1
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025; 172:327-345. [PMID: 39821893 PMCID: PMC11937199 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Turpo-Peqqueña AG, Luna-Prado S, Valencia-Arce RJ, Del-Carpio-Carrazco FL, Gómez B. A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca Lepidium meyenii. Curr Issues Mol Biol 2025; 47:40. [PMID: 39852155 PMCID: PMC11763394 DOI: 10.3390/cimb47010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively. This study explored the inhibitory potential of natural compounds from Lepidium meyenii (Peruvian Maca) on the YAP-1 and PARP-1 protein systems to develop novel therapeutic strategies for GBM. By molecular dynamics simulations, we identified N-(3-Methoxybenzyl)-(9Z,12Z,15Z)- octadecatrienamide (DK5) as the most promising natural inhibitor for PARP-1 and stearic acid (GK4) for YAP-1. Although synthetic inhibitors, such as Olaparib (ODK) for PARP-1 and Verteporfin (VER) for YAP-1, only VER was superior to the naturally occurring molecule and proved a promising alternative. In conclusion, natural compounds from Lepidium meyenii (Peruvian Maca) offer a potentially innovative approach to improve GBM treatment, complementing existing therapies with their inhibitory action on PARP-1 and YAP-1.
Collapse
Affiliation(s)
- Albert Gabriel Turpo-Peqqueña
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Medicina Humana, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Facultad de Biología, Universidad Nacional de San Agustín, Av. Alcides Carrión s/n, Arequipa 04001, Peru
| | - Sebastian Luna-Prado
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Renato Javier Valencia-Arce
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Fabio Leonardo Del-Carpio-Carrazco
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| |
Collapse
|
3
|
Wu M, Shi Y, Liu Y, Li Z, Wu H, Yu Z, Wang Z, Xu C. A Human Adenovirus C Infection-Related Gene Panel for Predicting Survival and Treatment Responsiveness in Glioma Patients. World Neurosurg 2024; 183:e173-e186. [PMID: 38097166 DOI: 10.1016/j.wneu.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Viruses are critical for the regulation of cancer development and for therapy. Human adenovirus C (HadVC) has been detected in central nervous system and glioma tissue. The objective of the present study was the development of a robust prognostic model based on HadVC infection (HadVCi)-relevant genes. METHODS The genome, transcriptome, and virome were systemically analyzed using The Cancer Genome Atlas dataset for training and 2 cohorts from the Chinese Glioma Genome Atlas and an immunotherapy trial cohort with 17 patients receiving anti-PD-1 treatment for validation. HadVCi-relevant gene selection from differentially expressed genes between HadVC-infected and non-HadVC-infected glioma patients using least absolute shrinkage and selection operator regression was followed by Cox regression modeling to establish a prognostic HadVCi score. Kaplan-Meier and receiver operating characteristic curve analyses were performed to estimate the predictive capacity of the HadVCi score. The χ2, Spearman, and Mann-Whitney U tests were used to identify the correlation with the clinicopathological parameters, treatment responsiveness, and immune landscape. Temozolomide-resistant glioma cells were established and analyzed at the transcriptional level using RNA sequencing data. RESULTS The HadVCi score was (-0.2526673∗TRPC6) + (-0.2244276∗RNF207) + (-0.0894468∗SEC31B) + (-0.0190214∗ZCRB1) + (-0.017122∗DNPH1) + (0.0495818∗CCDC34) + (0.1196349∗PURG) + (0.1778997∗LILRA5). The score possesses a strong ability to predict overall survival. Further analysis revealed a higher HadVCi score correlated with a malignant phenotype and poorer treatment responsiveness to temozolomide-based chemotherapy and combined therapies. Additionally, transcriptomic analysis showed malignancy-, stemness-, and radioresistant-related gene activation in the HadVCi group, which characterized the poor outcomes and limited sensitivity to standard therapy. CONCLUSIONS The HadVCi score could be an effective tool for survival prediction and treatment guidance for patients with glioma.
Collapse
Affiliation(s)
- Mengwan Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Zhaoshen Li
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuoyang Yu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Wang C, Zhang Y, Jiang Q, Chen S, Zhang L, Qiu H. Oridonin suppresses the growth of glioblastoma cells via inhibiting Hippo/YAP axis. Arch Biochem Biophys 2024; 751:109845. [PMID: 38043888 DOI: 10.1016/j.abb.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Glioma is a brain tumor that originates from brain or spine glial cells. Despite alternative treatments, the overall survival rate remains low. Oridonin (ORI) is purified from the Chinese herb Rabdosia rubescens, which has exhibited positive effects on tumors. This study aimed to investigate the effect of ORI on U87MG glioblastoma cells and whether the Hippo/YAP-related signaling pathway was involved. Malignant glioblastoma U87MG cells and male athymic nude mice (BALB/cnu/nu) were used as the experimental models. The YAP inhibitor Verteporfin (VP) and the overexpression of YAP were used to investigate its potential relation with glioma. Here, we found that ORI inhibited cell proliferation and promoted cell apoptosis in a dose-dependent manner in U87MG cells. Moreover, ORI inhibited Bcl-2, YAP, and c-Myc protein expression but increased Bax, caspase-3, and p-YAP protein expression. Furthermore, the effect of ORI was also confirmed in a mouse model bearing glioma. ORI reversed the effect of overexpression of YAP. Collectively, oridonin suppressed glioblastoma oncogenesis via the Hippo/YAP signaling pathway and could be a potential therapeutic target in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400016, China
| | - Yonghong Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Qingsong Jiang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Key Lab of Biochemistry and Molecular Pharmacology, Chongqing Key Lab Drug Metabolism, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Lin WH, Feathers RW, Cooper LM, Lewis-Tuffin LJ, Chen J, Sarkaria JN, Anastasiadis PZ. A Syx-RhoA-Dia1 signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in glioblastoma. JCI Insight 2023; 8:e157491. [PMID: 37427593 PMCID: PMC10371349 DOI: 10.1172/jci.insight.157491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastomas (GBM) are aggressive tumors that lack effective treatments. Here, we show that the Rho family guanine nucleotide exchange factor Syx promotes GBM cell growth both in vitro and in orthotopic xenografts derived from patients with GBM. Growth defects upon Syx depletion are attributed to prolonged mitosis, increased DNA damage, G2/M cell cycle arrest, and cell apoptosis, mediated by altered mRNA and protein expression of various cell cycle regulators. These effects are phenocopied by depletion of the Rho downstream effector Dia1 and are due, at least in part, to increased phosphorylation, cytoplasmic retention, and reduced activity of the YAP/TAZ transcriptional coactivators. Furthermore, targeting Syx signaling cooperates with radiation treatment and temozolomide (TMZ) to decrease viability in GBM cells, irrespective of their inherent response to TMZ. The data indicate that a Syx-RhoA-Dia1-YAP/TAZ signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in GBM and argue for its targeting for cancer treatment.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryan W. Feathers
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lisa M. Cooper
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
6
|
Patrick S, Lathoria K, Suri V, Sen E. Reduced YAP1 and FOLR1 in gliomas predict better response to chemotherapeutics. Cell Signal 2023:110738. [PMID: 37269960 DOI: 10.1016/j.cellsig.2023.110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Gliomas harbouring mutations in IDH1 (isocitrate dehydrogenase 1) are characterized by greater sensitivity to chemotherapeutics. These mutants also exhibit diminished levels of transcriptional coactivator YAP1 (yes-associated protein 1). Enhanced DNA damage in IDH1 mutant cells, as evidenced by γH2AX formation (phosphorylation of histone variant H2A.X) and ATM (serine/threonine kinase; ataxia telangiectasia mutated) phosphorylation, was accompanied by reduced FOLR1 (folate receptor 1) expression. Diminished FOLR1, concomitant with heightened γH2AX levels, was also observed in patient-derived IDH1 mutant glioma tissues. Chromatin immunoprecipitation, overexpression of mutant YAP1, and treatment with YAP1-TEAD (TEA domain transcription factors) complex inhibitor verteporfin demonstrated regulation of FOLR1 expression by YAP1 and its partner transcription factor TEAD2. TCGA (The Cancer Genome Atlas) data analysis demonstrated better patient survival with reduced FOLR1 expression. Depletion of FOLR1 rendered IDH1 wild-type gliomas more susceptible to temozolomide-mediated death. Despite heightened DNA damage, IDH1 mutants exhibited reduced levels of IL6 (interleukin 6) and IL8 (interleukin 8) - pro-inflammatory cytokines known to be associated with persistent DNA damage. While both FOLR1 and YAP1 influenced DNA damage, only YAP1 was involved in regulating IL6 and IL8. ESTIMATE and CIBERSORTx analyses revealed the association between YAP1 expression and immune cell infiltration in gliomas. By identifying the influence of YAP1-FOLR1 link in DNA damage, our findings suggest that simultaneous depletion of both could amplify the potency of DNA damaging agents, while concomitantly reducing the release of inflammatory mediators and potentially affecting immune modulation. This study also highlights the novel role of FOLR1 as a probable prognostic marker in gliomas, predicting responsiveness to temozolomide and other DNA damaging agents.
Collapse
Affiliation(s)
| | | | - Vaishali Suri
- All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ellora Sen
- National Brain Research Centre, Manesar 122052, India.
| |
Collapse
|
7
|
Tang G, Peng J, Huo L, Yin W. An N6-methyladenosine regulation- and mRNAsi-related prognostic index reveals the distinct immune microenvironment and immunotherapy responses in lower-grade glioma. BMC Bioinformatics 2023; 24:225. [PMID: 37264314 DOI: 10.1186/s12859-023-05328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is involved in tumorigenesis and progression as well as closely correlated with stem cell differentiation and pluripotency. Moreover, tumor progression includes the acquisition of stemness characteristics and accumulating loss of differentiation phenotype. Therefore, we integrated m6A modification and stemness indicator mRNAsi to classify patients and predict prognosis for LGG. METHODS We performed consensus clustering, weighted gene co-expression network analysis, and least absolute shrinkage and selection operator Cox regression analysis to identify an m6A regulation- and mRNAsi-related prognostic index (MRMRPI). Based on this prognostic index, we also explored the differences in immune microenvironments between high- and low-risk populations. Next, immunotherapy responses were also predicted. Moreover, single-cell RNA sequencing data was further used to verify the expression of these genes in MRMRPI. At last, the tumor-promoting and tumor-associated macrophage polarization roles of TIMP1 in LGG were validated by in vitro experiments. RESULTS Ten genes (DGCR10, CYP2E1, CSMD3, HOXB3, CABP4, AVIL, PTCRA, TIMP1, CLEC18A, and SAMD9) were identified to construct the MRMRPI, which was able to successfully classify patients into high- and low-risk group. Significant differences in prognosis, immune microenvironment, and immunotherapy responses were found between distinct groups. A nomogram integrating the MRMRPI and other prognostic factors were also developed to accurately predict prognosis. Moreover, in vitro experiments illustrated that inhibition of TIMP1 could inhibit the proliferation, migration, and invasion of LGG cells and also inhibit the polarization of tumor-associated macrophages. CONCLUSION These findings provide novel insights into understanding the interactions of m6A methylation regulation and tumor stemness on LGG development and contribute to guiding more precise immunotherapy strategies.
Collapse
Affiliation(s)
- Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, 410005, Hunan Province, People's Republic of China.
| | - Jianqiao Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University), Changsha, 410005, Hunan Province, People's Republic of China
| | - Longwei Huo
- Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin, 719000, People's Republic of China
| | - Wen Yin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
8
|
Cheng G, Wang M, Zhang X, Zhang Y. Expression of IL-13Rα2 and FUS in glioma: clinicopathological and prognostic correlation. BMC Neurol 2023; 23:185. [PMID: 37158824 PMCID: PMC10165843 DOI: 10.1186/s12883-023-03237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND IL-13Rα2 is one of the most widely studied tumor-associated antigens in glioma research. Fused in sarcoma (FUS) is a DNA/RNA binding protein that is dysfunctional in various malignant tumors. However, the expression of IL-13Rα2 and FUS, their relationship with clinicopathological parameters and their prognostic value in glioma remain unclear. METHODS In the present study, the expression of IL-13Rα2 and FUS was measured in a glioma tissue array by immunohistochemistry. Pearson's X2 test was used to determine the correlation between immunohistochemical expressions and clinicopathological parameters. Pearson's or Spearman's correlation test was used to determine the association between these two proteins expression. The Kaplan-Meier analysis was used to investigate the effect of these proteins on prognosis. RESULTS The expressions of IL-13Rα2 were significantly higher in high-grade gliomas (HGG) than that in low-grade gliomas (LGG) and was associated with IDH mutation status, whereas FUS location demonstrated no significant correlation with clinicopathological parameters. Moreover, a positive relationship was found between nuclear and cytoplasmic co-localization FUS and IL-13Rα2 expression. Kaplan-Meier analysis revealed that patients with IDH wide type or IL-13Rα2 had worst overall survival (OS) compared to other biomarkers. In HGG, IL-13Rα2 combined with nuclear and cytoplasmic co-localization of FUS was associated with worse OS. Multivariate analysis showed that tumor grade, Ki-67, P53 and IL-13Rα2 could be the independent prognostic factors for OS. CONCLUSION IL-13Rα2 expression was significantly associated with cytoplasmic distribution of FUS in human glioma samples and could be the independent prognostic factors for OS, while the prognostic value of its co-expression with cytoplasmic FUS in glioma need to be addressed in the future studies.
Collapse
Affiliation(s)
- Guang Cheng
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an, China
| | - Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Department of Pathogenic Biology, Medicine School, Yan'an University, Yan'an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China.
| |
Collapse
|
9
|
Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR. Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities. Cancer Res 2023; 83:890-905. [PMID: 36634201 DOI: 10.1158/0008-5472.can-22-1577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations. SIGNIFICANCE Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss-mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses. See related commentary by Zamler and Hu, p. 807.
Collapse
Affiliation(s)
- Ravinder Verma
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiameng Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
10
|
Masliantsev K, Mordrel M, Banor T, Desette A, Godet J, Milin S, Wager M, Karayan-Tapon L, Guichet PO. Yes-Associated Protein Nuclear Translocation Is Regulated by Epidermal Growth Factor Receptor Activation Through Phosphatase and Tensin Homolog/AKT Axis in Glioblastomas. J Transl Med 2023; 103:100053. [PMID: 36801645 DOI: 10.1016/j.labinv.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas are the most common and lethal primary brain tumors in adults. Glioblastomas, the most frequent and aggressive form of gliomas, represent a therapeutic challenge as no curative treatment exists to date, and the prognosis remains extremely poor. Recently, the transcriptional cofactors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) belonging to the Hippo pathway have emerged as a major determinant of malignancy in solid tumors, including gliomas. However, the mechanisms involved in its regulation, particularly in brain tumors, remain ill-defined. In glioblastomas, EGFR represents one of the most altered oncogenes affected by chromosomal rearrangements, mutations, amplifications, and overexpression. In this study, we investigated the potential link between epidermal growth factor receptor (EGFR) and the transcriptional cofactors YAP and TAZ by in situ and in vitro approaches. We first studied their activation on tissue microarray, including 137 patients from different glioma molecular subtypes. We observed that YAP and TAZ nuclear location was highly associated with isocitrate dehydrogenase 1/2 (IDH1/2) wild-type glioblastomas and poor patient outcomes. Interestingly, we found an association between EGFR activation and YAP nuclear location in glioblastoma clinical samples, suggesting a link between these 2 markers contrary to its ortholog TAZ. We tested this hypothesis in patient-derived glioblastoma cultures by pharmacologic inhibition of EGFR using gefinitib. We showed an increase of S397-YAP phosphorylation associated with decreased AKT phosphorylation after EGFR inhibition in phosphatase and tensin homolog (PTEN) wild-type cultures, unlike PTEN-mutated cell lines. Finally, we used bpV(HOpic), a potent PTEN inhibitor, to mimic the effect of PTEN mutations. We found that the inhibition of PTEN was sufficient to revert back the effect induced by Gefitinib in PTEN-wild-type cultures. Altogether, to our knowledge, these results show for the first time the regulation of pS397-YAP by the EGFR-AKT axis in a PTEN-dependent manner.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Margaux Mordrel
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Service d'Oncologie Médicale CHU de Poitiers, Poitiers, France
| | - Tania Banor
- Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - Amandine Desette
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Julie Godet
- Service d'Anatomo-Cytopathologie, CHU de Poitiers, Poitiers, France
| | - Serge Milin
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Service d'Anatomo-Cytopathologie, CHU de Poitiers, Poitiers, France
| | - Michel Wager
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU de Poitiers, ProDiCeT, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France.
| |
Collapse
|
11
|
Huang R, Dong R, Wang N, He Y, Zhu P, Wang C, Lan B, Gao Y, Sun L. Adaptive Changes Allow Targeting of Ferroptosis for Glioma Treatment. Cell Mol Neurobiol 2022; 42:2055-2074. [PMID: 33893939 PMCID: PMC11421619 DOI: 10.1007/s10571-021-01092-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a type of regulated cell death that plays an essential role in various brain diseases, including cranial trauma, neuronal diseases, and brain tumors. It has been reported that cancer cells rely on their robust antioxidant capacity to escape ferroptosis. Therefore, ferroptosis exploitation could be an effective strategy to prevent tumor proliferation and invasion. Glioma is a common malignant craniocerebral tumor exhibiting complicated drug resistance and survival mechanisms, resulting in a high mortality rate and short survival time. Recent studies have determined that metabolic alterations in glioma offer exploitable therapeutic targets. These metabolic alterations allow targeted therapy to achieve some initial efficacy but have failed to inhibit glioma growth, invasion, and drug resistance effectively. It has been proposed that the reason for the high malignancy and drug resistance observed with glioma is that these tumors can effectively evade ferroptosis. Ferroptosis-inducing drugs were found to exert a positive effect by targeting this particular characteristic of glioma cells. Moreover, gliomas develop enhanced drug resistance through anti-ferroptosis mechanisms. In this study, we provided an overview of the mechanisms by which glioma aggressiveness and drug resistance are mediated by the evasion of ferroptosis. This information might provide new targets for glioma therapy as well as new insights and ideas for future research.
Collapse
Affiliation(s)
- Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Rui Dong
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Chong Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
14
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sci 2022; 12:brainsci12070927. [PMID: 35884733 PMCID: PMC9313046 DOI: 10.3390/brainsci12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.
Collapse
|
16
|
Le Boiteux E, Guichet PO, Masliantsev K, Montibus B, Vaurs-Barriere C, Gonthier-Gueret C, Chautard E, Verrelle P, Karayan-Tapon L, Fogli A, Court F, Arnaud P. The Long Non-Coding RNA HOXA-AS2 Promotes Proliferation of Glioma Stem Cells and Modulates Their Inflammation Pathway Mainly through Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094743. [PMID: 35563134 PMCID: PMC9102906 DOI: 10.3390/ijms23094743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastomas represent approximatively half of all gliomas and are the most deadly and aggressive form. Their therapeutic resistance and tumor relapse rely on a subpopulation of cells that are called Glioma Stem Cells (GSCs). Here, we investigated the role of the long non-coding RNA HOXA-AS2 in GSC biology using descriptive and functional analyses of glioma samples classified according to their isocitrate dehydrogenase (IDH) gene mutation status, and of GSC lines. We found that HOXA-AS2 is overexpressed only in aggressive (IDHwt) glioma and GSC lines. ShRNA-based depletion of HOXA-AS2 in GSCs decreased cell proliferation and altered the expression of several hundreds of genes. Integrative analysis revealed that these expression changes were not associated with changes in DNA methylation or chromatin signatures at the promoter of the majority of genes deregulated following HOXA-AS2 silencing in GSCs, suggesting a post-transcriptional regulation. In addition, transcription factor binding motif enrichment and correlation analyses indicated that HOXA-AS2 affects, directly or indirectly, the expression of key transcription factors implicated in GCS biology, including E2F8, E2F1, STAT1, and ATF3, thus contributing to GCS aggressiveness by promoting their proliferation and modulating the inflammation pathway.
Collapse
Affiliation(s)
- Elisa Le Boiteux
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
| | - Pierre-Olivier Guichet
- ProDiCeT UR 24144, Université de Poitiers, F-86000 Poitiers, France; (P.-O.G.); (K.M.); (L.K.-T.)
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, F-86000 Poitiers, France
| | - Konstantin Masliantsev
- ProDiCeT UR 24144, Université de Poitiers, F-86000 Poitiers, France; (P.-O.G.); (K.M.); (L.K.-T.)
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, F-86000 Poitiers, France
| | - Bertille Montibus
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
| | - Catherine Vaurs-Barriere
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
| | - Céline Gonthier-Gueret
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
| | - Emmanuel Chautard
- Pathology Department, Jean Perrin Center, F-63000 Clermont-Ferrand, France;
- INSERM, U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Pierre Verrelle
- CIMB, INSERM U1196 CNRS UMR9187, Curie Institute, F-91400 Orsay, France;
- Radiotherapy Department, Curie Institute, F-75248 Paris, France
- CNRS UMR 9187, INSERM U1196, Institut Curie, PSL Research University and Paris-Saclay University, F-91405 Orsay, France
| | - Lucie Karayan-Tapon
- ProDiCeT UR 24144, Université de Poitiers, F-86000 Poitiers, France; (P.-O.G.); (K.M.); (L.K.-T.)
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, F-86000 Poitiers, France
| | - Anne Fogli
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
- Radiation Oncology Department, Institut Curie, F-75005 Paris, France
| | - Franck Court
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
- Correspondence: (F.C.); (P.A.)
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France; (E.L.B.); (B.M.); (C.V.-B.); (C.G.-G.); (A.F.)
- Correspondence: (F.C.); (P.A.)
| |
Collapse
|
17
|
Pinson ME, Court F, Masson A, Renaud Y, Fantini A, Bacoeur-Ouzillou O, Barriere M, Pereira B, Guichet PO, Chautard E, Karayan-Tapon L, Verrelle P, Arnaud P, Vaurs-Barrière C. L1 chimeric transcripts are expressed in healthy brain and their deregulation in glioma follows that of their host locus. Hum Mol Genet 2022; 31:2606-2622. [PMID: 35298627 PMCID: PMC9396940 DOI: 10.1093/hmg/ddac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5′ UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.
Collapse
Affiliation(s)
- Marie-Elisa Pinson
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Franck Court
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Aymeric Masson
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Allison Fantini
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | | | - Marie Barriere
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, Délégation à la Recherche Clinique et à l'Innovation, Clermont-Ferrand Hospital, Clermont-Ferrand 63003, France
| | | | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont-Ferrand 63011, France.,Pathology Department, Centre Jean PERRIN, Clermont-Ferrand 63011, France
| | - Lucie Karayan-Tapon
- Cancer Biology Department, CHU de Poitiers, Poitiers 86021, France.,INSERM, U1084, Poitiers 86021, France.,Université de Poitiers, Poitiers 86000, France
| | - Pierre Verrelle
- INSERM, U1196 CNRS UMR9187, Curie Institute, Orsay 91405, France.,Radiotherapy Department Curie Institute, Paris 75005, France.,Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, iGReD, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
18
|
Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars) 2022; 17:492-507. [PMID: 35350840 PMCID: PMC8919829 DOI: 10.1515/med-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14) is associated with the development of many cancers. MT1-MMP may promote the entry of yes-associated protein1 (YAP1) into the nucleus by regulating the regulation of β1-integrin. The purpose of this study was to investigate the effects of MT1-MMP, β1-integrin and YAP1 on the prognosis of gliomas. The expression of proteins was detected by bioinformatics and immunohistochemistry. The relationship between three proteins and clinicopathological parameters was analyzed by the χ2 test. Survival analysis was used to investigate the effects of three proteins on prognosis. The results showed that high expressions of MT1-MMP, β1-integrin and YAP1 were found in glioblastoma (GBM) compared with lower-grade glioma (LGG). There was a significantly positive correlation between MT1-MMP and β1-integrin (r = 0.387), MT1-MMP and YAP1 (r = 0.443), β1-integrin and YAP1 (r = 0.348). Survival analysis showed that patients with overexpression of MT1-MMP, β1-integrin and YAP1 had a worse prognosis. YAP1 expression was the independent prognostic factor for progression-free survival (PFS). There was a statistical correlation between the expression of MT1-MMP and YAP1 and isocitrate dehydrogenase 1 (IDHl) mutation. Thus, this study suggested that MT1-MMP, β1-integrin and YAP1, as tumor suppressors, are expected to be promising prognostic biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Yangyang Zhai
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
- State Key Laboratory of Etiology and Prevention of High Incidence in Central Asia , Xinjiang Medical University, 830000 , P. R. China
| | - Wei Sang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Yusheng Shen
- Department of Neurosurgery, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang 830054 , P. R. China
| | - Yanran Hu
- Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region of China , 830011 , P. R. China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| |
Collapse
|
19
|
Chang CY, Wu CC, Wang JD, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributed to Dipyridamole-Induced Impaired Autophagic Flux and Glioma Apoptosis. Int J Mol Sci 2022; 23:579. [PMID: 35054765 PMCID: PMC8775759 DOI: 10.3390/ijms23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
20
|
Gong S, Ma H, Zheng F, Huang J, Zhang Y, Yu B, Li F, Kou J. Inhibiting YAP in Endothelial Cells From Entering the Nucleus Attenuates Blood-Brain Barrier Damage During Ischemia-Reperfusion Injury. Front Pharmacol 2021; 12:777680. [PMID: 34899341 PMCID: PMC8662521 DOI: 10.3389/fphar.2021.777680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-brain barrier (BBB) damage is a critical event in ischemic stroke, contributing to aggravated brain damage. Endothelial cell form a major component of the BBB, but its regulation in stroke has yet to be clarified. We investigated the function of Yes-associated protein 1 (YAP) in the endothelium on BBB breakdown during cerebral ischemia/reperfusion (I/R) injury. The effects of YAP on BBB dysfunction were explored in middle cerebral artery occlusion/reperfusion (MCAO/R)-injury model mice and using brain microvascular endothelial cells (BMEC) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury. The degree of brain injury was estimated using staining (2,3,5-Triphenyltetrazolium chloride, hematoxylin and eosin) and the detection of cerebral blood flow. BBB breakdown was investigated by examining the leakage of Evans Blue dye and evaluating the expression of tight junction (TJ)-associated proteins and matrix metallopeptidase (MMP) 2 and 9. YAP expression was up-regulated in the nucleus of BMEC after cerebral I/R injury. Verteporfin (YAP inhibitor) down-regulated YAP expression in the nucleus and improved BBB hyperpermeability and TJ integrity disruption stimulated by cerebral I/R. YAP-targeted small interfering RNA (siRNA) exerted the same effects in BMEC cells exposed to OGD/R injury. Our findings provide new insights into the contributions made by YAP to the maintenance of BBB integrity and highlight the potential for YAP to serve as a therapeutic target to modulate BBB integrity following ischemic stroke and related cerebrovascular diseases.
Collapse
Affiliation(s)
- Shuaishuai Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huifen Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Juan Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medical, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Xu G, Seng Z, Zhang M, Qu J. Angiomotin-like 1 plays a tumor-promoting role in glioma by enhancing the activation of YAP1 signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:2500-2511. [PMID: 34480788 DOI: 10.1002/tox.23363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Angiomotin-like 1 (AMOTL1) is reportedly a pivotal tumor-associated protein that is strongly associated with the tumorigenesis of multiple malignant tumors. However, the issue of whether AMOTL1 plays a role in the tumorigenesis of glioma remains unclear. The aim of this work was to explore the possible relationship between AMOTL1 and glioma progression. Results demonstrated that high levels of AMOTL1 in glioma tissues were associated with a reduced survival rate in patients with glioma. Cellular functional assays revealed that silencing of AMOTL1 in glioma cell lines substantially decreased cell proliferation and invasion and increased cell apoptosis. Further investigation revealed that silencing of AMOTL1 inhibited the activation of yes-associated protein 1 (YAP1) and decreased the expression of YAP1 target genes. Reactivation of YAP1 reversed AMOTL1-silencing-induced antitumor effects, whereas inhibition of YAP1 abolished AMOTL1-overexpression-induced tumor-promoting effects in glioma cells. Silencing of AMOTL1 also retarded the growth of glioma cell-derived xenograft tumors in vivo. In conclusion, these findings suggested that AMOTL1 may exert a tumor-promoting function in glioma by enhancing the activation of YAP1 signaling. This work suggested AMOTL1 as a potential target for the development of antiglioma therapy.
Collapse
Affiliation(s)
- Gang Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyuan Seng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Tachon G, Masliantsev K, Rivet P, Desette A, Milin S, Gueret E, Wager M, Karayan-Tapon L, Guichet PO. MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers (Basel) 2021; 13:cancers13235943. [PMID: 34885053 PMCID: PMC8672280 DOI: 10.3390/cancers13235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and lethal primary brain tumor for which no curative treatment currently exists. In our previous work, we showed that MEOX2 was associated with a poor patient prognosis but its biological involvement in tumor development remains ill defined. To this purpose, the aim of our study was to investigate the role of MEOX2 in patient-derived glioblastoma cell cultures. We unraveled the MEOX2 contribution to cell viability and growth and its potential involvement in phenotype and adhesion properties of glioblastoma cells. This work paves the way toward a better understanding of the role of MEOX2 in the pathophysiology of primary brain tumors. Abstract The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.
Collapse
Affiliation(s)
- Gaëlle Tachon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Pierre Rivet
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Serge Milin
- Service d’Anatomo-Cytopathologie, CHU Poitiers, 86000 Poitiers, France;
| | - Elise Gueret
- Université Montpellier, CNRS, INSERM, 34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Service de Neurochirurgie, CHU Poitiers, 86000 Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| |
Collapse
|
23
|
Patrick S, Gowda P, Lathoria K, Suri V, Sen E. YAP1-mediated regulation of mitochondrial dynamics in IDH1 mutant gliomas. J Cell Sci 2021; 134:273515. [PMID: 34651186 DOI: 10.1242/jcs.259188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
Mutation of the isocitrate dehydrogenase 1 (IDH1) gene leads to the production of oncometabolite D-2-hydroxyglutarate (2-HG) from α-ketoglutarate and is associated with better prognosis in glioma. As Yes-associated protein 1 (YAP1) is an important regulator of tumor progression, its role in glioma expressing IDH1 with an R132H mutation was investigated. Diminished nuclear levels of YAP1 in IDH1 mutant glioma tissues and cell lines were accompanied by decreased levels of mitochondrial transcription factor A (TFAM). Luciferase reporter assays and chromatin immunoprecipitation were used to investigate the functionality of the TEAD2-binding site on the TFAM promoter in mediating its YAP1-dependent expression. YAP1-dependent mitochondrial fragmentation and ROS generation were accompanied by decreased telomerase reverse transcriptase (TERT) levels and increased mitochondrial TERT localization in IDH1 R132H cells. Treatment with the Src kinase inhibitor bosutinib, which prevents extranuclear shuttling of TERT, further elevated ROS in IDH1 R132H cells and triggered apoptosis. Importantly, bosutinib treatment also increased ROS levels and induced apoptosis in IDH1 wild-type cells when YAP1 was concurrently depleted. These findings highlight the involvement of YAP1 in coupling mitochondrial dysfunction with mitochondrial shuttling of TERT to constitute an essential non-canonical function of YAP1 in the regulation of redox homeostasis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shruti Patrick
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| | - Pruthvi Gowda
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| | - Kirti Lathoria
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ellora Sen
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, India
| |
Collapse
|
24
|
The Expression and Prognostic Value of ILK and YAP1 in Glioma. Appl Immunohistochem Mol Morphol 2021; 30:e21-e29. [DOI: 10.1097/pai.0000000000000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
|
25
|
Li N, Shi H, Hou P, Gao L, Shi Y, Mi W, Zhang G, Wang N, Dai W, Wei L, Jin T, Shi Y, Guo S. ARRDC3 polymorphisms may affect the risk of glioma in Chinese Han. Funct Integr Genomics 2021; 22:27-33. [PMID: 34748117 DOI: 10.1007/s10142-021-00807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
This study ascertained to explore the potential contribution of ARRDC3 polymorphisms in the risk and prognosis of glioma. One thousand sixty-one patients and healthy controls were conducted to assess whether ARDC3 polymorphism was associated with glioma risk and prognosis. Four sites in ARRDC3 were selected and genotyped in MassARRAY platform. The calculated odd ratios and 95% confidence intervals from logistic regression were applied for risk assessment. The relationship between ARRDC3 variants and glioma prognosis was evaluated using log-rank test, Kaplan-Meier analysis, and so on. Also, false-positive report probability (FPRP) and statistical power were also assessed. Our findings suggested the negative role of ARRDC3 polymorphisms in the glioma risk. We also found the effect of candidate SNPs in ARRDC3 on the susceptibility to glioma was dependent on the age, gender, and histology of glioma patients. The results suggested that the genetic polymorphisms of ARRDC3 were related to an increased risk of glioma.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.,The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Hangyu Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Pengfei Hou
- Ninth Hospital of Xi'an, Xi'an, 710054, Shaanxi, China
| | - Lu Gao
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Yongqiang Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Weiyang Mi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Gang Zhang
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China
| | - Wei Dai
- Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Lin Wei
- Xi'an Chest Hospital, Xi'an, 710100, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, Shaanxi, China
| | - Yongzhi Shi
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710043, Shaanxi, China
| | - Shiwen Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, # 277 YanTa West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
26
|
Noor H, Briggs NE, McDonald KL, Holst J, Vittorio O. TP53 Mutation Is a Prognostic Factor in Lower Grade Glioma and May Influence Chemotherapy Efficacy. Cancers (Basel) 2021; 13:5362. [PMID: 34771529 PMCID: PMC8582451 DOI: 10.3390/cancers13215362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of prognostic biomarkers in cancers is a crucial step to improve overall survival (OS). Although mutations in tumour protein 53 (TP53) is prevalent in astrocytoma, the prognostic effects of TP53 mutation are unclear. METHODS In this retrospective study, we sequenced TP53 exons 1 to 10 in a cohort of 102 lower-grade glioma (LGG) subtypes and determined the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. Publicly available datasets were analysed to confirm the findings. RESULTS In astrocytoma, mutations in TP53 codon 273 were associated with a significantly increased OS compared to the TP53 wild-type (HR (95% CI): 0.169 (0.036-0.766), p = 0.021). Public datasets confirmed these findings. TP53 codon 273 mutant astrocytomas were significantly more chemosensitive than TP53 wild-type astrocytomas (HR (95% CI): 0.344 (0.13-0.88), p = 0.0148). Post-chemotherapy, a significant correlation between TP53 and YAP1 mRNA was found (p = 0.01). In O (6)-methylguanine methyltransferase (MGMT) unmethylated chemotherapy-treated astrocytoma, both TP53 codon 273 and YAP1 mRNA were significant prognostic markers. In oligodendroglioma, TP53 mutations were associated with significantly decreased OS. CONCLUSIONS Based on these findings, we propose that certain TP53 mutant astrocytomas are chemosensitive through the involvement of YAP1, and we outline a potential mechanism. Thus, TP53 mutations may be key drivers of astrocytoma therapeutic efficacy and influence survival outcomes.
Collapse
Affiliation(s)
- Humaira Noor
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia;
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
| | - Nancy E. Briggs
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2031, Australia;
| | - Kerrie L. McDonald
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia;
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
| | - Jeff Holst
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
- Translational Cancer Metabolism Laboratory, School of Medical Sciences, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2031, Australia
| | - Orazio Vittorio
- School of Women’s & Children’s Health, UNSW Medicine, University of NSW, Randwick, NSW 2031, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia
| |
Collapse
|
27
|
Strepkos D, Markouli M, Papavassiliou KA, Papavassiliou AG, Piperi C. Emerging roles for the YAP/TAZ transcriptional regulators in brain tumour pathology and targeting options. Neuropathol Appl Neurobiol 2021; 48:e12762. [PMID: 34409639 DOI: 10.1111/nan.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
The transcriptional co-activators Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have emerged as significant regulators of a wide variety of cellular and organ functions with impact in early embryonic development, especially during the expansion of the neural progenitor cell pool. YAP/TAZ signalling regulates organ size development, tissue homeostasis, wound healing and angiogenesis by participating in a complex network of various pathways. However, recent evidence suggests an association of these physiologic regulatory effects of YAP/TAZ with pro-oncogenic activities. Herein, we discuss the physiological functions of YAP/TAZ as well as the extensive network of signalling pathways that control their expression and activity, leading to brain tumour development and progression. Furthermore, we describe current targeting approaches and drug options including direct YAP/TAZ and YAP-TEA domain transcription factor (TEAD) interaction inhibitors, G-protein coupled receptors (GPCR) signalling modulators and kinase inhibitors, which may be used to successfully attack YAP/TAZ-dependent tumours.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Wu B, Tang X, Ke H, Zhou Q, Zhou Z, Tang S, Ke R. Gene Regulation Network of Prognostic Biomarker YAP1 in Human Cancers: An Integrated Bioinformatics Study. Pathol Oncol Res 2021; 27:1609768. [PMID: 34257617 PMCID: PMC8262238 DOI: 10.3389/pore.2021.1609768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Background: Yes-associated protein 1 (YAP1) is the main downstream effector of the Hippo signaling pathway, which is involved in tumorigenesis. This study aimed to comprehensively understand the prognostic performances of YAP1 expression and its potential mechanism in pan-cancers by mining databases. Methods: The YAP1 expression was evaluated by the Oncomine database and GEPIA tool. The clinical significance of YAP1 expression was analyzed by the UALCAN, GEPIA, and DriverDBv3 database. Then, the co-expressed genes with YAP1 were screened by the LinkedOmics, and annotated by the Metascape and DAVID database. Additionally, by the MitoMiner 4.0 v tool, the YAP1 co-expressed genes were screened to obtain the YAP1-associated mitochondrial genes that were further enriched by DAVID and analyzed by MCODE for the hub genes. Results: YAP1 was differentially expressed in human cancers. Higher YAP1 expression was significantly associated with poorer overall survival and disease-free survival in adrenocortical carcinoma (ACC), brain Lower Grade Glioma (LGG), and pancreatic adenocarcinoma (PAAD). The LinkedOmics analysis revealed 923 co-expressed genes with YAP1 in adrenocortical carcinoma, LGG and PAAD. The 923 genes mainly participated in mitochondrial functions including mitochondrial gene expression and mitochondrial respiratory chain complex I assembly. Of the 923 genes, 112 mitochondrial genes were identified by MitoMiner 4.0 v and significantly enriched in oxidative phosphorylation. The MCODE analysis identified three hub genes including CHCHD1, IDH3G and NDUFAF5. Conclusion: Our findings showed that the YAP1 overexpression could be a biomarker for poor prognosis in ACC, LGG and PAAD. Specifically, the YAP1 co-expression genes were mainly involved in the regulation of mitochondrial function especially in oxidative phosphorylation. Thus, our findings provided evidence of the carcinogenesis of YAP1 in human cancers and new insights into the mechanisms underlying the role of YAP1 in mitochondrial dysregulation.
Collapse
Affiliation(s)
- Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinjie Tang
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Honglin Ke
- Department of Emergency, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiong Zhou
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Zhaoping Zhou
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shao Tang
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Ronghu Ke
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
O’Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline‐Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021; 17:e9522. [PMID: 34101353 PMCID: PMC8186478 DOI: 10.15252/msb.20209522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.
Collapse
Affiliation(s)
- Samantha A O’Connor
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZUSA
| | - Heather M Feldman
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Sonali Arora
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Pia Hoellerbauer
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Chad M Toledo
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | - Philip Corrin
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Lucas Carter
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Megan Kufeld
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Hamid Bolouri
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Ryan Basom
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Jeffrey Delrow
- Genomics and Bioinformatics Shared ResourcesFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research CentreMRC Centre for Regenerative MedicineThe University of EdinburghEdinburghUK
| | - Anoop Patel
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of NeurosurgeryUniversity of WashingtonSeattleWAUSA
| | - Patrick J Paddison
- Human Biology DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
- Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|
30
|
Yin W, Zhu H, Tan J, Xin Z, Zhou Q, Cao Y, Wu Z, Wang L, Zhao M, Jiang X, Ren C, Tang G. Identification of collagen genes related to immune infiltration and epithelial-mesenchymal transition in glioma. Cancer Cell Int 2021; 21:276. [PMID: 34034744 PMCID: PMC8147444 DOI: 10.1186/s12935-021-01982-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background Gliomas account for the majority of fatal primary brain tumors, and there is much room for research in the underlying pathogenesis, the multistep progression of glioma, and how to improve survival. In our study, we aimed to identify potential biomarkers or therapeutic targets of glioma and study the mechanism underlying the tumor progression. Methods We downloaded the microarray datasets (GSE43378 and GSE7696) from the Gene Expression Omnibus (GEO) database. Then, we used weighted gene co-expression network analysis (WGCNA) to screen potential biomarkers or therapeutic targets related to the tumor progression. ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm and TIMER (Tumor Immune Estimation Resource) database were used to analyze the correlation between the selected genes and the tumor microenvironment. Real-time reverse transcription polymerase chain reaction was used to measure the selected gene. Transwell and wound healing assays were used to measure the cell migration and invasion capacity. Western blotting was used to test the expression of epithelial-mesenchymal transition (EMT) related markers. Results We identified specific module genes that were positively correlated with the WHO grade but negatively correlated with OS of glioma. Importantly, we identified that 6 collagen genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2) could regulate the immunosuppressive microenvironment of glioma. Moreover, we found that these collagen genes were significantly involved in the EMT process of glioma. Finally, taking COL3A1 as a further research object, the results showed that knockdown of COL3A1 significantly inhibited the migration, invasion, and EMT process of SHG44 and A172 cells. Conclusions In summary, our study demonstrated that collagen genes play an important role in regulating the immunosuppressive microenvironment and EMT process of glioma and could serve as potential therapeutic targets for glioma management. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01982-0.
Collapse
Affiliation(s)
- Wen Yin
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan, 410205, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China
| | - Zhaoqi Xin
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China
| | - Yudong Cao
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China
| | - Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, The Key Laboratory for Carcinogenesis of Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan, 410205, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Province, 410008, China.
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, The Key Laboratory for Carcinogenesis of Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China.
| | - Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The first affiliated hospital of Hunan Normal University, The college of clinical medicine of Human Normal University), Changsha, Hunan Province, 410005, China.
| |
Collapse
|
31
|
Le Boiteux E, Court F, Guichet PO, Vaurs-Barrière C, Vaillant I, Chautard E, Verrelle P, Costa BM, Karayan-Tapon L, Fogli A, Arnaud P. Widespread overexpression from the four DNA hypermethylated HOX clusters in aggressive (IDHwt) glioma is associated with H3K27me3 depletion and alternative promoter usage. Mol Oncol 2021; 15:1995-2010. [PMID: 33720519 PMCID: PMC8334257 DOI: 10.1002/1878-0261.12944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
In human, the 39 coding HOX genes and 18 referenced noncoding antisense transcripts are arranged in four genomic clusters named HOXA, B, C, and D. This highly conserved family belongs to the homeobox class of genes that encode transcription factors required for normal development. Therefore, HOX gene deregulation might contribute to the development of many cancer types. Here, we study HOX gene deregulation in adult glioma, a common type of primary brain tumor. We performed extensive molecular analysis of tumor samples, classified according to their isocitrate dehydrogenase (IDH1) gene mutation status, and of glioma stem cells. We found widespread expression of sense and antisense HOX transcripts only in aggressive (IDHwt) glioma samples, although the four HOX clusters displayed DNA hypermethylation. Integrative analysis of expression, DNA methylation, and histone modification signatures along the clusters revealed that HOX gene upregulation relies on canonical and alternative bivalent CpG island promoters that escape hypermethylation. H3K27me3 loss at these promoters emerges as the main cause of widespread HOX gene upregulation in IDHwt glioma cell lines and tumors. Our study provides the first comprehensive description of the epigenetic changes at HOX clusters and their contribution to the transcriptional changes observed in adult glioma. It also identified putative 'master' HOX proteins that might contribute to the tumorigenic potential of glioma stem cells.
Collapse
Affiliation(s)
- Elisa Le Boiteux
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Franck Court
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre-Olivier Guichet
- INSERM-U1084, Poitiers, France.,Poitiers University, France.,Department of Cancer Biology, Poitiers Hospital, France
| | | | - Isabelle Vaillant
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Pathology Department, Jean Perrin Center, Clermont-Ferrand, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Verrelle
- CIMB, INSERM U1196 CNRS UMR9187, Curie Institute, Orsay, France.,Radiotherapy Department, Curie Institute, Paris, France.,Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucie Karayan-Tapon
- INSERM-U1084, Poitiers, France.,Poitiers University, France.,Department of Cancer Biology, Poitiers Hospital, France
| | - Anne Fogli
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France.,Biochemistry and Molecular Biology Department, Clermont-Ferrand Hospital, France
| | - Philippe Arnaud
- CNRS, Inserm, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
32
|
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo Signaling Pathway in Gliomas. Cells 2021; 10:184. [PMID: 33477668 PMCID: PMC7831924 DOI: 10.3390/cells10010184] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, F-86073 Poitiers, France; (K.M.); (L.K.-T.)
- Université de Poitiers, F-86073 Poitiers, France
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, F-86022 Poitiers, France
| |
Collapse
|
33
|
Yu M, Yi B, Zhou W, Gong W, Li G, Yu S. Linc00475 promotes the progression of glioma by regulating the miR-141-3p/YAP1 axis. J Cell Mol Med 2020; 25:463-472. [PMID: 33336871 PMCID: PMC7810941 DOI: 10.1111/jcmm.16100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/26/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma is the most prevalent and lethal primary brain tumour. Abundant long non‐coding RNAs ( lncRNAs) are aberrant and play crucial roles in the oncogenesis of glioma. The exact functions of linc00475 in glioma remain blurred. Here, we analysed the expression levels of linc00475 by qRT‐PCR and discovered that linc00475 was up‐regulated in glioma and predicted a poor prognosis in patients with glioma. Besides, inhibiting linc00475 restrained the progression of glioma in vitro and in vivo. Further experiments confirmed that linc00475 regulated the progression of glioma by acting as a sponge for miR‐141‐3p. Moreover, we detected the binding sites of linc00475 and miR‐141‐3p, the YAP1‐ 3′UTR and miR‐141‐3p by luciferase reporters. The rescue assays confirmed that inhibiting linc00475 restrained the progression of glioma through the miR‐141‐3p/YAP1 pathway. Collectively, our research demonstrates the key roles of linc00475 in glioma, which could be a promising therapeutic target.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Gamma Knife Center, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian, China
| | - Wei Gong
- Exprimental Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Sang W, Xue J, Su LP, Gulinar A, Wang Q, Zhai YY, Hu YR, Gao HX, Li X, Li QX, Zhang W. Expression of YAP1 and pSTAT3-S727 and their prognostic value in glioma. J Clin Pathol 2020; 74:513-521. [PMID: 33020176 DOI: 10.1136/jclinpath-2020-206868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 11/04/2022]
Abstract
AIMS A growing research demonstrated that YAP1 played important roles in gliomagenesis. We explored the expression of YAP1 and STAT3, the relationship between them and the effect of YAP1, STAT3 on prognosis in glioma. METHODS Expression of YAP1, p-YAP1, STAT3, pSTAT3-S727 and pSTAT3-Y705 in 141 cases of low-grade gliomas (LGG) and 74 cases of high-grade gliomas (HGG) of surgical specimens were measured by immunohistochemistry. Pearson's X2 test was used to determine the correlation between immunohistochemical expressions and clinicopathological parameters. Pearson's or Spearman correlation test was used to determine the association between these proteins expression. Survival analysis was used to investigate the effect of these proteins on prognosis. RESULTS High expressions of YAP1, STAT3, pSTAT3-S727 and pSTAT3-Y705 were found in HGG compared with LGG (p=0.000). High expressions of YAP1, STAT3, pSTAT3-S727 and pSTAT3-Y705 were found in 63.5%, 59.5%, 66.2% and 31.1% cases of HGG, respectively. YAP1 expression was associated to tumour location, Ki-67 and P53, STAT3 expression was related with Ki-67 and P53, and the expression of pSTAT3-S727 was associated with Ki-67. There was a significantly positive correlation between YAP1 and pSTAT3-S727 (p<0.0001; r=0.5663). Survival analysis revealed that patients with YAP1 and pSTAT3-S727 coexpression had worse overall survival (OS) and progression-free survival (PFS) (p<0.0001). Tumour grade, age, Ki-67 and YAP1 expression were independent prognostic factors for OS. In LGG group, both YAP1 and pSTAT3-S727 expressions were negative correlation with IDH1 mutation, YAP1 and pSTAT3-S727 coexpression showed worse OS and PFS of glioma patients. CONCLUSION Our research showed that YAP1 and STAT3 were significantly activated in HGG compared with LGG. YAP1 significantly correlated with pSTAT3-S727 in glioma, YAP1 and pSTAT3-S727 coexpression may serve as a reliable prognostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li-Ping Su
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abulajiang Gulinar
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang-Yang Zhai
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yan-Ran Hu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinxia Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiao-Xing Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
35
|
An Y, Wang Q, Zhang L, Sun F, Zhang G, Dong H, Li Y, Peng Y, Li H, Zhu W, Ji S, Wang Y, Guo X. OSlgg: An Online Prognostic Biomarker Analysis Tool for Low-Grade Glioma. Front Oncol 2020; 10:1097. [PMID: 32775301 PMCID: PMC7381343 DOI: 10.3389/fonc.2020.01097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Glioma is the most frequent primary brain tumor that causes high mortality and morbidity with poor prognosis. There are four grades of gliomas, I to IV, among which grade II and III are low-grade glioma (LGG). Although less aggressive, LGG almost universally progresses to high-grade glioma and eventual causes death if lacking of intervention. Current LGG treatment mainly depends on surgical resection followed by radiotherapy and chemotherapy, but the survival rates of LGG patients are low. Therefore, it is necessary to use prognostic biomarkers to classify patients into subgroups with different risks and guide clinical managements. Using gene expression profiling and long-term follow-up data, we established an Online consensus Survival analysis tool for LGG named OSlgg. OSlgg is comprised of 720 LGG cases from two independent cohorts. To evaluate the prognostic potency of genes, OSlgg employs the Kaplan-Meier plot with hazard ratio and p value to assess the prognostic significance of genes of interest. The reliability of OSlgg was verified by analyzing 86 previously published prognostic biomarkers of LGG. Using OSlgg, we discovered two novel potential prognostic biomarkers (CD302 and FABP5) of LGG, and patients with the elevated expression of either CD302 or FABP5 present the unfavorable survival outcome. These two genes may be novel risk predictors for LGG patients after further validation. OSlgg is public and free to the users at http://bioinfo.henu.edu.cn/LGG/LGGList.jsp.
Collapse
Affiliation(s)
- Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Fengjie Sun
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yingkun Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yanyu Peng
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Haojie Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Shaoping Ji
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| |
Collapse
|
36
|
Miao W, Li N, Gu B, Yi G, Su Z, Cheng H. MiR-27b-3p suppresses glioma development via targeting YAP1. Biochem Cell Biol 2020; 98:466-473. [PMID: 32567955 DOI: 10.1139/bcb-2019-0300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous studies have reported that miRNAs are involved in the progression of glioma, and that miR-27b-3p is involved in a variety of cancers. However, whether miR-27b-3p has a role in glioma is still unknown. Here, we demonstrated that miR-27b-3p is downregulated in glioma, and this is associated with the development of glioma. Overexpression of miR-27b-3p in glioma cells inhibits cell proliferation and migration, and induces cell apoptosis, which suppresses the progression of glioma. Furthermore, in our study, overexpression of miR-27b-3p also inhibited the growth of xenografted glioma tumors in-vivo. Finally, we verified that Yes Associated Protein 1 (YAP1) is the downstream target of miR-27b-3p, and that miR-27b-3p controls the proliferation, migration, and apoptosis of glioma cells via regulating YAP1. Our study reveals a novel mechanism through which miR-27b-3p functions in the development of glioma, and thus provides a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Miao
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ning Li
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Gu
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guoqing Yi
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zheng Su
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
37
|
Ouyang T, Meng W, Li M, Hong T, Zhang N. Recent Advances of the Hippo/YAP Signaling Pathway in Brain Development and Glioma. Cell Mol Neurobiol 2020; 40:495-510. [PMID: 31768921 PMCID: PMC11448948 DOI: 10.1007/s10571-019-00762-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is highly conserved from Drosophila melanogaster to mammals and plays a crucial role in organ size control, tissue regeneration, and tumor suppression. The Yes-associated protein (YAP) is an important transcriptional co-activator that is negatively regulated by the Hippo signaling pathway. The Hippo signaling pathway is also regulated by various upstream regulators, such as cell polarity, adhesion proteins, and other signaling pathways (the Wnt/β-catenin, Notch, and MAPK pathways). Recently, accumulated evidence suggests that the Hippo/YAP signaling pathway plays important roles in central nervous system development and brain tumor, including glioma. In this review, we summarize the results of recent studies on the physiological effect of the Hippo/YAP signaling pathway in neural stem cells, neural progenitor cells, and glial cells. In particular, we also focus on the expression of MST1/2, LATS1/2, and the downstream effector YAP, in glioma, and offer a review of the latest research of the Hippo/YAP signaling pathway in glioma pathogenesis. Finally, we also present future research directions and potential therapeutic strategies for targeting the Hippo/YAP signaling in glioma.
Collapse
Affiliation(s)
- Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, No.17, Yongwai Street, Nanchang, 336000, China.
| |
Collapse
|
38
|
PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis 2020; 11:81. [PMID: 32015336 PMCID: PMC6997171 DOI: 10.1038/s41419-020-2267-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma is the most common and malignant form of primary central nervous tumor in adults. Long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in modulating gene expression and regulating human tumor’s malignant behaviors. In this study, we confirmed that lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) was downregulated in glioblastoma tissues and cells, interacted and stabilized by polyadenylate-binding protein cytoplasmic 1 (PABPC1). Overexpression of BDNF-AS inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of glioblastoma cells. In the in vivo study, PABPC1 overexpression combined with BDNF-AS overexpression produced the smallest tumor and the longest survival. Moreover, BDNF-AS could elicit retina and anterior neural fold homeobox 2 (RAX2) mRNA decay through STAU1-mediated decay (SMD), and thereby regulated the malignant behaviors glioblastoma cells. Knockdown of RAX2 produced tumor-suppressive function in glioblastoma cells and increased the expression of discs large homolog 5 (DLG5), leading to the activation of the Hippo pathway. In general, this study elucidated that the PABPC1-BDNF-AS-RAX2-DLG5 mechanism may contribute to the anticancer potential of glioma cells and may provide potential therapeutic targets for human glioma.
Collapse
|
39
|
Dent P, Booth L, Roberts JL, Poklepovic A, Hancock JF. Fingolimod Augments Monomethylfumarate Killing of GBM Cells. Front Oncol 2020; 10:22. [PMID: 32047722 PMCID: PMC6997152 DOI: 10.3389/fonc.2020.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Previously we demonstrated that the multiple sclerosis drug dimethyl fumarate (DMF) and its plasma breakdown product MMF could interact with chemotherapeutic agents to kill both GBM cells and activated microglia. The trial NCT02337426 demonstrated the safety of DMF in newly diagnosed GBM patients when combined with the standard of care Stupp protocol. We hypothesized that another multiple sclerosis drug, fingolimod (FTY720) would synergize with MMF to kill GBM cells. MMF and fingolimod interacted in a greater than additive fashion to kill PDX GBM isolates. MMF and fingolimod radiosensitized glioma cells and enhanced the lethality of temozolomide. Exposure to [MMF + fingolimod] activated an ATM-dependent toxic autophagy pathway, enhanced protective endoplasmic reticulum stress signaling, and inactivated protective PI3K, STAT, and YAP function. The drug combination reduced the expression of protective c-FLIP-s, MCL-1, BCL-XL, and in parallel caused cell-surface clustering of the death receptor CD95. Knock down of CD95 or over-expression of c-FLIP-s or BCL-XL suppressed killing. Fingolimod and MMF interacted in a greater than additive fashion to rapidly enhance reactive oxygen species production and over-expression of either thioredoxin or super-oxide dismutase two significantly reduced the drug-induced phosphorylation of ATM, autophagosome formation and [MMF + fingolimod] lethality. In contrast, the production of ROS was only marginally reduced in cells lacking ATM, CD95, or Beclin1. Collectively, our data demonstrate that the primary generation of ROS by [MMF + fingolimod] plays a key role, via the induction of toxic autophagy and death receptor signaling, in the killing of GBM cells.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L Roberts
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Andrew Poklepovic
- Departments of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
40
|
Tang W, Wang D, Shao L, Liu X, Zheng J, Xue Y, Ruan X, Yang C, Liu L, Ma J, Li Z, Liu Y. LINC00680 and TTN-AS1 Stabilized by EIF4A3 Promoted Malignant Biological Behaviors of Glioblastoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:905-921. [PMID: 32000032 PMCID: PMC7063483 DOI: 10.1016/j.omtn.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Glioblastomas are the most common and malignant intracranial tumors with a low survival rate. Dysregulation of long non-coding RNAs and RNA-binding protein causes various diseases, including cancers. However, the function of LINC00680 and TTN-AS1 in the progression of glioblastomas is still elusive. In this study, we detected that LINC00680 and TTN-AS1 were upregulated in glioblastoma cells. RNA-binding protein EIF4A3 could prolong the half-life of LINC00680 and TTN-AS1. Knockdown of EIF4A3, LINC00680, and TTN-AS1 impaired proliferation, migration, and invasion and inhibited the growth of tumor in vivo and promoted apoptosis of glioblastoma cells. miR-320b was proven to be a target of LINC00680 and TTN-AS1. They interacted with miR-320b as competing endogenous RNAs, which resulted in the reduction of binding between transcriptional factor EGR3 (early growth response 3) mRNA and miR-320b. The accumulation of EGR3 promoted expression of plakophilin (PKP)2, which could activate the epidermal growth factor receptor (EFGR) pathway, leading to the malignant biological behaviors of glioblastoma cells. In summary, LINC00680 and TTN-AS1 promoted glioblastoma cell malignant biological behaviors via the miR-320b/EGR3/PKP2 axis by being stabilized by EIF4A3, which may provide a novel strategy for glioblastoma therapy.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
41
|
Wu Y, Hou Y, Xu P, Deng Y, Liu K, Wang M, Tian T, Dai C, Li N, Hao Q, Song D, Zhou LH, Dai Z. The prognostic value of YAP1 on clinical outcomes in human cancers. Aging (Albany NY) 2019; 11:8681-8700. [PMID: 31613226 PMCID: PMC6814621 DOI: 10.18632/aging.102358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND As an important downstream factor in the Hippo pathway, yes-associated protein 1(YAP1) has been detected to be elevated in various cancers and demonstrated to play a role in tumor development. Therefore, we evaluated by a meta-analysis the prognostic value of YAP1 in cancer patients. RESULTS Sixty-eight studies with 8631 patients were identified. The results indicated that YAP1 overexpression predicted unfavorable patient prognosis in studies with overall survival (OS) (HR=1.76, 95%CI: 1.50-2.06, p<0.001) and disease-free survival (DFS) (HR=1.39, 95%CI: 1.22-1.59, p<0.001), as well as in studies with recurrence-free survival (RFS) (HR=2.38, 95%CI: 1.73-3.27, p<0.001), and disease-specific survival (DSS) (HR=2.04, 95%CI: 1.55-2.70, p<0.001). Meanwhile, YAP1 overexpression was also observed to be significantly associated with worse OS in GEPIA (HR=1.2, p<0.001). CONCLUSIONS Overexpression of YAP1 showed great association with poorer prognosis in patients with various cancers, particularly liver cancer. Therefore, YAP1 might be an important prognostic marker and a novel target of cancer therapy. METHODS We searched for potential publications in several online databases and retrieved relevant data. Overall and subgroup analyses were performed. Begg's and Egger's tests were used to assess publication bias. Online dataset GEPIA was used to generate the survival curves and verify the prognostic role of YAP1 in patients with tumors.
Collapse
Affiliation(s)
- Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanshen Hou
- Department of Anesthesiology, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, Xinjiang, China
| | - Peng Xu
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tian Tian
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cong Dai
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qian Hao
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dingli Song
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ling hui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
42
|
Liu K, Du S, Gao P, Zheng J. Verteporfin suppresses the proliferation, epithelial-mesenchymal transition and stemness of head and neck squamous carcinoma cells via inhibiting YAP1. J Cancer 2019; 10:4196-4207. [PMID: 31413738 PMCID: PMC6691709 DOI: 10.7150/jca.34145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: Yes-associated protein 1 (YAP1) is overexpressed in head and neck squamous cell carcinoma (HNSCC). However, it is unknown whether verteporfin, a YAP1 inhibitor, can inhibit HNSCC cells as well as the molecular mechanisms involved. Methods: YAP1 expression was investigated by immunohistochemistry in human head and neck carcinoma tissues (n=70). CCK-8 assay, colony formation assay, flow cytometric analysis, wound-healing assay and Transwell migration and invasion assays were used to evaluated the effects of verteporfin on the six HNSCC cell lines (three HPV-positive and three HPV-negative). The transcription and protein expression levels of YAP1 and its associated genes were investigated by real-time PCR and Western blotting, respectively. The effects of verteporfin on HNSCC cells in vivo were assessed by a xenograft model. Results: YAP1 expression was significantly higher in carcinoma tissues than in tumor-adjacent normal tissues (n=10). A CCK-8 assay showed that the inhibitory effects of verteporfin on HNSCC cells were markedly enhanced by light activation. Verteporfin significantly inhibited HNSCC cell proliferation, migration and invasion, induced apoptosis, and arrested the cell cycle at the S/G2 phase. Verteporfin significantly attenuated the expression of genes related to epithelial-mesenchymal transition (YAP1, Snail, CTNNB1 and EGFR) and stemness (Oct4 and YAP1) and increased E-cadherin expression in HNSCC cells. Furthermore, verteporfin significantly inhibited PD-L1 expression in HNSCC cells. However, the expression levels of HPV-16 E6 and E7 did not change with VP treatment. The anticancer effect of verteporfin on HNSCC was confirmed by the inhibition of xenograft growth in vivo. Conclusions: Our results indicate that YAP1 overexpression is involved in HNSCC tumorigenesis and verteporfin is a potential therapeutic drug for HNSCC.
Collapse
Affiliation(s)
- Kui Liu
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China
| | - Shanmei Du
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China.,Zibo Vocational Institute, Zibo 255314, China
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA19104, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jie Zheng
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|