2023]
Abstract
MUTYH carriers have an increased colorectal cancer risk in case-control studies, with loss of heterozygosity (LOH) as the presumed mechanism. We evaluated cancer risk among carriers in a prospective, population-based cohort of older adults. In addition, we assessed if cancers from carriers demonstrated mutational signatures (G:C>T:A transversions) associated with early LOH. We calculated incident risk of cancer and colorectal cancer among 13,131 sequenced study participants of the ASPirin in Reducing Events in the Elderly cohort, stratified by sex and adjusting for age, smoking, alcohol use, BMI, polyp history, history of cancer, and aspirin use. MUTYH carriers were identified among 13,033 participants in The Cancer Genome Atlas and International Cancer Genome Consortium, and somatic signatures of cancers were analyzed. Male MUTYH carriers demonstrated an increased risk for overall cancer incidence [multivariable HR, 1.66; 95% confidence interval (CI), 1.03-2.68; P = 0.038] driven by increased colorectal cancer incidence (multivariable HR, 3.55; 95% CI, 1.42-8.78; P = 0.007), as opposed to extracolonic cancer incidence (multivariable HR, 1.40; 95% CI, 0.81-2.44; P = 0.229). Female carriers did not demonstrate increased risk of cancer, colorectal cancer, or extracolonic cancers. Analysis of mutation signatures from cancers of MUTYH carriers revealed no significant contribution toward early mutagenesis from widespread G:C>T:A transversions among gastrointestinal epithelial cancers. Among cancers from carriers, somatic transversions associated with base-excision repair deficiency are uncommon, suggestive of diverse mechanisms of carcinogenesis in carriers compared with those who inherit biallelic MUTYH mutations. PREVENTION RELEVANCE Despite absence of loss of heterozygosity in colorectal cancers, elderly male MUTYH carriers appeared to be at increased of colorectal cancer.
Collapse
Affiliation(s)
- Jonathan M. Downie
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Moeen Riaz
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jing Xie
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Minyi Lee
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- MD-Ph.D. Program, Boston University School of Medicine, Boston, MA
| | - Andrew T. Chan
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Peter Gibbs
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Oncology, Western Health, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Suzanne G. Orchard
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Suzanne E. Mahady
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, Minneapolis, MN, USA
| | - Finlay Macrae
- Department of Genomic Medicine; Family Cancer Clinic, Department of Medicine, Department of Pathology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Robyn L. Woods
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - John J. McNeil
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Manish Gala
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Manders F, van Boxtel R, Middelkamp S. The Dynamics of Somatic Mutagenesis During Life in Humans. FRONTIERS IN AGING 2022; 2:802407. [PMID: 35822044 PMCID: PMC9261377 DOI: 10.3389/fragi.2021.802407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
From conception to death, human cells accumulate somatic mutations in their genomes. These mutations can contribute to the development of cancer and non-malignant diseases and have also been associated with aging. Rapid technological developments in sequencing approaches in the last few years and their application to normal tissues have greatly advanced our knowledge about the accumulation of these mutations during healthy aging. Whole genome sequencing studies have revealed that there are significant differences in mutation burden and patterns across tissues, but also that the mutation rates within tissues are surprisingly constant during adult life. In contrast, recent lineage-tracing studies based on whole-genome sequencing have shown that the rate of mutation accumulation is strongly increased early in life before birth. These early mutations, which can be shared by many cells in the body, may have a large impact on development and the origin of somatic diseases. For example, cancer driver mutations can arise early in life, decades before the detection of the malignancy. Here, we review the recent insights in mutation accumulation and mutagenic processes in normal tissues. We compare mutagenesis early and later in life and discuss how mutation rates and patterns evolve during aging. Additionally, we outline the potential impact of these mutations on development, aging and disease.
Collapse
Affiliation(s)
- Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
27
|
Robinson PS, Thomas LE, Abascal F, Jung H, Harvey LMR, West HD, Olafsson S, Lee BCH, Coorens THH, Lee-Six H, Butlin L, Lander N, Truscott R, Sanders MA, Lensing SV, Buczacki SJA, Ten Hoopen R, Coleman N, Brunton-Sim R, Rushbrook S, Saeb-Parsy K, Lalloo F, Campbell PJ, Martincorena I, Sampson JR, Stratton MR. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat Commun 2022; 13:3949. [PMID: 35803914 PMCID: PMC9270427 DOI: 10.1038/s41467-022-31341-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.
Collapse
Affiliation(s)
- Philip S Robinson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura E Thomas
- Institute of Life Science, Swansea University, Swansea, SA28PP, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hyunchul Jung
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Sigurgeir Olafsson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Bernard C H Lee
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Hereditary Gastrointestinal Cancer Genetic Diagnosis Laboratory, Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Laura Butlin
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Nicola Lander
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Rebekah Truscott
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Haematology, Erasmus University Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Stefanie V Lensing
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Rushbrook
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
| |
Collapse
|
28
|
Vali-Pour M, Park S, Espinosa-Carrasco J, Ortiz-Martínez D, Lehner B, Supek F. The impact of rare germline variants on human somatic mutation processes. Nat Commun 2022; 13:3724. [PMID: 35764656 PMCID: PMC9240060 DOI: 10.1038/s41467-022-31483-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.
Collapse
Affiliation(s)
- Mischan Vali-Pour
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jose Espinosa-Carrasco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Ortiz-Martínez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
29
|
Georgeson P, Harrison TA, Pope BJ, Zaidi SH, Qu C, Steinfelder RS, Lin Y, Joo JE, Mahmood K, Clendenning M, Walker R, Amitay EL, Berndt SI, Brenner H, Campbell PT, Cao Y, Chan AT, Chang-Claude J, Doheny KF, Drew DA, Figueiredo JC, French AJ, Gallinger S, Giannakis M, Giles GG, Gsur A, Gunter MJ, Hoffmeister M, Hsu L, Huang WY, Limburg P, Manson JE, Moreno V, Nassir R, Nowak JA, Obón-Santacana M, Ogino S, Phipps AI, Potter JD, Schoen RE, Sun W, Toland AE, Trinh QM, Ugai T, Macrae FA, Rosty C, Hudson TJ, Jenkins MA, Thibodeau SN, Winship IM, Peters U, Buchanan DD. Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures. Nat Commun 2022; 13:3254. [PMID: 35668106 PMCID: PMC9170691 DOI: 10.1038/s41467-022-30916-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/24/2022] [Indexed: 01/11/2023] Open
Abstract
Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 × 10-23 and p = 6 × 10-11, respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Carlton, VIC, Australia
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Carlton, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center(DKFZ), Heidelberg, Germany
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Kimberly F Doheny
- Center for Inherited Disease Research (CIDR), Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy J French
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Limburg
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rami Nassir
- Department of Pathology, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Finlay A Macrae
- Parkville Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, Australia
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | | | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Jin SG, Meng Y, Johnson J, Szabó PE, Pfeifer GP. Concordance of hydrogen peroxide-induced 8-oxo-guanine patterns with two cancer mutation signatures of upper GI tract tumors. SCIENCE ADVANCES 2022; 8:eabn3815. [PMID: 35658030 PMCID: PMC9166614 DOI: 10.1126/sciadv.abn3815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 05/22/2023]
Abstract
Oxidative DNA damage has been linked to inflammation, cancer, and aging. Here, we have mapped two types of oxidative DNA damage, oxidized guanines produced by hydrogen peroxide and oxidized thymines created by potassium permanganate, at a single-base resolution. 8-Oxo-guanine occurs strictly dependent on the G/C sequence context and shows a pronounced peak at transcription start sites (TSSs). We determined the trinucleotide sequence pattern of guanine oxidation. This pattern shows high similarity to the cancer-associated single-base substitution signatures SBS18 and SBS36. SBS36 is found in colorectal cancers that carry mutations in MUTYH, encoding a repair enzyme that operates on 8-oxo-guanine mispairs. SBS18 is common in inflammation-associated upper gastrointestinal tract tumors including esophageal and gastric adenocarcinomas. Oxidized thymines induced by permanganate occur with a distinct dinucleotide specificity, 5'T-A/C, and are depleted at the TSS. Our data suggest that two cancer mutational signatures, SBS18 and SBS36, are caused by reactive oxygen species.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yingying Meng
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | |
Collapse
|
31
|
Levatić J, Salvadores M, Fuster-Tormo F, Supek F. Mutational signatures are markers of drug sensitivity of cancer cells. Nat Commun 2022; 13:2926. [PMID: 35614096 PMCID: PMC9132939 DOI: 10.1038/s41467-022-30582-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Genomic analyses have revealed mutational footprints associated with DNA maintenance gone awry, or with mutagen exposures. Because cancer therapeutics often target DNA synthesis or repair, we asked if mutational signatures make useful markers of drug sensitivity. We detect mutational signatures in cancer cell line exomes (where matched healthy tissues are not available) by adjusting for the confounding germline mutation spectra across ancestries. We identify robust associations between various mutational signatures and drug activity across cancer cell lines; these are as numerous as associations with established genetic markers such as driver gene alterations. Signatures of prior exposures to DNA damaging agents - including chemotherapy - tend to associate with drug resistance, while signatures of deficiencies in DNA repair tend to predict sensitivity towards particular therapeutics. Replication analyses across independent drug and CRISPR genetic screening data sets reveal hundreds of robust associations, which are provided as a resource for drug repurposing guided by mutational signature markers.
Collapse
Affiliation(s)
- Jurica Levatić
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marina Salvadores
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Francisco Fuster-Tormo
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
- MDS Group, Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
32
|
Palles C, West HD, Chew E, Galavotti S, Flensburg C, Grolleman JE, Jansen EAM, Curley H, Chegwidden L, Arbe-Barnes EH, Lander N, Truscott R, Pagan J, Bajel A, Sherwood K, Martin L, Thomas H, Georgiou D, Fostira F, Goldberg Y, Adams DJ, van der Biezen SAM, Christie M, Clendenning M, Thomas LE, Deltas C, Dimovski AJ, Dymerska D, Lubinski J, Mahmood K, van der Post RS, Sanders M, Weitz J, Taylor JC, Turnbull C, Vreede L, van Wezel T, Whalley C, Arnedo-Pac C, Caravagna G, Cross W, Chubb D, Frangou A, Gruber AJ, Kinnersley B, Noyvert B, Church D, Graham T, Houlston R, Lopez-Bigas N, Sottoriva A, Wedge D, Jenkins MA, Kuiper RP, Roberts AW, Cheadle JP, Ligtenberg MJL, Hoogerbrugge N, Koelzer VH, Rivas AD, Winship IM, Ponte CR, Buchanan DD, Power DG, Green A, Tomlinson IPM, Sampson JR, Majewski IJ, de Voer RM. Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. Am J Hum Genet 2022; 109:953-960. [PMID: 35460607 PMCID: PMC9118112 DOI: 10.1016/j.ajhg.2022.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.
Collapse
Affiliation(s)
- Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Edward Chew
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Sara Galavotti
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Judith E Grolleman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Erik A M Jansen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Helen Curley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laura Chegwidden
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Edward H Arbe-Barnes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nicola Lander
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Rebekah Truscott
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Judith Pagan
- Molecular Genetics Laboratory, South East Scotland Genetic Service, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ashish Bajel
- Peter MacCallum Cancer Center and Royal Melbourne Hospital, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Kitty Sherwood
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
| | - Lynn Martin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Huw Thomas
- St Mark's Hospital, Imperial College London, London, UK
| | - Demetra Georgiou
- Genomic Medicine, Imperial College Healthcare Trust and North West Thames Regional Genetics Service, Northwick Park, Harrow, UK
| | | | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Simone A M van der Biezen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Michael Christie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Laura E Thomas
- Institute of Life Sciences, Swansea University, Swansea SA28PP, UK
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research and Molecular Medicine Research Center, University of Cyprus Medical School, Nicosia, Cyprus
| | - Aleksandar J Dimovski
- Center for Biomolecular Pharmaceutical Analyzes, UKIM Faculty of Pharmacy, 1000 Skopje, Republic of Macedonia
| | - Dagmara Dymerska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jan Lubinski
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Rachel S van der Post
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Mathijs Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jürgen Weitz
- Department of Surgical Research, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jenny C Taylor
- Oxford NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Clare Turnbull
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Lilian Vreede
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Celina Whalley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Caravagna
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - William Cross
- Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Daniel Chubb
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Anna Frangou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andreas J Gruber
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK
| | - Ben Kinnersley
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David Church
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Trevor Graham
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard Houlston
- Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Sottoriva
- Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - David Wedge
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Roland P Kuiper
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 Utrecht, the Netherlands
| | - Andrew W Roberts
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Molecular Genetics Laboratory, South East Scotland Genetic Service, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia; University of Melbourne, Department of Medical Biology, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands; Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Andres Dacal Rivas
- Servicio de Digestivo, Hospital Lucus Augusti, Instituto de Investigación Sanitaria de Santiago, Lugo, Galicia, Spain
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Medicine, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Clara Ruiz Ponte
- Fundación Pública Galega de Medicina Xenómica SERGAS, Grupo de Medicina Xenómica-USC, Instituto de Investigación Sanitaria de Santiago, Centro de Investigación Biomédica en Red de Enfermedades Raras, Santiago de Compostela, Galicia, Spain
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Derek G Power
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland, Dublin, Ireland; School of Medicine University College, Dublin, Ireland
| | - Ian P M Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK.
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, School of Medicine, Cardiff, UK.
| | - Ian J Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| |
Collapse
|
33
|
Sasani TA, Ashbrook DG, Beichman AC, Lu L, Palmer AA, Williams RW, Pritchard JK, Harris K. A natural mutator allele shapes mutation spectrum variation in mice. Nature 2022; 605:497-502. [PMID: 35545679 PMCID: PMC9272728 DOI: 10.1038/s41586-022-04701-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
Although germline mutation rates and spectra can vary within and between species, common genetic modifiers of the mutation rate have not been identified in nature1. Here we searched for loci that influence germline mutagenesis using a uniquely powerful resource: a panel of recombinant inbred mouse lines known as the BXD, descended from the laboratory strains C57BL/6J (B haplotype) and DBA/2J (D haplotype). Each BXD lineage has been maintained by brother-sister mating in the near absence of natural selection, accumulating de novo mutations for up to 50 years on a known genetic background that is a unique linear mosaic of B and D haplotypes2. We show that mice inheriting D haplotypes at a quantitative trait locus on chromosome 4 accumulate C>A germline mutations at a 50% higher rate than those inheriting B haplotypes, primarily owing to the activity of a C>A-dominated mutational signature known as SBS18. The B and D quantitative trait locus haplotypes encode different alleles of Mutyh, a DNA repair gene that underlies the heritable cancer predisposition syndrome that causes colorectal tumors with a high SBS18 mutation load3,4. Both B and D Mutyh alleles are present in wild populations of Mus musculus domesticus, providing evidence that common genetic variation modulates germline mutagenesis in a model mammalian species.
Collapse
Affiliation(s)
- Thomas A Sasani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Computational Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
34
|
Wang Z, Zhang T, Wu W, Wu L, Li J, Huang B, Liang Y, Li Y, Li P, Li K, Wang W, Guo R, Wang Q. Detection and Localization of Solid Tumors Utilizing the Cancer-Type-Specific Mutational Signatures. Front Bioeng Biotechnol 2022; 10:883791. [PMID: 35547159 PMCID: PMC9081532 DOI: 10.3389/fbioe.2022.883791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate detection and location of tumor lesions are essential for improving the diagnosis and personalized cancer therapy. However, the diagnosis of lesions with fuzzy histology is mainly dependent on experiences and with low accuracy and efficiency. Here, we developed a logistic regression model based on mutational signatures (MS) for each cancer type to trace the tumor origin. We observed MS could distinguish cancer from inflammation and healthy individuals. By collecting extensive datasets of samples from ten tumor types in the training cohort (5,001 samples) and independent testing cohort (2,580 samples), cancer-type-specific MS patterns (CTS-MS) were identified and had a robust performance in distinguishing different types of primary and metastatic solid tumors (AUC:0.76 ∼ 0.93). Moreover, we validated our model in an Asian population and found that the AUC of our model in predicting the tumor origin of the Asian population was higher than 0.7. The metastatic tumor lesions inherited the MS pattern of the primary tumor, suggesting the capability of MS in identifying the tissue-of-origin for metastatic cancers. Furthermore, we distinguished breast cancer and prostate cancer with 90% accuracy by combining somatic mutations and CTS-MS from cfDNA, indicating that the CTS-MS could improve the accuracy of cancer-type prediction by cfDNA. In summary, our study demonstrated that MS was a novel reliable biomarker for diagnosing solid tumors and provided new insights into predicting tissue-of-origin.
Collapse
Affiliation(s)
- Ziyu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Pengping Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Qianghu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| |
Collapse
|
35
|
Degasperi A, Zou X, Amarante TD, Martinez-Martinez A, Koh GCC, Dias JML, Heskin L, Chmelova L, Rinaldi G, Wang VYW, Nanda AS, Bernstein A, Momen SE, Young J, Perez-Gil D, Memari Y, Badja C, Shooter S, Czarnecki J, Brown MA, Davies HR, Nik-Zainal S. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 2022; 376:science.abl9283. [PMID: 35949260 PMCID: PMC7613262 DOI: 10.1126/science.abl9283] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage and repair processes that have arisen in each patient's cancer. We performed mutational signature analyses on 12,222 WGS tumor-normal matched pairs, from patients recruited via the UK National Health Service. We contrasted our results to two independent cancer WGS datasets, the International Cancer Genome Consortium (ICGC) and Hartwig Foundation, involving 18,640 WGS cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. Critically, we show for each organ, that cancers have a limited number of 'common' signatures and a long tail of 'rare' signatures. We provide a practical solution for utilizing this concept of common versus rare signatures in future analyses.
Collapse
Affiliation(s)
- Andrea Degasperi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Xueqing Zou
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Tauanne Dias Amarante
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andrea Martinez-Martinez
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - João M. L. Dias
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Laura Heskin
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lucia Chmelova
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Giuseppe Rinaldi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Valerie Ya Wen Wang
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Arjun S. Nanda
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Aaron Bernstein
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Sophie E. Momen
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jamie Young
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Daniel Perez-Gil
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Yasin Memari
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Cherif Badja
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Scott Shooter
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jan Czarnecki
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Matthew A. Brown
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, EC1M 6BQ, UK
- Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK
| | - Helen R. Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
36
|
MUTYH-associated tumor syndrome: The other face of MAP. Oncogene 2022; 41:2531-2539. [DOI: 10.1038/s41388-022-02304-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
37
|
Kraveka JM, Lewis EC, Bergendahl G, Ferguson W, Oesterheld J, Kim E, Nagulapally AB, Dykema KJ, Brown VI, Roberts WD, Mitchell D, Eslin D, Hanson D, Isakoff MS, Wada RK, Harrod VL, Rawwas J, Hanna G, Hendricks WPD, Byron SA, Snuderl M, Serrano J, Trent JM, Saulnier Sholler GL. A pilot study of genomic-guided induction therapy followed by immunotherapy with difluoromethylornithine maintenance for high-risk neuroblastoma. Cancer Rep (Hoboken) 2022; 5:e1616. [PMID: 35355452 PMCID: PMC9675391 DOI: 10.1002/cnr2.1616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.
Collapse
Affiliation(s)
| | - Elizabeth C. Lewis
- Wayne State University School of MedicineDetroitMichiganUSA,Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA
| | | | | | | | - Elizabeth Kim
- Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA,Wesleyan UniversityMiddletownConnecticutUSA
| | | | - Karl J. Dykema
- Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA
| | - Valerie I. Brown
- Penn State Children's Hospital at the Milton S. Hershey Medical Center and Penn State College of MedicineHersheyPennsylvaniaUSA
| | - William D. Roberts
- Rady Children's Hospital San Diego and UC San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Deanna Mitchell
- Helen DeVos Children's Hospital at Spectrum HealthGrand RapidsMichiganUSA
| | - Don Eslin
- St. Joseph's Children's HospitalTampaFloridaUSA
| | - Derek Hanson
- Hackensack University Medical CenterHackensackNew JerseyUSA
| | - Michael S. Isakoff
- Center for Cancer and Blood DisordersConnecticut Children's Medical CenterHartfordConnecticutUSA
| | - Randal K. Wada
- Kapiolani Medical Center for Women & ChildrenHonoluluHawaiiUSA
| | | | - Jawhar Rawwas
- Children's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
| | - Gina Hanna
- Orlando Health Cancer InstituteOrlandoFloridaUSA
| | | | - Sara A. Byron
- Translational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Matija Snuderl
- NYU Langone Health and NYU Grossman School of MedicineNew York CityNew YorkUSA
| | - Jonathan Serrano
- NYU Langone Health and NYU Grossman School of MedicineNew York CityNew YorkUSA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | | |
Collapse
|
38
|
Barreiro RAS, Sabbaga J, Rossi BM, Achatz MIW, Bettoni F, Camargo AA, Asprino PF, A F Galante P. Monoallelic deleterious MUTYH germline variants as a driver for tumorigenesis. J Pathol 2021; 256:214-222. [PMID: 34816434 DOI: 10.1002/path.5829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 01/06/2023]
Abstract
MUTYH encodes a glycosylase involved in the base excision repair of DNA. Biallelic pathogenic germline variants in MUTYH cause an autosomal recessive condition known as MUTYH-associated adenomatous polyposis and consequently increase the risk of colorectal cancer. However, reports of increased cancer risk in individuals carrying only one defective MUTYH allele are controversial and based on studies involving few individuals. Here, we describe a comprehensive investigation of monoallelic pathogenic MUTYH germline variants in 10,389 cancer patients across 33 different tumour types and 117,000 healthy individuals. Our results indicate that monoallelic pathogenic MUTYH germline variants can lead to tumorigenesis through a mechanism of somatic loss of heterozygosity of the functional MUTYH allele in the tumour. We confirmed that the frequency of monoallelic pathogenic MUTYH germline variants is higher in individuals with cancer than in the general population, although this frequency is not homogeneous among tumour types. We also demonstrated that the MUTYH mutational signature is present only in tumours with loss of the functional allele and found that the characteristic MUTYH base substitution (C>A) increases stop-codon generation. We identified key genes that are affected during tumorigenesis. In conclusion, we propose that carriers of the monoallelic pathogenic MUTYH germline variant are at a higher risk of developing tumours, especially those with frequent loss of heterozygosity events, such as adrenal adenocarcinoma, although the overall risk is still low. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rodrigo Araujo Sequeira Barreiro
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, Brazil
| | - Jorge Sabbaga
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Benedito M Rossi
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Fabiana Bettoni
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Anamaria A Camargo
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paula F Asprino
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
39
|
Srinivasan P, Bandlamudi C, Jonsson P, Kemel Y, Chavan SS, Richards AL, Penson AV, Bielski CM, Fong C, Syed A, Jayakumaran G, Prasad M, Hwee J, Sumer SO, de Bruijn I, Li X, Gao J, Schultz N, Cambria R, Galle J, Mukherjee S, Vijai J, Cadoo KA, Carlo MI, Walsh MF, Mandelker D, Ceyhan-Birsoy O, Shia J, Zehir A, Ladanyi M, Hyman DM, Zhang L, Offit K, Robson ME, Solit DB, Stadler ZK, Berger MF, Taylor BS. The context-specific role of germline pathogenicity in tumorigenesis. Nat Genet 2021; 53:1577-1585. [PMID: 34741162 PMCID: PMC8957388 DOI: 10.1038/s41588-021-00949-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/09/2021] [Indexed: 11/08/2022]
Abstract
Human cancers arise from environmental, heritable and somatic factors, but how these mechanisms interact in tumorigenesis is poorly understood. Studying 17,152 prospectively sequenced patients with cancer, we identified pathogenic germline variants in cancer predisposition genes, and assessed their zygosity and co-occurring somatic alterations in the concomitant tumors. Two major routes to tumorigenesis were apparent. In carriers of pathogenic germline variants in high-penetrance genes (5.1% overall), lineage-dependent patterns of biallelic inactivation led to tumors exhibiting mechanism-specific somatic phenotypes and fewer additional somatic oncogenic drivers. Nevertheless, 27% of cancers in these patients, and most tumors in patients with pathogenic germline variants in lower-penetrance genes, lacked particular hallmarks of tumorigenesis associated with the germline allele. The dependence of tumors on pathogenic germline variants is variable and often dictated by both penetrance and lineage, a finding with implications for clinical management.
Collapse
Affiliation(s)
- Preethi Srinivasan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chaitanya Bandlamudi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip Jonsson
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shweta S Chavan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander V Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig M Bielski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher Fong
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aijazuddin Syed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gowtham Jayakumaran
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meera Prasad
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Hwee
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Selcuk Onur Sumer
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ino de Bruijn
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Li
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - JianJiong Gao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roy Cambria
- Research and Technology Management, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesse Galle
- Research and Technology Management, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Semanti Mukherjee
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Vijai
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen A Cadoo
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria I Carlo
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Walsh
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Loxo Oncology, Stamford, CT, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth Offit
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark E Robson
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Robert and Kate Niehaus Center for Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Barry S Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Loxo Oncology, Stamford, CT, USA
| |
Collapse
|
40
|
Georgeson P, Pope BJ, Rosty C, Clendenning M, Mahmood K, Joo JE, Walker R, Hutchinson R, Preston S, Como J, Joseland S, Win AK, Macrae FA, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O’Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Winship IM, Buchanan DD. Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut 2021; 70:2138-2149. [PMID: 33414168 PMCID: PMC8260632 DOI: 10.1136/gutjnl-2019-320462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Envoi Pathology, Brisbane, Queensland, Australia,University of Queensland, School of Medicine, Herston, Queensland, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Ryan Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitry Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Western Health, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E. O’Sullivan
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Darren R. Brenner
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - Steve Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Huang X, Qiao Y, Brady SW, Factor RE, Downs-Kelly E, Farrell A, McQuerry JA, Shrestha G, Jenkins D, Johnson WE, Cohen AL, Bild AH, Marth GT. Novel temporal and spatial patterns of metastatic colonization from breast cancer rapid-autopsy tumor biopsies. Genome Med 2021; 13:170. [PMID: 34711268 PMCID: PMC8555066 DOI: 10.1186/s13073-021-00989-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/13/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Metastatic breast cancer is a deadly disease with a low 5-year survival rate. Tracking metastatic spread in living patients is difficult and thus poorly understood. METHODS Via rapid autopsy, we have collected 30 tumor samples over 3 timepoints and across 8 organs from a triple-negative metastatic breast cancer patient. The large number of sites sampled, together with deep whole-genome sequencing and advanced computational analysis, allowed us to comprehensively reconstruct the tumor's evolution at subclonal resolution. RESULTS The most unique, previously unreported aspect of the tumor's evolution that we observed in this patient was the presence of "subclone incubators," defined as metastatic sites where substantial tumor evolution occurs before colonization of additional sites and organs by subclones that initially evolved at the incubator site. Overall, we identified four discrete waves of metastatic expansions, each of which resulted in a number of new, genetically similar metastasis sites that also enriched for particular organs (e.g., abdominal vs bone and brain). The lung played a critical role in facilitating metastatic spread in this patient: the lung was the first site of metastatic escape from the primary breast lesion, subclones at this site were likely the source of all four subsequent metastatic waves, and multiple sites in the lung acted as subclone incubators. Finally, functional annotation revealed that many known drivers or metastasis-promoting tumor mutations in this patient were shared by some, but not all metastatic sites, highlighting the need for more comprehensive surveys of a patient's metastases for effective clinical intervention. CONCLUSIONS Our analysis revealed the presence of substantial tumor evolution at metastatic incubator sites in a patient, with potentially important clinical implications. Our study demonstrated that sampling of a large number of metastatic sites affords unprecedented detail for studying metastatic evolution.
Collapse
Affiliation(s)
- Xiaomeng Huang
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Samuel W Brady
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, USA
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Rachel E Factor
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, USA
| | - Erinn Downs-Kelly
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, USA
| | - Andrew Farrell
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Jasmine A McQuerry
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, USA
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, USA
| | - Gajendra Shrestha
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, USA
| | - David Jenkins
- Computational Biomedicine, Department of Medicine, Boston University, Boston, USA
| | - W Evan Johnson
- Computational Biomedicine, Department of Medicine, Boston University, Boston, USA
| | - Adam L Cohen
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, USA
| | - Gabor T Marth
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, USA.
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA.
| |
Collapse
|
42
|
Brandsma AM, Bertrums EJM, van Roosmalen MJ, Hofman DA, Oka R, Verheul M, Manders F, Ubels J, Belderbos ME, van Boxtel R. Mutation signatures of pediatric acute myeloid leukemia and normal blood progenitors associated with differential patient outcomes. Blood Cancer Discov 2021; 2:484-499. [PMID: 34642666 PMCID: PMC7611805 DOI: 10.1158/2643-3230.bcd-21-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A subset of pediatric AML cases harbors more somatic mutations in their genomes compared to normal blood progenitors. This subset displays expression profiles that resemble more committed progenitors and associates with better patient survival. Acquisition of oncogenic mutations with age is believed to be rate limiting for carcinogenesis. However, the incidence of leukemia in children is higher than in young adults. Here we compare somatic mutations across pediatric acute myeloid leukemia (pAML) patient-matched leukemic blasts and hematopoietic stem and progenitor cells (HSPC), as well as HSPCs from age-matched healthy donors. HSPCs in the leukemic bone marrow have limited genetic relatedness and share few somatic mutations with the cell of origin of the malignant blasts, suggesting polyclonal hematopoiesis in patients with pAML. Compared with normal HSPCs, a subset of pAML cases harbored more somatic mutations and a distinct composition of mutational process signatures. We hypothesize that these cases might have arisen from a more committed progenitor. This subset had better outcomes than pAML cases with mutation burden comparable with age-matched healthy HSPCs. Our study provides insights into the etiology and patient stratification of pAML.
Collapse
Affiliation(s)
- Arianne M Brandsma
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Eline J M Bertrums
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Damon A Hofman
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Rurika Oka
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Mark Verheul
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Joske Ubels
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Mirjam E Belderbos
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| |
Collapse
|
43
|
Hirsch TZ, Pilet J, Morcrette G, Roehrig A, Monteiro BJE, Molina L, Bayard Q, Trépo E, Meunier L, Caruso S, Renault V, Deleuze JF, Fresneau B, Chardot C, Gonzales E, Jacquemin E, Guerin F, Fabre M, Aerts I, Taque S, Laithier V, Branchereau S, Guettier C, Brugières L, Rebouissou S, Letouzé E, Zucman-Rossi J. Integrated Genomic Analysis Identifies Driver Genes and Cisplatin-Resistant Progenitor Phenotype in Pediatric Liver Cancer. Cancer Discov 2021; 11:2524-2543. [PMID: 33893148 PMCID: PMC8916021 DOI: 10.1158/2159-8290.cd-20-1809] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Pediatric liver cancers (PLC) comprise diverse diseases affecting infants, children, and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of patients with hepatoblastoma, all before three years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between "hepatocytic," "liver progenitor," and "mesenchymal" molecular subgroups of hepatoblastoma. We showed that during chemotherapy, "liver progenitor" cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies. SIGNIFICANCE: PLCs are deadly when they resist chemotherapy, with limited alternative treatment options. Using a multiomics approach, we identified PLC driver genes and the cellular phenotype at the origin of cisplatin resistance. We validated new treatments targeting these molecular features in cell lines and xenografts.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Theo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Pediatric Pathology, APHP, Robert Debré Hospital, Paris, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Benedict J E Monteiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Laura Molina
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset-CEPH, Paris, France
| | - Jean-François Deleuze
- Laboratory for Bioinformatics, Fondation Jean Dausset-CEPH, Paris, France
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | | | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Florent Guerin
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Monique Fabre
- Department of Pathology, Hôpital Universitaire Necker-Enfants malades, AP-HP, Centre-Université de Paris, Université Paris Descartes, Paris, France
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Sophie Taque
- Département de Pédiatrie, CHU Fontenoy, Rennes, France
| | - Véronique Laithier
- Department of Children Oncology, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Orsay, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France.
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
44
|
POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene 2021; 40:5893-5901. [PMID: 34363023 DOI: 10.1038/s41388-021-01984-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
POLE, POLD1, and NTHL1 are involved in DNA replication and have recently been recognized as hereditary cancer-predisposing genes, because their alterations are associated with colorectal cancer and other tumors. POLE/POLD1-associated syndrome shows an autosomal dominant inheritance, whereas NTHL1-associated syndrome follows an autosomal recessive pattern. Although the prevalence of germline monoallelic POLE/POLD1 and biallelic NTHL1 pathogenic variants is low, they determine different phenotypes with a broad tumor spectrum overlapping that of other hereditary conditions like Lynch Syndrome or Familial Adenomatous Polyposis. Endometrial and breast cancers, and probably ovarian and brain tumors are also associated with POLE/POLD1 alterations, while breast cancer and other unusual tumors are correlated with NTHL1 pathogenic variants. POLE-mutated colorectal and endometrial cancers are associated with better prognosis and may show favorable responses to immunotherapy. Since POLE/POLD1-mutated tumors show a high tumor mutational burden producing an increase in neoantigens, the identification of POLE/POLD1 alterations could help select patients suitable for immunotherapy treatment. In this review, we will investigate the role of POLE, POLD1, and NTHL1 genetic variants in cancer predisposition, discussing the potential future therapeutic applications and assessing the utility of performing a routine genetic testing for these genes, in order to implement prevention and surveillance strategies in mutation carriers.
Collapse
|
45
|
Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer 2021; 21:619-637. [PMID: 34316057 DOI: 10.1038/s41568-021-00377-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Whole-genome sequencing has brought the cancer genomics community into new territory. Thanks to the sheer power provided by the thousands of mutations present in each patient's cancer, we have been able to discern generic patterns of mutations, termed 'mutational signatures', that arise during tumorigenesis. These mutational signatures provide new insights into the causes of individual cancers, revealing both endogenous and exogenous factors that have influenced cancer development. This Review brings readers up to date in a field that is expanding in computational, experimental and clinical directions. We focus on recent conceptual advances, underscoring some of the caveats associated with using the mutational signature frameworks and highlighting the latest experimental insights. We conclude by bringing attention to areas that are likely to see advancements in clinical applications.
Collapse
Affiliation(s)
- Gene Koh
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sophie Momen
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
47
|
Nagae G, Yamamoto S, Fujita M, Fujita T, Nonaka A, Umeda T, Fukuda S, Tatsuno K, Maejima K, Hayashi A, Kurihara S, Kojima M, Hishiki T, Watanabe K, Ida K, Yano M, Hiyama Y, Tanaka Y, Inoue T, Ueda H, Nakagawa H, Aburatani H, Hiyama E. Genetic and epigenetic basis of hepatoblastoma diversity. Nat Commun 2021; 12:5423. [PMID: 34538872 PMCID: PMC8450290 DOI: 10.1038/s41467-021-25430-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy; however, hereditary predisposition and acquired molecular aberrations related to HB clinicopathological diversity are not well understood. Here, we perform an integrative genomic profiling of 163 pediatric liver tumors (154 HBs and nine hepatocellular carcinomas) based on the data acquired from a cohort study (JPLT-2). The total number of somatic mutations is precious low (0.52/Mb on exonic regions) but correlated with age at diagnosis. Telomerase reverse transcriptase (TERT) promoter mutations are prevalent in the tween HBs, selective in the transitional liver cell tumor (TLCT, > 8 years old). DNA methylation profiling reveals that classical HBs are characterized by the specific hypomethylated enhancers, which are enriched with binding sites for ASCL2, a regulatory transcription factor for definitive endoderm in Wnt-pathway. Prolonged upregulation of ASCL2, as well as fetal-liver-like methylation patterns of IGF2 promoters, suggests their "cell of origin" derived from the premature hepatoblast, similar to intestinal epithelial cells, which are highly proliferative. Systematic molecular profiling of HB is a promising approach for understanding the epigenetic drivers of hepatoblast carcinogenesis and deriving clues for risk stratification.
Collapse
Affiliation(s)
- Genta Nagae
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Masashi Fujita
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Fujita
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Aya Nonaka
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Shiro Fukuda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Kazuhiro Maejima
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akimasa Hayashi
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan ,grid.411205.30000 0000 9340 2869Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Sho Kurihara
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Masato Kojima
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoro Hishiki
- grid.136304.30000 0004 0370 1101Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kohmei Ida
- grid.412305.10000 0004 1769 1397Department of Pediatrics, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Michihiro Yano
- grid.411403.30000 0004 0631 7850Department of Pediatrics, Akita University Hospital, Akita, Japan
| | - Yoko Hiyama
- grid.257022.00000 0000 8711 3200Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan 734-8551, 1-2-3, Kasumi, Minami-ku, Hiroshima
| | - Yukichi Tanaka
- grid.414947.b0000 0004 0377 7528Department of Pathology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Takeshi Inoue
- grid.416948.60000 0004 1764 9308Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Hiroki Ueda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Hidewaki Nakagawa
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroyuki Aburatani
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan ,grid.257022.00000 0000 8711 3200Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan 734-8551, 1-2-3, Kasumi, Minami-ku, Hiroshima
| |
Collapse
|
48
|
Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma. Proc Natl Acad Sci U S A 2021; 118:2007898118. [PMID: 34479993 PMCID: PMC8433536 DOI: 10.1073/pnas.2007898118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/22/2021] [Indexed: 11/18/2022] Open
Abstract
The collection of large amounts of whole-genome sequencing data allowed for identification of mutational signatures, which are characteristic combinations of substitutions in the context of neighboring bases. The clinical significance of these mutational signatures is still largely unknown. In neuroblastoma, we showed that high levels of cytosine > adenine (C > A) substitutions are associated with poor survival. We identified that these high levels of C > A substitutions result from defects in 8-oxo-guanine repair, specifically from copy number loss of the DNA glycosylases MUTYH and OGG1. The high frequency of C > A substitutions in neuroblastoma contributes to the increased adaptive capacity of these tumors. Thereby, we link basic molecular genetic mutation patterns to clinically significant tumor evolution processes. Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH. Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.
Collapse
|
49
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
50
|
Zou X, Koh GCC, Nanda AS, Degasperi A, Urgo K, Roumeliotis TI, Agu CA, Badja C, Momen S, Young J, Amarante TD, Side L, Brice G, Perez-Alonso V, Rueda D, Gomez C, Bushell W, Harris R, Choudhary JS, Jiricny J, Skarnes WC, Nik-Zainal S. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. NATURE CANCER 2021; 2:643-657. [PMID: 34164627 PMCID: PMC7611045 DOI: 10.1038/s43018-021-00200-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies.
Collapse
Affiliation(s)
- Xueqing Zou
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Gene Ching Chiek Koh
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Arjun Scott Nanda
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | | | - Cherif Badja
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Sophie Momen
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Jamie Young
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Tauanne Dias Amarante
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Lucy Side
- UCL Institute for Women's Health, Great Ormond Street Hospital, London, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Glen Brice
- Southwest Thames Regional Genetics Service, St George's University of London, London, UK
| | - Vanesa Perez-Alonso
- Pediatrics Department, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | - Daniel Rueda
- Hereditary Cancer Laboratory, Doce de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | | | | | - Rebecca Harris
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Jyoti S Choudhary
- The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Josef Jiricny
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - William C Skarnes
- Wellcome Sanger Institute, Hinxton, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|