1
|
Crnkovic S, Thekkekara Puthenparampil H, Mulch S, Biasin V, Radic N, Wilhelm J, Bartkuhn M, Bonyadi Rad E, Wawrzen A, Matzer I, Mitra A, Leib RD, Nagy BM, Sahu-Osen A, Valzano F, Bordag N, Evermann M, Hoetzenecker K, Olschewski A, Ljubojevic-Holzer S, Wygrecka M, Stenmark K, Marsh LM, de Jesus Perez V, Kwapiszewska G. Adventitial fibroblasts direct smooth muscle cell-state transition in pulmonary vascular disease. eLife 2025; 13:RP98558. [PMID: 40208251 PMCID: PMC11984959 DOI: 10.7554/elife.98558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Background Pulmonary vascular remodeling is a progressive pathological process characterized by functional alterations within pulmonary artery smooth muscle cells (PASMCs) and adventitial fibroblasts (PAAFs). Mechanisms driving the transition to a diseased phenotype remain elusive. Methods We combined transcriptomic and proteomic profiling with phenotypic characterization of source-matched cells from healthy controls and individuals with idiopathic pulmonary arterial hypertension (IPAH). Bidirectional cellular crosstalk was examined using direct and indirect co-culture models, and phenotypic responses were assessed via transcriptome analysis. Results PASMC and PAAF undergo distinct phenotypic shifts during pulmonary vascular remodeling, with limited shared features, such as reduced mitochondrial content and hyperpolarization. IPAH-PASMC exhibit increased glycosaminoglycan production and downregulation of contractile machinery, while IPAH-PAAF display a hyperproliferative phenotype. We identified alterations in extracellular matrix components, including laminin and collagen, alongside pentraxin-3 and hepatocyte growth factor, as potential regulators of PASMC phenotypic transitions mediated by PAAF. Conclusions While PASMCs and PAAFs retain their core cellular identities, they acquire distinct disease-associated states. These findings provide new insights into the dynamic interplay of pulmonary vascular mesenchymal cells in disease pathogenesis. Funding This work was supported by Cardio-Pulmonary Institute EXC 2026 390649896 (GK) and Austrian Science Fund (FWF) grant I 4651-B (SC).
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | | | - Shirin Mulch
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | - Valentina Biasin
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Nemanja Radic
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Jochen Wilhelm
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | - Marek Bartkuhn
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | | | - Alicja Wawrzen
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Ingrid Matzer
- Medical University of Graz, Lung Research ClusterGrazAustria
| | - Ankita Mitra
- Department of Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan D Leib
- Mass Spectrometry Laboratory, Stanford University School of MedicineStanfordUnited States
| | | | - Anita Sahu-Osen
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | | | - Natalie Bordag
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | | | | | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | | | - Malgorzata Wygrecka
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| | - Kurt Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of ColoradoAuroraUnited States
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Medical University of Graz, Lung Research ClusterGrazAustria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus-Liebig University GiessenGiessenGermany
| |
Collapse
|
2
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Chu X, Kheirollahi V, Lingampally A, Chelladurai P, Valasarajan C, Vazquez-Armendariz AI, Hadzic S, Khadim A, Pak O, Rivetti S, Wilhelm J, Bartkuhn M, Crnkovic S, Moiseenko A, Heiner M, Kraut S, Atefi LS, Koepke J, Valente G, Ruppert C, Braun T, Samakovlis C, Alexopoulos I, Looso M, Chao CM, Herold S, Seeger W, Kwapiszewska G, Huang X, Zhang JS, Pullamsetti SS, Weissmann N, Li X, El Agha E, Bellusci S. GLI1+ Cells Contribute to Vascular Remodeling in Pulmonary Hypertension. Circ Res 2024; 134:e133-e149. [PMID: 38639105 DOI: 10.1161/circresaha.123.323736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.
Collapse
MESH Headings
- Animals
- Zinc Finger Protein GLI1/metabolism
- Zinc Finger Protein GLI1/genetics
- Mice
- Vascular Remodeling
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Mice, Transgenic
- Male
- Humans
- Hypoxia/metabolism
- Hypoxia/physiopathology
Collapse
Affiliation(s)
- Xuran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) (X.C., S.B.), Wenzhou Medical University, China
- School of Pharmaceutical Sciences (X.C., X.L.), Wenzhou Medical University, China
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Vahid Kheirollahi
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Prakash Chelladurai
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Chanil Valasarajan
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Ana Ivonne Vazquez-Armendariz
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Stefan Hadzic
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Ali Khadim
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Oleg Pak
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Stefano Rivetti
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Marek Bartkuhn
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Austria (S.C., G.K.)
| | - Alena Moiseenko
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Monika Heiner
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | | | - Janine Koepke
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Guilherme Valente
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Christos Samakovlis
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Ioannis Alexopoulos
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Mario Looso
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Cho-Ming Chao
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Pediatrics, HELIOS University Medical Center, Witten/Herdecke University, Wuppertal, Germany (C.-M.C.)
| | - Susanne Herold
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Werner Seeger
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Grazyna Kwapiszewska
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Austria (S.C., G.K.)
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, China (X.H., J.-S.Z.)
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, China (X.H., J.-S.Z.)
| | - Soni Savai Pullamsetti
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Xiaokun Li
- School of Pharmaceutical Sciences (X.C., X.L.), Wenzhou Medical University, China
| | - Elie El Agha
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Saverio Bellusci
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) (X.C., S.B.), Wenzhou Medical University, China
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| |
Collapse
|
4
|
Yang Z, Li P, Yuan Q, Wang X, Ma HH, Zhuan B. Inhibition of miR-4640-5p alleviates pulmonary hypertension in chronic obstructive pulmonary disease patients by regulating nitric oxide synthase 1. Respir Res 2023; 24:92. [PMID: 36964568 PMCID: PMC10039540 DOI: 10.1186/s12931-023-02387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease characterized by vasoconstriction and vascular remodeling, leading to right ventricular failure and death. PH is a common complication of chronic obstructive pulmonary disease (COPD). Accumulating evidence demonstrate that microRNAs participate in the pathobiology of PH in COPD patients. In this study, we aimed to evaluate the expression and function of microRNA-4640-5p (miR-4640-5p) in PH. METHODS The mRNA and protein levels were determined by quantitative polymerase chain reaction (qPCR) and western blot, separately. Functional assays and western blot were performed to determine the effects of miR-4640-5p and NOS1 on cell growth, migration. Besides, the dual-luciferase reporter assays were used to validate miR-4640-5p and NOS1 interactions. RESULTS We found that miR-4640-5p expression was significantly higher in the lung tissues of COPD-PH patients than in the healthy controls while higher expression of miR-4640-5p was correlated with more severe COPD-PH. By using pulmonary artery smooth muscle cell (PASMC) in in vitro assays, we demonstrated that inhibition of miR-4640-5p suppressed cell proliferation and migration of PASMC via regulating mTOR/S6 signaling. Bioinformatics analysis and validation experiments revealed that nitric oxide synthase 1 (NOS1) was a direct downstream target of miR-4640-5p. Overexpression of NOS1 partially antagonized the effect of miR-4640-5p in regulating PASMC cell proliferation and migration. In addition, our findings suggested that miR-4640-5p/NOS1 axis regulated mitochondrial dynamics in PASMCs. Furthermore, in the hypoxia-induced PH rat model, inhibition of miR-4640-5p ameliorated PH with reduced right ventricular systolic pressure and Fulton index. CONCLUSIONS miR-4640-5p regulates PH via targeting NOS1, which provides a potential diagnostic biomarker and therapeutic target for COPD-PH patients.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, 215153, Jiangsu, China
| | - Ping Li
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, The Affiliated Hospital of NingXia Medical University, Ningxia, Yinchuan, 750001, China
| | - Qun Yuan
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, 215153, Jiangsu, China
| | - Xi Wang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, 215153, Jiangsu, China
| | - Hong-Hong Ma
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, The Affiliated Hospital of NingXia Medical University, Ningxia, Yinchuan, 750001, China
| | - Bing Zhuan
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, The Affiliated Hospital of NingXia Medical University, Ningxia, Yinchuan, 750001, China.
| |
Collapse
|
5
|
Crnkovic S, Rittchen S, Jandl K, Gindlhuber J, Zabini D, Mutgan AC, Valzano F, Boehm PM, Hoetzenecker K, Toller W, Veith C, Heinemann A, Schermuly RT, Olschewski A, Marsh LM, Kwapiszewska G. Divergent Roles of Ephrin-B2/EphB4 Guidance System in Pulmonary Hypertension. Hypertension 2023; 80:e17-e28. [PMID: 36519465 DOI: 10.1161/hypertensionaha.122.19479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Smooth muscle cell (SMC) expansion is one key morphological hallmark of pathologically altered vasculature and a characteristic feature of pulmonary vascular remodeling in pulmonary hypertension. Normal embryonal vessel maturation requires successful coverage of endothelial tubes with SMC, which is dependent on ephrin-B2 and EphB4 ligand-receptor guidance system. In this study, we investigated the potential role of ephrin-B2 and EphB4 on neomuscularization in adult pulmonary vascular disease. METHODS AND RESULTS Ephrin-B2 and EphB4 expression is preserved in smooth muscle and endothelial cells of remodeled pulmonary arteries. Chronic hypoxia-induced pulmonary hypertension was not ameliorated in mice with SMC-specific conditional ephrin-B2 knockout. In mice with global inducible ephrin-B2 knockout, pulmonary vascular remodeling and right ventricular hypertrophy upon chronic hypoxia exposure were significantly diminished compared to hypoxic controls, while right ventricular systolic pressure was unaffected. In contrast, EphB4 receptor kinase activity inhibition reduced right ventricular systolic pressure in hypoxia-induced pulmonary hypertension without affecting pulmonary vascular remodeling. Genetic deletion of ephrin-B2 in murine pulmonary artery SMC, and pharmacological inhibition of EphB4 in human pulmonary artery smooth muscle cells, blunted mitogen-induced cell proliferation. Loss of EphB4 signaling additionally reduced RhoA expression and weakened the interaction between human pulmonary artery smooth muscle cells and endothelial cells in a three-dimensional coculture model. CONCLUSIONS In sum, pulmonary vascular remodeling was dependent on ephrin-B2-induced Eph receptor (erythropoietin-producing hepatocellular carcinoma receptor) forward signaling in SMC, while EphB4 receptor activity was necessary for RhoA expression in SMC, interaction with endothelial cells and vasoconstrictive components of pulmonary hypertension.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria (S.R., K.J., A.H.).,Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Austria (S.R.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Katharina Jandl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria (S.R., K.J., A.H.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Juergen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.).,Department of Pathology, Medical University of Graz, Austria (J.G.)
| | - Diana Zabini
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Austria (P.M.B., K.H.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Austria (P.M.B., K.H.)
| | - Wolfgang Toller
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Austria (W.T., A.O.)
| | - Christine Veith
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Germany (C.V.).,Faculty of Medicine, Justus Liebig University Giessen, Member of the German Lung Center (DZL), Germany (C.V., R.T.S.)
| | - Akos Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria (S.R., K.J., A.H.)
| | - Ralph T Schermuly
- Faculty of Medicine, Justus Liebig University Giessen, Member of the German Lung Center (DZL), Germany (C.V., R.T.S.)
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.).,Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Austria (W.T., A.O.)
| | - Leigh M Marsh
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.)
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Austria (S.C., D.Z., A.C.M., L.M.M., G.K.).,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria (S.C., S.R., K.J., J.G., D.Z., A.C.M., F.V., A.O., L.M.M., G.K.).,Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany (G.K.)
| |
Collapse
|
6
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
7
|
Crnkovic S, Valzano F, Fließer E, Gindlhuber J, Thekkekara Puthenparampil H, Basil M, Morley MP, Katzen J, Gschwandtner E, Klepetko W, Cantu E, Wolinski H, Olschewski H, Lindenmann J, Zhao YY, Morrisey EE, Marsh LM, Kwapiszewska G. Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling. JCI Insight 2022; 7:153471. [PMID: 36099047 PMCID: PMC9714792 DOI: 10.1172/jci.insight.153471] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
A central feature of progressive vascular remodeling is altered smooth muscle cell (SMC) homeostasis; however, the understanding of how different cell populations contribute to this process is limited. Here, we utilized single-cell RNA sequencing to provide insight into cellular composition changes within isolated pulmonary arteries (PAs) from pulmonary arterial hypertension and donor lungs. Our results revealed that remodeling skewed the balanced communication network between immune and structural cells, in particular SMCs. Comparative analysis with murine PAs showed that human PAs harbored heterogeneous SMC populations with an abundant intermediary cluster displaying a gradient transition between SMCs and adventitial fibroblasts. Transcriptionally distinct SMC populations were enriched in specific biological processes and could be differentiated into 4 major clusters: oxygen sensing (enriched in pericytes), contractile, synthetic, and fibroblast-like. End-stage remodeling was associated with phenotypic shift of preexisting SMC populations and accumulation of synthetic SMCs in neointima. Distinctly regulated genes in clusters built nonredundant regulatory hubs encompassing stress response and differentiation regulators. The current study provides a blueprint of cellular and molecular changes on a single-cell level that are defining the pathological vascular remodeling process.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jürgen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | | | - Maria Basil
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mike P. Morley
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy Katzen
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisabeth Gschwandtner
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heimo Wolinski
- Institute of Molecular Biosciences and,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics, Pharmacology, and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Edward E. Morrisey
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and,Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
8
|
Jandl K, Marsh LM, Mutgan AC, Crnkovic S, Valzano F, Zabini D, Hoffmann J, Foris V, Gschwandtner E, Klepetko W, Prosch H, Flick H, Brcic L, Kern I, Heinemann A, Olschewski H, Kovacs G, Kwapiszewska G. Impairment of the NKT-STAT1-CXCL9 Axis Contributes to Vessel Fibrosis in Pulmonary Hypertension Caused by Lung Fibrosis. Am J Respir Crit Care Med 2022; 206:981-998. [PMID: 35763380 DOI: 10.1164/rccm.202201-0142oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pulmonary hypertension (PH) is a common, severe comorbidity in interstitial lung diseases such as pulmonary fibrosis (PF), and it has limited treatment options. Excessive vascular fibrosis and inflammation are often present in PH, but the underlying mechanisms are still not well understood. Objectives: To identify a novel functional link between natural killer T (NKT) cell activation and vascular fibrosis in PF-PH. Methods: Multicolor flow cytometry, secretome, and immunohistological analyses were complemented by pharmacological NKT cell activation in vivo, in vitro, and ex vivo. Measurements and Main Results: In pulmonary vessels of patients with PF-PH, increased collagen deposition was linked to a local NKT cell deficiency and decreased IL-15 concentrations. In a mouse model of PH caused by lung fibrosis, pharmacological NKT cell activation using a synthetic α-galactosylceramide analog (KRN7000) restored local NKT cell numbers and ameliorated vascular remodeling and right ventricular systolic pressure. Supplementation with activated NKT cells reduced collagen deposition in isolated human pulmonary arterial smooth muscle cells (hPASMCs) and in ex vivo precision-cut lung slices of patients with end-stage PF-PH. Coculture with activated NKT cells induced STAT1 signaling in hPASMCs. Secretome analysis of peripheral blood mononuclear cells identified CXCL9 and CXCL10 as indicators of NKT cell activation. Pharmacologically, CXCL9, but not CXCL10, potently inhibited collagen deposition in hPASMCs via the chemokine receptor CXCR3. Conclusions: Our results indicate that the absence of NKT cells impairs the STAT1-CXCL9-CXCR3 axis in PF-PH and that restoration of this axis by NKT cell activation may unravel a novel therapeutic strategy to target vascular fibrosis in interstitial lung disease.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Diana Zabini
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, and
| | | | | | - Helmut Prosch
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Holger Flick
- Division of Pulmonology, Department of Internal Medicine, and
| | - Luka Brcic
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Izidor Kern
- Cytology and Pathology Laboratory, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; and
| | | | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, and
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Physiology, Otto Loewi Research Center
- Institute for Lung Health, Giessen, Germany
| |
Collapse
|
9
|
Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C, Kuebler WM. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol 2022; 13:959209. [PMID: 36275740 PMCID: PMC9579293 DOI: 10.3389/fimmu.2022.959209] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease that arises from multiple etiologies and ultimately leads to right heart failure as the predominant cause of morbidity and mortality. In patients, distinct inflammatory responses are a prominent feature in different types of PH, and various immunomodulatory interventions have been shown to modulate disease development and progression in animal models. Specifically, PH-associated inflammation comprises infiltration of both innate and adaptive immune cells into the vascular wall of the pulmonary vasculature—specifically in pulmonary vascular lesions—as well as increased levels of cytokines and chemokines in circulating blood and in the perivascular tissue of pulmonary arteries (PAs). Previous studies suggest that altered hemodynamic forces cause lung endothelial dysfunction and, in turn, adherence of immune cells and release of inflammatory mediators, while the resulting perivascular inflammation, in turn, promotes vascular remodeling and the progression of PH. As such, a vicious cycle of endothelial activation, inflammation, and vascular remodeling may develop and drive the disease process. PA stiffening constitutes an emerging research area in PH, with relevance in PH diagnostics, prognostics, and as a therapeutic target. With respect to its prognostic value, PA stiffness rivals the well-established measurement of pulmonary vascular resistance as a predictor of disease outcome. Vascular remodeling of the arterial extracellular matrix (ECM) as well as vascular calcification, smooth muscle cell stiffening, vascular wall thickening, and tissue fibrosis contribute to PA stiffening. While associations between inflammation and vascular stiffening are well-established in systemic vascular diseases such as atherosclerosis or the vascular manifestations of systemic sclerosis, a similar connection between inflammatory processes and PA stiffening has so far not been addressed in the context of PH. In this review, we discuss potential links between inflammation and PA stiffening with a specific focus on vascular calcification and ECM remodeling in PH.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Netra Nambiar Veetil
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
| | - Qiuhua Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Mariya M. Kucherenko
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- *Correspondence: Mariya M. Kucherenko,
| | - Christoph Knosalla
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Lung Research (DZL), Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Zhuang R, Chen J, Cheng HS, Assa C, Jamaiyar A, Pandey AK, Pérez-Cremades D, Zhang B, Tzani A, Wara AK, Plutzky J, Barrera V, Bhetariya P, Mitchell RN, Liu Z, Feinberg MW. Perivascular Fibrosis Is Mediated by a KLF10-IL-9 Signaling Axis in CD4+ T Cells. Circ Res 2022; 130:1662-1681. [PMID: 35440172 PMCID: PMC9149118 DOI: 10.1161/circresaha.121.320420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.
Collapse
Affiliation(s)
- Rulin Zhuang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jingshu Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry S. Cheng
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carmel Assa
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arvind K. Pandey
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Physiology, University of Valencia, and INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Bofang Zhang
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aspasia Tzani
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Akm Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jorge Plutzky
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Barrera
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Preetida Bhetariya
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Richard N. Mitchell
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Abstract
Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK & Insigneo institute for in silico medicine, Sheffield, UK
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Tobal R, Potjewijd J, van Empel VPM, Ysermans R, Schurgers LJ, Reutelingsperger CP, Damoiseaux JGMC, van Paassen P. Vascular Remodeling in Pulmonary Arterial Hypertension: The Potential Involvement of Innate and Adaptive Immunity. Front Med (Lausanne) 2022; 8:806899. [PMID: 35004784 PMCID: PMC8727487 DOI: 10.3389/fmed.2021.806899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with high morbidity and mortality. Current therapies are mainly focused on vasodilative agents to improve prognosis. However, recent literature has shown the important interaction between immune cells and stromal vascular cells in the pathogenic modifications of the pulmonary vasculature. The immunological pathogenesis of PAH is known as a complex interplay between immune cells and vascular stromal cells, via direct contacts and/or their production of extra-cellular/diffusible factors such as cytokines, chemokines, and growth factors. These include, the B-cell—mast-cell axis, endothelium mediated fibroblast activation and subsequent M2 macrophage polarization, anti-endothelial cell antibodies and the versatile role of IL-6 on vascular cells. This review aims to outline the major pathophysiological changes in vascular cells caused by immunological mechanisms, leading to vascular remodeling, increased pulmonary vascular resistance and eventually PAH. Considering the underlying immunological mechanisms, these mechanisms may be key to halt progression of disease.
Collapse
Affiliation(s)
- Rachid Tobal
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith Potjewijd
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Renee Ysermans
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Pieter van Paassen
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
13
|
Ma W, Qiu Z, Bai Z, Dai Y, Li C, Chen X, Song X, Shi D, Zhou Y, Pan Y, Liao Y, Liao M, Zhou Z. Inhibition of microRNA-30a alleviates vascular remodeling in pulmonary arterial hypertension. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:678-693. [PMID: 34703652 PMCID: PMC8517099 DOI: 10.1016/j.omtn.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/09/2021] [Indexed: 12/04/2022]
Abstract
The excessive and ectopic pulmonary artery smooth muscle cells (PASMCs) are crucial to the pathogenesis of pulmonary arteriole (PA) remodeling in pulmonary arterial hypertension (PAH). We previously found that microRNA (miR)-30a was significantly increased in acute myocardial infarction (AMI) patients and animals, as well as in cultured cardiomyocytes after hypoxia, suggesting that it might be strongly associated with hypoxia-related diseases. Here, we investigated the role of miR-30a in the PASMC remodeling of PAH. The expression of miR-30a was higher in the serum of PAH patients compared with healthy controls. miR-30a was mainly expressed in PAs and was increased in PASMCs after hypoxia, mediating the downregulation of p53 tumor suppressor protein (P53). Genetic knockout of miR-30a effectively decreased right ventricular (RV) systolic pressure (RVSP), PA, and RV remodeling in the Su5416/hypoxia-induced and monocrotaline (MCT)-induced PAH animals. Additionally, pharmacological inhibition of miR-30a via intratracheal liquid instillation (IT-L) delivery strategy showed high efficiency, which downregulated miR-30a to mitigate disease phenotype in the Su5416/hypoxia-induced PAH animals, and these beneficial effects could be partially reduced by simultaneous P53 inhibition. We demonstrate that inhibition of miR-30a could ameliorate experimental PAH through the miR-30a/P53 signaling pathway, and the IT-L delivery strategy shows good therapeutic outcomes, providing a novel and promising approach for the treatment of PAH.
Collapse
Affiliation(s)
- Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyang Bai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Dai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxiao Song
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingyang Shi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyang Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author: Mengyang Liao, PhD, Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author: Zihua Zhou, PhD, Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
14
|
Xiong M, Jain PP, Chen J, Babicheva A, Zhao T, Alotaibi M, Kim NH, Lai N, Izadi A, Rodriguez M, Li J, Balistrieri A, Balistrieri F, Parmisano S, Sun X, Voldez-Jasso D, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Yuan JXJ. Mouse model of experimental pulmonary hypertension: Lung angiogram and right heart catheterization. Pulm Circ 2021; 11:20458940211041512. [PMID: 34531976 PMCID: PMC8438952 DOI: 10.1177/20458940211041512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive and fatal disease and rodents with experimental pulmonary hypertension (PH) are often used to study pathogenic mechanisms, identify therapeutic targets, and develop novel drugs for treatment. Here we describe a hands-on set of experimental approaches including ex vivo lung angiography and histology and in vivo right heart catheterization (RHC) to phenotypically characterize pulmonary hemodynamics and lung vascular structure in normal mice and mice with experimental PH. We utilized Microfil polymer as contrast in our ex vivo lung angiogram to quantitatively examine pulmonary vascular remodeling in mice with experimental PH, and lung histology to estimate pulmonary artery wall thickness. The peripheral lung vascular images were selected to determine the total length of lung vascular branches, the number of branches and the number of junctions in a given area (mm-2). We found that the three parameters determined by angiogram were not significantly different among the apical, middle, and basal regions of the mouse lung from normal mice, and were not influenced by gender (no significant difference between female and male mice). We conducted RHC in mice to measure right ventricular systolic pressure, a surrogate measure for pulmonary artery systolic pressure and right ventricle (RV) contractility (RV ± dP/dtmax) to estimate RV function. RHC, a short time (4-6 min) procedure, did not alter the lung angiography measurements. In summary, utilizing ex vivo angiogram to determine peripheral vascular structure and density in the mouse lung and utilizing in vivo RHC to measure pulmonary hemodynamics are reliable readouts to phenotype normal mice and mice with experimental PH. Lung angiogram and RHC are also reliable approaches to examine pharmacological effects of new drugs on pulmonary vascular remodeling and hemodynamics.
Collapse
Affiliation(s)
- Mingmei Xiong
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- Department of Critical Care Medicine, Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pritesh P. Jain
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyuan Chen
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | | | - Tengteng Zhao
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nick H. Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ning Lai
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Amin Izadi
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Marisela Rodriguez
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Jifeng Li
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Angela Balistrieri
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Sophia Parmisano
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniela Voldez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - John Y-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Jian Wang
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA
| | - Jason X.-J. Yuan
- Section of Physiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Evidence for Multiple Origins of De Novo Formed Vascular Smooth Muscle Cells in Pulmonary Hypertension: Challenging the Dominant Model of Pre-Existing Smooth Muscle Expansion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168584. [PMID: 34444333 PMCID: PMC8391896 DOI: 10.3390/ijerph18168584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Vascular remodeling is a prominent feature of pulmonary hypertension. This process involves increased muscularization of already muscularized vessels as well as neo-muscularization of non-muscularized vessels. The cell-of-origin of the newly formed vascular smooth muscle cells has been a subject of intense debate in recent years. Identifying these cells may have important clinical implications since it opens the door for attempts to therapeutically target the progenitor cells and/or reverse the differentiation of their progeny. In this context, the dominant model is that these cells derive from pre-existing smooth muscle cells that are activated in response to injury. In this mini review, we present the evidence that is in favor of this model and, at the same time, highlight other studies indicating that there are alternative cellular sources of vascular smooth muscle cells in pulmonary vascular remodeling.
Collapse
|
16
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
Liu X, Rowan SC, Liang J, Yao C, Huang G, Deng N, Xie T, Wu D, Wang Y, Burman A, Parimon T, Borok Z, Chen P, Parks WC, Hogaboam CM, Weigt SS, Belperio J, Stripp BR, Noble PW, Jiang D. Categorization of lung mesenchymal cells in development and fibrosis. iScience 2021; 24:102551. [PMID: 34151224 PMCID: PMC8188567 DOI: 10.1016/j.isci.2021.102551] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary mesenchymal cells are critical players in both the mouse and human during lung development and disease states. They are increasingly recognized as highly heterogeneous, but there is no consensus on subpopulations or discriminative markers for each subtype. We completed scRNA-seq analysis of mesenchymal cells from the embryonic, postnatal, adult and aged fibrotic lungs of mice and humans. We consistently identified and delineated the transcriptome of lipofibroblasts, myofibroblasts, smooth muscle cells, pericytes, mesothelial cells, and a novel population characterized by Ebf1 expression. Subtype selective transcription factors and putative divergence of the clusters during development were described. Comparative analysis revealed orthologous subpopulations with conserved transcriptomic signatures in murine and human lung mesenchymal cells. All mesenchymal subpopulations contributed to matrix gene expression in fibrosis. This analysis would enhance our understanding of mesenchymal cell heterogeneity in lung development, homeostasis and fibrotic disease conditions.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon C. Rowan
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- UCD School of Medicine, Conway Institute, University College Dublin, Belfield, Ireland
| | - Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guanling Huang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Deng
- Genomics Core, Cedars-Sinai Medical Center, CA 90048, USA
| | - Ting Xie
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, CA 90048, USA
| | - Ankita Burman
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tanyalak Parimon
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zea Borok
- Division of Pulmonary and Critical Care Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Chen
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - William C. Parks
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cory M. Hogaboam
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - S. Samuel Weigt
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Barry R. Stripp
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
18
|
Hannan RT, Miller AE, Hung RC, Sano C, Peirce SM, Barker TH. Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biol Plus 2021; 10:100056. [PMID: 34195593 PMCID: PMC8233458 DOI: 10.1016/j.mbplus.2020.100056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvβ3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRβ (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvβ3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.
Collapse
Affiliation(s)
- Riley T. Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Andrew E. Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Ruei-Chun Hung
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, VA, United States
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| |
Collapse
|
19
|
Li K, Li Y, Yu Y, Ding J, Huang H, Chu C, Hu L, Yu Y, Cao Y, Xu P, Fulton D, Chen F. Bmi-1 alleviates adventitial fibroblast senescence by eliminating ROS in pulmonary hypertension. BMC Pulm Med 2021; 21:80. [PMID: 33673825 PMCID: PMC7934412 DOI: 10.1186/s12890-021-01439-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 01/19/2023] Open
Abstract
Objectives Pulmonary hypertension (PH) is a life-threatening progressive disease with high mortality in the elderly. However, the pathogenesis of PH has not been fully understood and there is no effective therapy to reverse the disease process. This study aims to determine whether cellular senescence is involved in the development of PH. Methods The rat PH model was established by intraperitoneal injection of monocrotaline and evaluated by pulmonary arteriole wall thickness and right ventricular hypertrophy index. Human lung fibroblasts (HLFs) were treated with CoCl2 or hypoxia to induce cellular senescence in vitro. SA-β-gal staining and the changes of senescent markers were used to examine cellular senescence. The molecular mechanism of cellular senescence was further explored by detecting reactive oxygen species (ROS) levels and culturing cells with a conditioned medium. Results We revealed the cellular senescence of pulmonary adventitial fibroblasts in vivo in the rat PH model. The expression of Bmi-1, an important regulator of senescence, was decreased in the lungs of PH rats and localized in adventitial fibroblasts. The in vitro experiments showed that p16 expression was increased while Bmi-1 expression was decreased after CoCl2 treatment in HLFs. Mechanistically, Bmi-1 could alleviate CoCl2-induced HLFs senescence by eliminating ROS which further promoted the proliferation of pulmonary artery smooth muscle cells by paracrine mode of action of HLFs. Conclusion Bmi-1 alleviates the cellular senescence of pulmonary fibroblasts in PH, which expands the pathogenesis of PH and provides a theoretical basis for targeting senescent cells in the treatment of PH. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01439-0.
Collapse
Affiliation(s)
- Kai Li
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yan Li
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Jingjing Ding
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Chunyan Chu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Peng Xu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
20
|
Peng S, Hebert LL, Eschbacher JM, Kim S. Single-Cell RNA Sequencing of a Postmenopausal Normal Breast Tissue Identifies Multiple Cell Types That Contribute to Breast Cancer. Cancers (Basel) 2020; 12:cancers12123639. [PMID: 33291647 PMCID: PMC7761899 DOI: 10.3390/cancers12123639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The human body is composed of multiple cell types that form structures and carry out the functions of specific tissues. The human breast is mainly known for the milk ducts organized by epithelial cells, but also contains many other cell types of little-known identity. In this study, we employed the single-cell sequencing technology to ascertain the various cell types present in the normal breast. The results showed 10 distinct cell types that included three epithelial and other novel cell types. The gene signatures of five cell types (three epithelial, one fibroblast subset, and immune cells) matched to the gene expression profiles of >85% breast tumors cataloged in The Cancer Gene Atlas dataset, suggesting their significant contribution to breast cancer. These findings provide a framework for the better mapping of the cellular composition in the breast and its relationship to breast disease. Abstract The human breast is composed of diverse cell types. Studies have delineated mammary epithelial cells, but the other cell types in the breast have scarcely been characterized. In order to gain insight into the cellular composition of the tissue, we performed droplet-mediated RNA sequencing of 3193 single cells isolated from a postmenopausal breast tissue without enriching for epithelial cells. Unbiased clustering analysis identified 10 distinct cell clusters, seven of which were nonepithelial devoid of cytokeratin expression. The remaining three cell clusters expressed cytokeratins (CKs), representing breast epithelial cells; Cluster 2 and Cluster 7 cells expressed luminal and basal CKs, respectively, whereas Cluster 9 cells expressed both luminal and basal CKs, as well as other CKs of unknown specificity. To assess which cell type(s) potentially contributes to breast cancer, we used the differential gene expression signature of each cell cluster to derive gene set variation analysis (GSVA) scores and classified breast tumors in The Cancer Gene Atlas (TGGA) dataset (n = 1100) by assigning the highest GSVA scoring cell cluster number for each tumor. The results showed that five clusters (Clusters 2, 3, 7, 8, and 9) could categorize >85% of breast tumors collectively. Notably, Cluster 2 (luminal epithelial) and Cluster 3 (fibroblast) tumors were equally prevalent in the luminal breast cancer subtypes, whereas Cluster 7 (basal epithelial) and Cluster 9 (other epithelial) tumors were present primarily in the triple-negative breast cancer (TNBC) subtype. Cluster 8 (immune) tumors were present in all subtypes, indicating that immune cells may contribute to breast cancer regardless of the subtypes. Cluster 9 tumors were significantly associated with poor patient survival in TNBC, suggesting that this epithelial cell type may give rise to an aggressive TNBC subset.
Collapse
Affiliation(s)
- Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - Lora L. Hebert
- Department of Surgery, St. Joseph’s Hospital, Dignity Health, Phoenix, AZ 85013, USA; (L.L.H.); (J.M.E.)
- Surgical Breast Oncology Division, University of Arizona Cancer Center-Phoenix, Phoenix, AZ 85004, USA
| | - Jennifer M. Eschbacher
- Department of Surgery, St. Joseph’s Hospital, Dignity Health, Phoenix, AZ 85013, USA; (L.L.H.); (J.M.E.)
- Department of Neuropathology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ 85013, USA
| | - Suwon Kim
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Correspondence: ; Tel.: +1-602-343-8762
| |
Collapse
|
21
|
Fan Y, Gu X, Zhang J, Sinn K, Klepetko W, Wu N, Foris V, Solymosi P, Kwapiszewska G, Kuebler WM. TWIST1 Drives Smooth Muscle Cell Proliferation in Pulmonary Hypertension via Loss of GATA-6 and BMPR2. Am J Respir Crit Care Med 2020; 202:1283-1296. [PMID: 32692930 DOI: 10.1164/rccm.201909-1884oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: The bHLH (basic helix-loop-helix) transcription factor TWIST1 (Twist-related protein 1) controls cell proliferation and differentiation in tissue development and disease processes. Recently, endothelial TWIST1 has been linked to pulmonary hypertension (PH) and endothelial-to-mesenchymal transition, yet the role of TWIST1 in smooth muscle cells (SMCs) remains so far unclear.Objectives: To define the role of TWIST1 in SMCs in the pathogenesis of PH.Methods: SMC-specific TWIST1-deficient mice, SMC-specific TWIST1 silencing in rats, mass spectrometry, immunoprecipitation, and chromatin immunoprecipitation were used to delineate the role of SMC TWIST1 in PH.Measurements and Main Results: In pulmonary vessels from patients with PH and rodent PH models, TWIST1 expression was markedly increased and predominantly localized to SMCs. SMC-specific TWIST1 deficiency or silencing attenuated the development of PH and distal vessel muscularization in chronically hypoxic mice and in monocrotaline-treated rats. In vitro, TWIST1 inhibition or silencing prevented pulmonary artery SMC proliferation and migration. Mechanistically, the observed effects were mediated, at least in part, by TWIST1-dependent degradation of GATA-6 (GATA-binding protein 6). BMPR2 (bone morphogenetic protein receptor-2) was identified as a novel downstream target of GATA-6, which directly binds to its promoter. Inhibition of TWIST1 promoted the recruitment of GATA-6 to the BMPR2 promoter and restored BMPR2 functional expression.Conclusions: Our findings identify a key role for SMC TWIST1 in the pathogenesis of lung vascular remodeling and in PH that is partially mediated via reduced GATA-6-dependent BMPR2 expression. Inhibition of SMC TWIST1 may constitute a new therapeutic strategy for the treatment of PH.
Collapse
Affiliation(s)
- Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital, and
| | - Xia Gu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jing Zhang
- Department of Respiratory Disease, Xinqiao Hospital, and
| | - Katharina Sinn
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Walter Klepetko
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na Wu
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasile Foris
- Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Philip Solymosi
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| |
Collapse
|
22
|
Yao J, Fang X, Zhang C, Yang Y, Wang D, Chen Q, Zhong G. Astragaloside IV attenuates hypoxia‑induced pulmonary vascular remodeling via the Notch signaling pathway. Mol Med Rep 2020; 23:89. [PMID: 33236156 PMCID: PMC7716412 DOI: 10.3892/mmr.2020.11726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
The Notch signaling pathway participates in pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis. Astragaloside IV (AS-IV) is an effective antiproliferative treatment for vascular diseases. The present study aimed to investigate the protective effects and mechanisms underlying AS-IV on hypoxia-induced PASMC proliferation and pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) model rats. Rats were divided into the following four groups: i) normoxia; ii) hypoxia (10% O2); iii) treatment, hypoxia + intragastrical administration of AS-IV (2 mg/kg) daily for 28 days; and iv) DAPT, hypoxia + AS-IV treatment + subcutaneous administration of DAPT (10 mg/kg) three times daily. The effects of AS-IV treatment on the development of hypoxia-induced PAH, right ventricle (RV) hypertrophy and pulmonary vascular remodeling were examined. Furthermore, PASMCs were treated with 20 µmol/l AS-IV under hypoxic conditions for 48 h. To determine the effect of Notch signaling in vascular remodeling and the potential mechanisms underlying AS-IV treatment, 5 mmol/l γ-secretase inhibitor [N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)] was used. Cell viability and apoptosis were determined by performing the MTT assay and flow cytometry, respectively. Immunohistochemistry was conducted to detect the expression of proliferating cell nuclear antigen (PCNA). Moreover, the mRNA and protein expression levels of Notch-3, Jagged-1, hes family bHLH transcription factor 5 (Hes-5) and PCNA were measured via reverse transcription-quantitative PCR and western blotting, respectively. Compared with the normoxic group, hypoxia-induced PAH model rats displayed characteristics of PAH and RV hypertrophy, whereas AS-IV treatment alleviated PAH and prevented RV hypertrophy. AS-IV also inhibited hypoxia-induced pulmonary vascular remodeling, as indicated by reduced wall thickness and increased lumen diameter of pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia-induced PAH model rats. Compared with normoxia, hypoxia promoted PASMC proliferation in vitro, whereas AS-IV treatment inhibited hypoxia-induced PASMC proliferation by downregulating PCNA expression in vitro and in vivo. In hypoxia-treated PAH model rats and cultured PASMCs, AS-IV treatment reduced the expression levels of Jagged-1, Notch-3 and Hes-5. Furthermore, Notch signaling inhibition via DAPT significantly inhibited the pulmonary vascular remodeling effect of AS-IV in vitro and in vivo. Collectively, the results indicated that AS-IV effectively reversed hypoxia-induced pulmonary vascular remodeling and PASMC proliferation via the Notch signaling pathway. Therefore, the present study provided novel insights into the mechanism underlying the use of AS-IV for treatment of vascular diseases, such as PAH.
Collapse
Affiliation(s)
- Jiamei Yao
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cui Zhang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yushu Yang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guangwei Zhong
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Steffes LC, Froistad AA, Andruska A, Boehm M, McGlynn M, Zhang F, Zhang W, Hou D, Tian X, Miquerol L, Nadeau K, Metzger RJ, Spiekerkoetter E, Kumar ME. A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is the Cell of Origin for Occlusive Pulmonary Vascular Lesions. Circulation 2020; 142:1545-1561. [PMID: 32794408 PMCID: PMC7578108 DOI: 10.1161/circulationaha.120.045750] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by profound vascular remodeling in which pulmonary arteries narrow because of medial thickening and occlusion by neointimal lesions, resulting in elevated pulmonary vascular resistance and right heart failure. Therapies targeting the neointima would represent a significant advance in PAH treatment; however, our understanding of the cellular events driving neointima formation, and the molecular pathways that control them, remains limited. METHODS We comprehensively map the stepwise remodeling of pulmonary arteries in a robust, chronic inflammatory mouse model of pulmonary hypertension. This model demonstrates pathological features of the human disease, including increased right ventricular pressures, medial thickening, neointimal lesion formation, elastin breakdown, increased anastomosis within the bronchial circulation, and perivascular inflammation. Using genetic lineage tracing, clonal analysis, multiplexed in situ hybridization, immunostaining, deep confocal imaging, and staged pharmacological inhibition, we define the cell behaviors underlying each stage of vascular remodeling and identify a pathway required for neointima formation. RESULTS Neointima arises from smooth muscle cells (SMCs) and not endothelium. Medial SMCs proliferate broadly to thicken the media, after which a small number of SMCs are selected to establish the neointima. These neointimal founder cells subsequently undergoing massive clonal expansion to form occlusive neointimal lesions. The normal pulmonary artery SMC population is heterogeneous, and we identify a Notch3-marked minority subset of SMCs as the major neointimal cell of origin. Notch signaling is specifically required for the selection of neointimal founder cells, and Notch inhibition significantly improves pulmonary artery pressure in animals with pulmonary hypertension. CONCLUSIONS This work describes the first nongenetically driven murine model of pulmonary hypertension (PH) that generates robust and diffuse occlusive neointimal lesions across the pulmonary vascular bed and does so in a stereotyped timeframe. We uncover distinct cellular and molecular mechanisms underlying medial thickening and neointima formation and highlight novel transcriptional, behavioral, and pathogenic heterogeneity within pulmonary artery SMCs. In this model, inflammation is sufficient to generate characteristic vascular pathologies and physiological measures of human PAH. We hope that identifying the molecular cues regulating each stage of vascular remodeling will open new avenues for therapeutic advancements in the treatment of PAH.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Alexis A Froistad
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Adam Andruska
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Mario Boehm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
- Universities of Giessen and Marburg Lung Center, Justus-Liebig University Giessen, German Center for Lung Research (M.B.)
| | - Madeleine McGlynn
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Wenming Zhang
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
| | - David Hou
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Xuefei Tian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Lucile Miquerol
- Aix-Marseille University, Centre Nationale de la Recherche Scientifique (CNRS), Institut de Biologie du Developpement de Marseille, Marseille, France (L.M.)
| | - Kari Nadeau
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
| | - Ross J Metzger
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| | - Maya E Kumar
- Division of Pulmonary Medicine, Department of Pediatrics (L.C.S., R.J.M., M.E.K.), Stanford University School of Medicine, CA
- Vera Moulton Wall Center for Pulmonary Vascular Research (L.C.S., F.Z., R.J.M., E.S., M.E.K.), Stanford University School of Medicine, CA
- Sean N. Parker Center for Asthma and Allergy Research (A.A.F., M.M., W.Z., D.H., K.N., M.E.K.), Stanford University School of Medicine, CA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine (A.A.F., A.A., M.B., M.M., D.H., X.T., K.N., E.S., M.E.K.), Stanford University School of Medicine, CA
| |
Collapse
|
24
|
Jandl K, Marsh LM, Hoffmann J, Mutgan AC, Baum O, Bloch W, Thekkekara-Puthenparampil H, Kolb D, Sinn K, Klepetko W, Heinemann A, Olschewski A, Olschewski H, Kwapiszewska G. Basement Membrane Remodeling Controls Endothelial Function in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 63:104-117. [PMID: 32160015 DOI: 10.1165/rcmb.2019-0303oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) increasingly emerges as an active driver in several diseases, including idiopathic pulmonary arterial hypertension (IPAH). The basement membrane (BM) is a specialized class of ECM proteins. In pulmonary arteries, the BM is in close contact and direct proximity to vascular cells, including endothelial cells. So far, the role of the BM has remained underinvestigated in IPAH. Here, we aimed to shed light on the involvement of the BM in IPAH, by addressing its structure, composition, and function. On an ultrastructural level, we observed a marked increase in BM thickness in IPAH pulmonary vessels. BM composition was distinct in small and large vessels and altered in IPAH. Proteoglycans were mostly responsible for distinction between smaller and larger vessels, whereas BM collagens and laminins were more abundantly expressed in IPAH. Type IV collagen and laminin both strengthened endothelial barrier integrity. However, only type IV collagen concentration dependently increased cell adhesion of both donor and IPAH-derived pulmonary arterial endothelial cells (PAECs) and induced nuclear translocation of mechanosensitive transcriptional coactivator of the hippo pathway YAP (Yes-activated protein). On the other hand, laminin caused cytoplasmic retention of YAP in IPAH PAECs. Accordingly, silencing of COL4A5 and LAMC1, respectively, differentially affected tight junction formation and barrier integrity in both donor and IPAH PAECs. Collectively, our results highlight the importance of a well-maintained BM homeostasis. By linking changes in BM structure and composition to altered endothelial cell function, we here suggest an active involvement of the BM in IPAH pathogenesis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pharmacology and
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wilhelm Bloch
- German Sports University Cologne, Cologne, Germany; and
| | | | | | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, and
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology, Otto Loewi Research Center
| |
Collapse
|
25
|
Chao CM, Chong L, Chu X, Shrestha A, Behnke J, Ehrhardt H, Zhang J, Chen C, Bellusci S. Targeting Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension (BPD-PH): Potential Role of the FGF Signaling Pathway in the Development of the Pulmonary Vascular System. Cells 2020; 9:cells9081875. [PMID: 32796770 PMCID: PMC7464452 DOI: 10.3390/cells9081875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
More than 50 years after the first description of Bronchopulmonary dysplasia (BPD) by Northway, this chronic lung disease affecting many preterm infants is still poorly understood. Additonally, approximately 40% of preterm infants suffering from severe BPD also suffer from Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH), leading to a significant increase in total morbidity and mortality. Until today, there is no curative therapy for both BPD and BPD-PH available. It has become increasingly evident that growth factors are playing a central role in normal and pathologic development of the pulmonary vasculature. Thus, this review aims to summarize the recent evidence in our understanding of BPD-PH from a basic scientific point of view, focusing on the potential role of Fibroblast Growth Factor (FGF)/FGF10 signaling pathway contributing to disease development, progression and resolution.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
- Correspondence: (C.-M.C.); (S.B.)
| | - Lei Chong
- Institute of Pediatrics, National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China;
| | - Xuran Chu
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Amit Shrestha
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center, German Center for Lung Research, 35392 Giessen, Germany; (J.B.); (H.E.)
| | - Jinsan Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- International Collaborative Center on Growth Factor Research, Life Science Institute, Wenzhou University, Wenzhou 325035, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (C.C.)
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (X.C.); (A.S.)
- Correspondence: (C.-M.C.); (S.B.)
| |
Collapse
|
26
|
Wu K, Tang H, Lin R, Carr SG, Wang Z, Babicheva A, Ayon RJ, Jain PP, Xiong M, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Valdez-Jasso D, Simonson TS, Desai AA, Garcia JG, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Yuan JXJ. Endothelial platelet-derived growth factor-mediated activation of smooth muscle platelet-derived growth factor receptors in pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020948470. [PMID: 33294172 PMCID: PMC7707860 DOI: 10.1177/2045894020948470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factor is one of the major growth factors found in human and mammalian serum and tissues. Abnormal activation of platelet-derived growth factor signaling pathway through platelet-derived growth factor receptors may contribute to the development and progression of pulmonary vascular remodeling and obliterative vascular lesions in patients with pulmonary arterial hypertension. In this study, we examined the expression of platelet-derived growth factor receptor isoforms in pulmonary arterial smooth muscle and pulmonary arterial endothelial cells and investigated whether platelet-derived growth factor secreted from pulmonary arterial smooth muscle cell or pulmonary arterial endothelial cell promotes pulmonary arterial smooth muscle cell proliferation. Our results showed that the protein expression of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell was upregulated in patients with idiopathic pulmonary arterial hypertension compared to normal subjects. Platelet-derived growth factor activated platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell, as determined by phosphorylation of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β. The platelet-derived growth factor-mediated activation of platelet-derived growth factor receptor α/platelet-derived growth factor receptor β was enhanced in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal cells. Expression level of platelet-derived growth factor-AA and platelet-derived growth factor-BB was greater in the conditioned media collected from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell than from normal pulmonary arterial endothelial cell. Furthermore, incubation of idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell with conditioned culture media from normal pulmonary arterial endothelial cell induced more platelet-derived growth factor receptor α activation than in normal pulmonary arterial smooth muscle cell. Accordingly, the conditioned media from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell resulted in more pulmonary arterial smooth muscle cell proliferation than the media from normal pulmonary arterial endothelial cell. These data indicate that (a) the expression and activity of platelet-derived growth factor receptor are increased in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal pulmonary arterial smooth muscle cell, and (b) pulmonary arterial endothelial cell from idiopathic pulmonary arterial hypertension patients secretes higher level of platelet-derived growth factor than pulmonary arterial endothelial cell from normal subjects. The enhanced secretion (and production) of platelet-derived growth factor from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell and upregulated platelet-derived growth factor receptor expression (and function) in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell may contribute to enhancing platelet-derived growth factor/platelet-derived growth factor receptor-associated pulmonary vascular remodeling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Kang Wu
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Haiyang Tang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Ruizhu Lin
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Genetics and
Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China
| | - Shane G. Carr
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - Ziyi Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Aleksandra Babicheva
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ramon J. Ayon
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Molecular Physiology and
Biological Physics, University of Virginia, Charlottesville, USA
| | - Pritesh P. Jain
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Mingmei Xiong
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Marisela Rodriguez
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shamin Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Francesca Balistrieri
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shayan Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University
of California, San Diego, La Jolla, USA
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ankit A. Desai
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Medicine, Indiana
University, Indinappolis, IN, USA
| | - Joe G.N. Garcia
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
University of California, San Diego, La Jolla, USA
| | | | - Jian Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ayako Makino
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Endocrinology
and Metabolism, Department of Medicine, University of California, San Diego, La
Jolla, USA
| | - Jason X.-J. Yuan
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| |
Collapse
|
27
|
Biasin V, Crnkovic S, Sahu-Osen A, Birnhuber A, El Agha E, Sinn K, Klepetko W, Olschewski A, Bellusci S, Marsh LM, Kwapiszewska G. PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2020; 318:L684-L697. [PMID: 32023084 PMCID: PMC7189793 DOI: 10.1152/ajplung.00128.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Pulmonary fibrosis is characterized by pronounced collagen deposition and myofibroblast expansion, whose origin and plasticity remain elusive. We utilized a fate-mapping approach to investigate α-smooth muscle actin (αSMA)+ and platelet-derived growth factor receptor α (PDGFRα)+ cells in two lung fibrosis models, complemented by cell type-specific next-generation sequencing and investigations on human lungs. Our data revealed that αSMA+ and PDGFRα+ cells mark two distinct mesenchymal lineages with minimal transdifferentiation potential during lung fibrotic remodeling. Parenchymal and perivascular fibrotic regions were populated predominantly with PDGFRα+ cells expressing collagen, while αSMA+ cells in the parenchyma and vessel wall showed variable expression of collagen and the contractile protein desmin. The distinct gene expression profile found in normal conditions was retained during pathologic remodeling. Cumulatively, our findings identify αSMA+ and PDGFRα+ cells as two separate lineages with distinct gene expression profiles in adult lungs. This cellular heterogeneity suggests that anti-fibrotic therapy should target diverse cell populations.
Collapse
Affiliation(s)
- Valentina Biasin
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Anita Sahu-Osen
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Sinn
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Experimental Anesthesiology, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
28
|
Bordenave J, Tu L, Berrebeh N, Thuillet R, Cumont A, Le Vely B, Fadel E, Nadaud S, Savale L, Humbert M, Huertas A, Guignabert C. Lineage Tracing Reveals the Dynamic Contribution of Pericytes to the Blood Vessel Remodeling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2020; 40:766-782. [PMID: 31969018 DOI: 10.1161/atvbaha.119.313715] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Excessive accumulation of resident cells within the pulmonary vascular wall represents the hallmark feature of the remodeling occurring in pulmonary arterial hypertension (PAH). Furthermore, we have previously demonstrated that pulmonary arterioles are excessively covered by pericytes in PAH, but this process is not fully understood. The aim of our study was to investigate the dynamic contribution of pericytes in PAH vascular remodeling. Approach and Results: In this study, we performed in situ, in vivo, and in vitro experiments. We isolated primary cultures of human pericytes from controls and PAH lung specimens then performed functional studies (cell migration, proliferation, and differentiation). In addition, to follow up pericyte number and fate, a genetic fate-mapping approach was used with an NG2CreER;mT/mG transgenic mice in a model of pulmonary arteriole muscularization occurring during chronic hypoxia. We identified phenotypic and functional abnormalities of PAH pericytes in vitro, as they overexpress CXCR (C-X-C motif chemokine receptor)-7 and TGF (transforming growth factor)-βRII and, thereby, display a higher capacity to migrate, proliferate, and differentiate into smooth muscle-like cells than controls. In an in vivo model of chronic hypoxia, we found an early increase in pericyte number in a CXCL (C-X-C motif chemokine ligand)-12-dependent manner whereas later, from day 7, activation of the canonical TGF-β signaling pathway induces pericytes to differentiate into smooth muscle-like cells. CONCLUSIONS Our findings reveal a pivotal role of pulmonary pericytes in PAH and identify CXCR-7 and TGF-βRII as 2 intrinsic abnormalities in these resident progenitor vascular cells that foster the onset and maintenance of PAH structural changes in blood lung vessels.
Collapse
Affiliation(s)
- Jennifer Bordenave
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Ly Tu
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Nihel Berrebeh
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Raphaël Thuillet
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Amélie Cumont
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Benjamin Le Vely
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Elie Fadel
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| | - Sophie Nadaud
- Sorbonne Université, Institute of Cardiometabolism and Nutrition (ICAN), INSERM, UMR_S 1166, Facultê de mêdecine Pitiê Salpêtriêre, Paris, France (S.N.)
| | - Laurent Savale
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Marc Humbert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Alice Huertas
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (L.S., M.H., A.H.)
| | - Christophe Guignabert
- From the INSERM UMR_S 999, Hôpital Marie Lannelongue, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.).,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France (J.B., L.T., N.B., R.T., A.C., B.L.V., E.F., L.S., M.H., A.H., C.G.)
| |
Collapse
|
29
|
Marsh LM, Kwapiszewska G. Lessons from Transcriptomics in Hypoxia-induced Pulmonary Hypertension: Does the Mouse Strain Matter? Am J Respir Cell Mol Biol 2019; 60:13-15. [PMID: 30335513 DOI: 10.1165/rcmb.2018-0307ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Leigh M Marsh
- 1 Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria
| | | |
Collapse
|
30
|
Berghausen EM, Feik L, Zierden M, Vantler M, Rosenkranz S. Key inflammatory pathways underlying vascular remodeling in pulmonary hypertension. Herz 2019; 44:130-137. [PMID: 30847510 DOI: 10.1007/s00059-019-4795-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Independent of the underlying cause, pulmonary hypertension (PH) remains a devastating condition that is characterized by limited survival. Cumulating evidence indicates that in addition to a dysbalance of mediators regulating vascular tone and growth factors promoting vascular remodeling, failure to resolve inflammation and altered immune processes play a pivotal role in the development and progression of PH. Here, we highlight the role of key inflammatory pathways in the pathobiology of vascular remodeling and PH, and discuss potential therapeutic interventions that may halt disease progression or even reverse pulmonary vascular remodeling. Perivascular inflammation is present in all forms of PH, and inflammatory pathways involve numerous mediators and cell types including macrophages, neutrophils, T cells, dendritic cells, and mast cells. Dysfunctional bone morphogenic protein receptor 2 (BMPR2) signaling and dysregulated immunity enable the accumulation of macrophages and other inflammatory cells in obliterative vascular lesions. Regulatory T cells (Tregs) were shown to be of particular relevance in the control of inflammatory responses. Key cytokines/chemokines include interleukin-6, functioning via classic or trans-signaling, macrophage migratory inhibitory factor (MIF), but also other mediators such as neutrophil-derived myeloperoxidase. The expanding knowledge on this topic has resulted in multiple opportunities for sophisticated therapeutic interventions.
Collapse
Affiliation(s)
- E M Berghausen
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany
| | - L Feik
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Cologne, Germany
| | - M Zierden
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany
| | - M Vantler
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany
| | - S Rosenkranz
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany. .,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Cologne, Germany.
| |
Collapse
|
31
|
Spiekerkoetter E, Goncharova EA, Guignabert C, Stenmark K, Kwapiszewska G, Rabinovitch M, Voelkel N, Bogaard HJ, Graham B, Pullamsetti SS, Kuebler WM. Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm Circ 2019; 9:2045894019889775. [PMID: 31798835 PMCID: PMC6868582 DOI: 10.1177/2045894019889775] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.
Collapse
Affiliation(s)
- Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Elena A. Goncharova
- Pittsburgh Heart, Blood and Vascular Medicine Institute, Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christophe Guignabert
- INSERM UMR_S 999, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Kurt Stenmark
- Department of Pediatrics, School of Medicine, University of Colorado, Denver, CO, USA
- Cardio Vascular Pulmonary Research Lab, University of Colorado, Denver, CO, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Norbert Voelkel
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Harm J. Bogaard
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Brian Graham
- Pulmonary Sciences and Critical Care, School of Medicine, University of Colorado, Denver, CO, USA
| | - Soni S. Pullamsetti
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitaetsmedizin Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Su Y, Wang J, Quan M. Novel insights into the molecular mechanisms underlying the beneficial effects of exercise training on pulmonary arterial hypertension. J Sports Med Phys Fitness 2018; 59:1584-1592. [PMID: 30421875 DOI: 10.23736/s0022-4707.18.09204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent animal and clinical studies report that exercise training exerts positive influences in pulmonary arterial hypertension (PAH); however, the underlying mechanisms are largely unknown. To give insight into the molecular mechanisms of the improvement effects, we performed gene expression analysis. METHODS Three Gene Expression Omnibus (GEO) datasets were analyzed, including peripheral blood mononuclear (PBMC) gene expression profiles of exercise training in men and patients with PAH. Differentially expressed genes (DEGs) in each dataset were identified, and then, the common DEGs positively regulated by PAH and negatively regulated by exercise training, or the opposite, were further identified. Subsequently, biological processes and pathways were analyzed. RESULTS A total of 7229 DEGs with logFC>0.3 and P<0.05 were identified in exercise, whereas 749 and 2207 DEGs were identified in PAH from the two datasets. After overlapping the whole DEGs from all three datasets, total 16 common DEGs were identified, including BCLAF1, SATB1 and ZFP36L2. Seven of them were up-regulated in exercise training and down-regulated in PAH, and the others were opposite. In addition, these common DEGs were mainly enriched in negative regulation of cellular process, negative regulation of biological process and negative regulation of cellular macromolecule biosynthetic process. CONCLUSIONS Some genes have been implicated in the improvement of pulmonary vascular remodeling and PAH. These findings could not only improve the knowledge about the molecular mechanisms underlying the beneficial effects of exercise training on PAH, but also provide clues for further clinical and animal studies.
Collapse
Affiliation(s)
- Youcun Su
- School of Sports and Health School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Jing Wang
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Minghui Quan
- Department of Sport Rehabilitation, School of Kinesiology, Shanghai University of Sport, Shanghai, China -
| |
Collapse
|