1
|
Li X, Yang M, Yang L, Dang X, Li X, Li G. Sequencing of high-frequency mutated genes in breast cancer (BRCA) and associated-functions analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2025; 18:46-62. [PMID: 40083350 PMCID: PMC11897711 DOI: 10.62347/yode5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/29/2024] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Mutations or aberrant expression of genes in an organism tend not to be completely random and this cumulative effect predisposes to the development of malignant tumours. This study aims to reveal the possible aberrant expression of high frequency mutated genes, and then to investigate their role in development, prognosis, signalling pathway function and drug resistance in breast cancer. METHODS The mutated genes in breast cancer (BRCA) clinical samples were identified and detected by high-throughput sequencing. High-frequency mutant genes were counted. Gene expression profiles and the relationship with prognosis were analysed throughout TCGA database. qRT-PCR was used to analyse the mRNA levels of the six high-frequency mutant genes in BRCA tissues and cell lines. IHC was used to analyse the protein levels of the six high-frequency mutant genes in BRCA tissues. The linear interaction, single-cell layer clustering status and the influence in immune cell infiltration degree among these six high-frequency mutant genes were analysed by bioinformatics analysis. The STITCH and cMAP datasets were used for high-frequency mutant gene interaction networks, association signalling pathway enrichment and drug-transcriptome analyses. The effects of trastuzumab on the proliferative capacity of breast cancer cells, as well as on the expression of six high-frequency mutated genes were determined by CCK8 assay. RESULTS The genes that were statistically found to have high-frequency mutations in the samples recruited in the present study by high-throughput sequencing analysis included TP53, PIK3CA, NF1, TBX3, BRCA1 and BRCA2. The expression profiles of these genes and the correlation with prognosis were further demonstrated using the TCGA database: the trend in this study was similar to that of BRCA in TCGA. The mRNA and protein expression of these genes showed that the expression of TP53, NF1, TBX3, BRCA1 and BRCA2 was higher in tumor samples than that in normal samples, with an opposite trend for PIK3CA, a similar trend was observed in BRCA cell lines. The protein expressions of TP53, NF1, TBX3, BRCA1 and BRCA2 displayed the same trend by IHC. Other correlation results include 1) the single cell layer clustering of these six genes resulted in significant clustering with few overlapping regions; 2) these six genes showed different degrees of influence on BRCA immune cell infiltration; 3) these six genes showed a significant correlation between each other; 4) the network of each gene had partially overlapping molecules; and 5) the PI3K pathway was a key association pathway in BRCA. Finally, the cell proliferation ability results confirmed the optimal concentration of trastuzumab and its effect on mRNA expression of these six genes.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Medical Oncology, Brunch of Minhang, Fudan University Shanghai Cancer HospitalShanghai, The People’s Republic of China
| | - Mei Yang
- Department of Medical Oncology, Brunch of Minhang, Fudan University Shanghai Cancer HospitalShanghai, The People’s Republic of China
| | - Liyuan Yang
- Department of Medical Oncology, Brunch of Minhang, Fudan University Shanghai Cancer HospitalShanghai, The People’s Republic of China
| | - Xuefei Dang
- Department of Medical Oncology, Brunch of Minhang, Fudan University Shanghai Cancer HospitalShanghai, The People’s Republic of China
| | - Xueqing Li
- Department of Surgery, Fifth People’s Hospital Affiliated to Fudan UniversityShanghai, The People’s Republic of China
| | - Gang Li
- Department of Medical Oncology, Brunch of Minhang, Fudan University Shanghai Cancer HospitalShanghai, The People’s Republic of China
| |
Collapse
|
2
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Yi C, Song H, Liang H, Ran Y, Tang J, Chen E, Li F, Fu L, Wang Y, Chen F, Wang Y, Ding Y, Xie Y. TBX3 reciprocally controls key trophoblast lineage decisions in villi during human placenta development in the first trimester. Int J Biol Macromol 2024; 263:130220. [PMID: 38368983 DOI: 10.1016/j.ijbiomac.2024.130220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.
Collapse
Affiliation(s)
- Cen Yi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Honglan Song
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Hongxiu Liang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yujie Ran
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jing Tang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Enxiang Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Fu
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China 400021; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Basic Medical Sciences, Changsha Medical University, Hunan 410219, China
| | - Yaqi Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, 410129, China
| | - Yingxiong Wang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Youlong Xie
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Li M, Li T, Jin T, Chen Y, Cheng L, Liang Q, Yan S, Li T, Ran Q, Chen W. Abnormal activation of the Wnt3a/β-catenin signaling pathway promotes the expression of T-box transcription factor 3(TBX3) and the epithelial-mesenchymal transition pathway to mediate the occurrence of adenomyosis. Mol Biol Rep 2023; 50:9935-9950. [PMID: 37878207 DOI: 10.1007/s11033-023-08870-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND T-box transcription factor 3(TBX3) is a transcription factor that can regulate cell proliferation, apoptosis, invasion, and migration in different tumor cells; however, its role in adenomyosis (ADM) has not been previously studied. Some of ADM's pathophysiological characteristics are similar to those of malignant tumors (e.g., abnormal proliferation, migration, and invasion). METHODS AND RESULTS We hypothesized that TBX3 might have a role in ADM. We used tamoxifen-induced Institute of Cancer research (ICR) mice to establish ADM disease model. The study procedure included western blotting and immunohistochemistry to analyze protein levels; additionally, we used intraperitoneal injection of Wnt/β-catenin pathway inhibitor XAV-939 to study the relationship between TBX3 and Wnt/β-catenin pathway as well as Anti-proliferation cell nuclear antigen( PCNA) and TUNEL to detect cell proliferation and apoptosis, respectively. TBX3 overexpression and epithelial-to-mesenchymal transition (EMT) in ADM mice was found to be associated with activation of the Wnt3a/β-catenin pathway. Treatment with XAV-939 in ADM mice led to the inhibition of both TBX3 and EMT; moreover, abnormal cell proliferation was suppressed, the depth of invasion of endometrium cells was limited. Thus, the use of XAV-939 effectively inhibited further invasion of endometrial cells. CONCLUSION These findings suggest that TBX3 may play an important role in the development of ADM. The expression of TBX3 in ADM was regulated by the Wnt3a/β-catenin pathway. The activation of the Wnt3a/β-catenin pathway in ADM promoted TBX3 expression and induced the occurrence of EMT, thus promoting cell proliferation and inhibiting apoptosis, ultimately accelerating the development of ADM. The study provides a reference for the diagnosis of ADM.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, People's Republic of China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, People's Republic of China
| | - Tingting Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, People's Republic of China
| | - Yi Chen
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, 510120, People's Republic of China
| | - Lan Cheng
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, 510120, People's Republic of China
| | - Qiheng Liang
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, 510120, People's Republic of China
| | - Simiao Yan
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, People's Republic of China
| | - Tingting Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qingzhen Ran
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, 510120, People's Republic of China.
| | - Wanqun Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
5
|
Yang H, Sun Y, Jia X, Cai Y, Zhao X, Li N. TBX3 promotes the epithelial mesenchymal transition of cervical cancer by upregulating ID1. Am J Cancer Res 2023; 13:4115-4124. [PMID: 37818083 PMCID: PMC10560953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/12/2023] Open
Abstract
In this study, we aim to investigate the role and mechanism of T-box transcription factor 3 (TBX3) in cervical cancer. The mRNA and protein expression of TBX3, inhibitor of DNA binding 1 (ID1), and epithelial mesenchymal transition (EMT) markers (E-Cadherin, N-Cadherin, and vimentin) were measured using qRT-PCR and Western blot. shTBX3 and shID1 were transfected into SiHa cells to knockdown TBX3 and ID1. The metastasis and invasion abilities of cervical cancer cells were determined using a wound healing assay and an invasive assay. The shTBX3- and shID1-transfected SiHa cells were injected into nude mice using a xenograft tumor growth model. We found that TBX3 and ID1 were highly expressed in cervical cancer cells. Importantly, silencing TBX3 and ID1 significantly reduced the migration and metastasis of cervical cancer cells. In addition, silencing TBX3 and ID1 significantly inhibited the EMT, evidenced by the increased E-cadherin, and decreased N-cadherin and vimentin. The size and weight of the xenograft tumor were significantly reduced by shTBX3 and shID1. We demonstrate that TBX3 or ID1 knockdown can effectively inhibit cervical cancer cells migration and invasion. These findings indicate that TBX3 and ID1 can act as potential therapeutic targets for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Gynecology and Obstetrics, Bethune International Peace HospitalShijiazhuang 050082, Hebei, China
| | - Yanan Sun
- Department of Gynecology and Obstetrics, Bethune International Peace HospitalShijiazhuang 050082, Hebei, China
| | - Xiaopeng Jia
- Department of Urology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Yuru Cai
- Department of Gynecology, Shijiazhuang People’s HospitalShijiazhuang 050000, Hebei, China
| | - Xingnan Zhao
- Department of Gynecology and Obstetrics, Bethune International Peace HospitalShijiazhuang 050082, Hebei, China
| | - Nan Li
- Department of Gynecology, The Second Hospital of Hebei Medical UniversityShijiazhuang 050017, Hebei, China
| |
Collapse
|
6
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
7
|
Takeuchi A, Asano N, Imatani A, Saito M, Jin X, Saito M, Kanno T, Hatta W, Uno K, Koike T, Masamune A. Suppressed Cellular Senescence Mediated by T-box3 in Aged Gastric Epithelial Cells may Contribute to Aging-related Carcinogenesis. CANCER RESEARCH COMMUNICATIONS 2022; 2:772-783. [PMID: 36923312 PMCID: PMC10010334 DOI: 10.1158/2767-9764.crc-22-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 01/10/2023]
Abstract
UNLABELLED Aging is a risk factor for cancers in various organs. Recent advances in the organoid culturing system have made it viable to investigate the influence of aging utilizing these mini organs. In this study, we aimed to examine the implications of aging for gastric carcinogenesis. Gastric organoids established from aged mice grew larger, proliferated vigorously, and survived longer than that from young mice. Because Wnt/β-catenin signaling was intensified in the aged organoids and because removal of Wnt-related factors diminished their proliferation, we investigated for Wnt target gene that contributed to enhanced proliferation and discovered that the aged organoids expressed the transcription factor T-box3 (Tbx3), which has been reported to suppress cellular senescence. Indeed, cellular senescence was suppressed in the aged organoids, and this resulted from enhanced G2-M transition. As for the mechanism involved in the intensified Wnt/β-catenin signaling, we identified that Dickkopf3 (Dkk3) expression was reduced in the aged organoids due to methylation of the Dkk3 gene. Finally, the expression of TBX3 was enhanced in human atrophic gastritis and even more enhanced in human gastric cancers. In addition, its expression correlated positively with patients' age. These results indicated that the emergence of antisenescent property in aged gastric organoids due to enhanced Tbx3 expression led to accelerated cellular proliferation and organoid formation. Because the enhanced Tbx3 expression seen in aged gastric organoids was also observed in human gastric cancer tissues, this Dkk3-Wnt-Tbx3 pathway may be involved in aging-related gastric carcinogenesis. SIGNIFICANCE This work provides an insight into the mechanism involved in aging-related gastric carcinogenesis through studies utilizing organoids established from young and aged murine stomachs.
Collapse
Affiliation(s)
- Akio Takeuchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masashi Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Xiaoyi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masahiro Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takeshi Kanno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
8
|
Zhuo F, Li J, Wang YH, Li M, Song FF, Liu YL, Tao ZY. Platelet-rich plasma inhibits inflammation, apoptosis, and the NLRP3/Caspase-1 pathway and induces matrix metalloproteinases and proliferation of IL-1β-induced articular chondrocytes by downregulating T-box transcription factor 3. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221093056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Osteoarthritis (OA) is a chronic joint disease characterized by osteoproliferation and the degeneration and destruction of articular cartilage. Platelet-rich plasma (PRP) is rich in various growth factors that have been reported to promote bone defect repair. This study examined the specific role and mechanism of PRP in OA. Methods OA model cells were created by treating articular chondrocytes with IL-1β. After treatment of the model cells with PRP or/and a T-box transcription factor 3 (TBX3)-overexpression plasmid, TBX3 expression was monitored via RT-qPCR, western blotting, and immunofluorescence assays. IL-1β, IL-33, and Caspase-3 levels were detected with ELISA kits. Levels of NLRP3, Caspase-1, MMP9, MMP13, and COL2A1 expression were evaluated by western blotting, and cell proliferation was assessed by the CCK-8 assay. Results Our results showed that TBX3 expression was upregulated in IL-1β-induced articular chondrocytes. IL-1β stimulation induced inflammation and the production of matrix metalloproteinases, activated Caspase-3 and the NLRP3/Caspase-1 pathway, inhibited the proliferation of articular chondrocytes; however, all those affects mediated by IL-1β could be markedly reversed by PRP. We also found that PRP alleviated IL-1β-induced inflammation, apoptosis, and extracellular matrix degradation in articular chondrocytes by inhibiting TBX3. Our findings suggest that PRP alleviates OA progression in vitro by downregulating TBX3. Conclusion PRP suppressed OA progression in vitro by inhibiting TBX3, which may be its mechanism of action in treating OA.
Collapse
Affiliation(s)
- Feng Zhuo
- Department of Joint Surgery, Taian City Central Hospital, China
| | - Jun Li
- Department of Joint Surgery, Taian City Central Hospital, China
| | - Yong-Hong Wang
- Department of Hepatological Surgery, Taian City Central Hospital, China
| | - Ming Li
- Department of Ophthalmology, The First People’ Hospital of Taian, China
| | - Fang-Fei Song
- Department of Joint Surgery, Taian City Central Hospital, China
| | - Yu-Liang Liu
- Department of Joint Surgery, Taian City Central Hospital, China
| | - Zong-Yu Tao
- Department of Joint Surgery, Taian City Central Hospital, China
| |
Collapse
|
9
|
Guiraldelli GG, Prado MCM, de F Lainetti P, Leis-Filho AF, Kobayashi PE, Cury SS, Fonseca-Alves CE, Laufer-Amorim R. Pathways Involved in the Development of Vasculogenic Mimicry in Canine Mammary Carcinoma Cell Cultures. J Comp Pathol 2022; 192:50-60. [PMID: 35305714 DOI: 10.1016/j.jcpa.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Vasculogenic mimicry (VM) is the ability of highly aggressive cancer cells to form fluid-conducting channels that facilitate the nutrition and metastasis of cancer cells. Considering the importance of VM in the prognosis of canine mammary gland tumours, this study aimed to investigate global gene expression in two canine mammary carcinoma cell cultures associated with the capacity for VM in vitro. The cell lines were subjected to an in-vitro assay to form VM channels (3D culture). Each cell line was then used in 2D conditions as controls and we compared the global gene expression with that of the 3D cultures. A total of 1,217 differentially expressed genes (DEGs) (P <0.05, fold change >2.0 or <2.0) were observed in 3D conditions compared with 2D culture in the UNESP-CM9 cell line, of which 677 were upregulated genes and 540 were downregulated. In contrast, the UNESP-CM60 cell line had only one upregulated and two downregulated genes. Overall, we identified several genes and pathways involved in the development of VM and these molecular data will be useful for future studies aimed at identifying diagnostic and therapeutic targets for VM in canine mammary carcinoma.
Collapse
Affiliation(s)
- Giulia G Guiraldelli
- Department of Veterinary Clinic, São Paulo State University, Botucatu, Brazil; Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Maria Carolina M Prado
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil; Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Patrícia de F Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | - Antonio F Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | | | - Sarah S Cury
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil; Institute of Health Sciences, Paulista University, Bauru, São Paulo, Brazil.
| | - Renee Laufer-Amorim
- Department of Veterinary Clinic, São Paulo State University, Botucatu, Brazil.
| |
Collapse
|
10
|
Huang S, Shu X, Ping J, Wu J, Wang J, Shidal C, Guo X, Bauer JA, Long J, Shu XO, Zheng W, Cai Q. TBX1 functions as a putative oncogene of breast cancer through promoting cell cycle progression. Carcinogenesis 2022; 43:12-20. [PMID: 34919666 PMCID: PMC8832409 DOI: 10.1093/carcin/bgab111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
We have previously identified a genetic variant, rs34331122 in the 22q11.21 locus, as being associated with breast cancer risk in a genome-wide association study. This novel variant is located in the intronic region of the T-box transcription factor 1 (TBX1) gene. Cis-expression quantitative trait loci analysis showed that expression of TBX1 was regulated by the rs34331122 variant. In the current study, we investigated biological functions and potential molecular mechanisms of TBX1 in breast cancer. We found that TBX1 expression was significantly higher in breast cancer tumor tissues than adjacent normal breast tissues and increased with tumor stage (P < 0.05). We further knocked-down TBX1 gene expression in three breast cancer cell lines, MDA-MB-231, MCF-7 and T47D, using small interfering RNAs and examined consequential changes on cell oncogenicity and gene expression. TBX1 knock-down significantly inhibited breast cancer cell proliferation, colony formation, migration and invasion. RNA sequencing and flow cytometry analysis revealed that TBX1 knock-down in breast cancer cells induced cell cycle arrest in the G1 phase through disrupting expression of genes involved in the cell cycle pathway. Furthermore, survival analysis using the online Kaplan-Meier Plotter suggested that higher TBX1 expression was associated with worse outcomes in breast cancer patients, especially for estrogen receptor-positive breast cancer, with HRs (95% CIs) for overall survival (OS) and distant metastasis free survival (DMFS) of 1.5 (1.05-2.15) and 1.55 (1.10-2.18), respectively. In conclusion, our results suggest that the TBX1 gene may act as a putative oncogene of breast cancer through regulating expressions of cell cycle-related genes.
Collapse
Affiliation(s)
- Shuya Huang
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xiang Shu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie Ping
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jie Wu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jifeng Wang
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chris Shidal
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xingyi Guo
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jirong Long
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiao-Ou Shu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Zheng
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qiuyin Cai
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Huang L, Zhang X, Li F, Wang X. MicroRNA-143-3p/TBX3 Axis Represses Malignant Cell Behaviors in Bladder Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2880087. [PMID: 35126619 PMCID: PMC8813229 DOI: 10.1155/2022/2880087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To offer new insight for bladder cancer therapy through researching the microRNA-143-3p/TBX3 axis. METHODS Differentially expressed microRNAs in bladder cancer were provided by databases to find microRNA that may regulate TBX3. qRT-PCR was utilized to test levels of TBX3 mRNA and microRNA-143-3p. Their binding was verified with a dual-luciferase method. Malignant cell behaviors were examined by cell functional experiments. Levels of TBX3 protein and proteins pertinent to epithelial-mesenchymal transition (EMT) were tested by western blot. RESULTS TBX3 was highly expressed in bladder cancer cells. MicroRNA-143-3p presented the most conspicuously negative correlation with TBX3, and they had binding sites. Cell functional experiments proved that TBX3 facilitated bladder cancer cell functions and EMT. MicroRNA-143-3p was demonstrated to downregulate TBX3 expression. Rescue assay further illuminated that microRNA-143-3p repressed bladder cancer cell functions and EMT through downregulating TBX3 expression. CONCLUSION These data all indicated that TBX3 was modulated by microRNA-143-3p and acted as a cancer promoter gene in bladder cancer progression via affecting tumor proliferation, migration, invasion, and EMT. Therefore, a microRNA-143-3p/TBX3 network might be an underlying target for bladder cancer.
Collapse
Affiliation(s)
- Lifu Huang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Xianjun Zhang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Feiping Li
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
| | - Xiaohong Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China 318050
- Obstetrical Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China 318050
| |
Collapse
|
12
|
Damerell V, Ambele MA, Salisbury S, Neumann-Mufweba A, Durandt C, Pepper MS, Prince S. The c-Myc/TBX3 Axis Promotes Cellular Transformation of Sarcoma-Initiating Cells. Front Oncol 2022; 11:801691. [PMID: 35145908 PMCID: PMC8821881 DOI: 10.3389/fonc.2021.801691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcomas are highly aggressive cancers of mesenchymal origin whose clinical management is highly complex. This is partly due to a lack of understanding of the molecular mechanisms underpinning the transformation of mesenchymal stromal/stem cells (MSCs) which are presumed to be the sarcoma-initiating cells. c-Myc is amplified/overexpressed in a range of sarcomas where it has an established oncogenic role and there is evidence that it contributes to the malignant transformation of MSCs. T-box transcription factor 3 (TBX3) is upregulated by c-Myc in a host of sarcoma subtypes where it promotes proliferation, tumor formation, migration, and invasion. This study investigated whether TBX3 is a c-Myc target in human MSCs (hMSCs) and whether overexpressing TBX3 in hMSCs can phenocopy c-Myc overexpression to promote malignant transformation. Using siRNA, qRT-PCR, luciferase reporter and chromatin-immunoprecipitation assays, we show that c-Myc binds and directly activates TBX3 transcription in hMSCs at a conserved E-box motif. When hMSCs were engineered to stably overexpress TBX3 using lentiviral gene transfer and the resulting cells characterised in 2D and 3D, the overexpression of TBX3 was shown to promote self-renewal, bypass senescence, and enhance proliferation which corresponded with increased levels of cell cycle progression markers (cyclin A, cyclin B1, CDK2) and downregulation of the p14ARF/MDM2/p53 tumor suppressor pathway. Furthermore, TBX3 promoted the migratory and invasive ability of hMSCs which associated with increased levels of markers of migration (Vimentin, SLUG, SNAIL, TWIST1) and invasion (MMP2, MMP9). Transcriptomic analysis revealed that genes upregulated upon TBX3 overexpression overlapped with c-myc targets, were involved in cell cycle progression, and were associated with sarcomagenesis. Together, the data described indicate that the c-Myc/TBX3 oncogenic molecular pathway may be a key mechanism that transforms hMSCs into sarcomas.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melvin Anyasi Ambele
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Shanel Salisbury
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexis Neumann-Mufweba
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Chrisna Durandt
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Michael Sean Pepper
- Department of Immunology and SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Sharon Prince,
| |
Collapse
|
13
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
14
|
Willmer T, Damerell V, Smyly S, Sims D, Du Toit M, Ncube S, Sinkala M, Govender D, Sturrock E, Blackburn JM, Prince S. Targeting the oncogenic TBX3:nucleolin complex to treat multiple sarcoma subtypes. Am J Cancer Res 2021; 11:5680-5700. [PMID: 34873487 PMCID: PMC8640805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023] Open
Abstract
Sarcomas are diverse cancers of mesenchymal origin, with compromised clinical management caused by insufficient diagnostic biomarkers and limited treatment options. The transcription factor TBX3 is upregulated in a diverse range of sarcoma subtypes, where it plays a direct oncogenic role, and it may thus represent a novel therapeutic target. To identify versatile ways to target TBX3, we performed affinity purification coupled by mass spectrometry to identify putative TBX3 protein cofactors that regulate its oncogenic activity in sarcomas. Here we identify and validate the multifunctional phosphoprotein nucleolin as a TBX3 cofactor. We show that nucleolin is co-expressed with TBX3 in several sarcoma subtypes and their expression levels positively correlate in sarcoma patients which are associated with poor prognosis. Furthermore, we demonstrate that nucleolin and TBX3 interact in chondrosarcoma, liposarcoma and rhabdomyosarcoma cells where they act together to enhance proliferation and migration and regulate a common set of tumor suppressor genes. Importantly, the nucleolin targeting aptamer, AS1411, exhibits selective anti-cancer activity in these cells and mislocalizes TBX3 and nucleolin to the cytoplasm which correlates with the re-expression of the TBX3/nucleolin target tumor suppressors CDKN1A (p21CIP1) and CDKN2A (p14ARF). Our findings provide the first evidence that TBX3 requires nucleolin to promote features of sarcomagenesis and that disruption of the oncogenic TBX3-nucleolin interaction by AS1411 may be a novel approach for treating sarcomas.
Collapse
Affiliation(s)
- Tarryn Willmer
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research CouncilTygerberg 7505, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch UniversityTygerberg 7505, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Shannon Smyly
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Danica Sims
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Stephanie Ncube
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| | - Musalula Sinkala
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town 7925, South Africa
| | - Dhirendra Govender
- Anatomical Pathology, PathcareCape Town 7925, South Africa
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, NHLS-Groote Schuur HospitalCape Town 7925, South Africa
| | - Edward Sturrock
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town 7925, South Africa
| | - Jonathan M Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town 7925, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape TownCape Town 7925, South Africa
| |
Collapse
|
15
|
Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Reports 2021; 16:2617-2627. [PMID: 34653400 PMCID: PMC8580886 DOI: 10.1016/j.stemcr.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Tbx3 has been identified as a regulator of liver development in the mouse, but its function in human liver development remains unknown. TBX3 mutant human pluripotent stem cell (PSC) lines were generated using CRISPR/Cas9 genome editing. TBX3 loss led to impaired liver differentiation and an upregulation of pancreatic gene expression, including PDX1, during a hepatocyte differentiation protocol. Other pancreatic genes, including NEUROG3 and NKX2.2, displayed more open chromatin in the TBX3 mutant hepatoblasts. Using a pancreatic differentiation protocol, cells lacking TBX3 generated more pancreatic progenitors and had an enhanced pancreatic gene expression signature at the expense of hepatic gene expression. These data highlight a potential role of TBX3 in regulating hepatic and pancreatic domains during foregut patterning, with implications for enhancing the generation of pancreatic progenitors from PSCs. TBX3 null PSCs have impaired hepatocyte differentiation capacity TBX3 null hepatocytes have aberrant expression of pancreatic genes, including PDX1 TBX3 null PSCs have enhanced differentiation capacity into pancreatic progenitors Loss of TBX3 leads to increased chromatin accessibility of many pancreatic genes
Collapse
|
16
|
Liang X, Yan Z, Wang P, Liu Y, Ao X, Liu Z, Wang D, Liu X, Zhu M, Gao S, Xie D, Zhou P, Gu Y. Irradiation Activates MZF1 to Inhibit miR-541-5p Expression and Promote Epithelial-Mesenchymal Transition (EMT) in Radiation-Induced Pulmonary Fibrosis (RIPF) by Upregulating Slug. Int J Mol Sci 2021; 22:11309. [PMID: 34768749 PMCID: PMC8582843 DOI: 10.3390/ijms222111309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Understanding miRNAs regulatory roles in epithelial-mesenchymal transition (EMT) would help establish new avenues for further uncovering the mechanisms underlying radiation-induced pulmonary fibrosis (RIPF) and identifying preventative and therapeutic targets. Here, we demonstrated that miR-541-5p repression by Myeloid Zinc Finger 1 (MZF1) promotes radiation-induced EMT and RIPF. Irradiation could decrease miR-541-5p expression in vitro and in vivo and inversely correlated to RIPF development. Ectopic miR-541-5p expression suppressed radiation-induced-EMT in vitro and in vivo. Knockdown of Slug, the functional target of miR-541-5p, inhibited EMT induction by irradiation. The upregulation of transcription factor MZF1 upon irradiation inhibited the expression of endogenous miR-541-5p and its primary precursor (pri-miR-541-5p), which regulated the effect of the Slug on the EMT process. Our finding showed that ectopic miR-541-5p expression mitigated RIPF in mice by targeting Slug. Thus, irradiation activates MZF1 to downregulate miR-541-5p in alveolar epithelial cells, promoting EMT and contributing to RIPF by targeting Slug. Our observation provides further understanding of the development of RIPF and determines potential preventative and therapeutic targets.
Collapse
Affiliation(s)
- Xinxin Liang
- Hengyang Medical College, University of South China, Hengyang 421001, China; (X.L.); (X.A.)
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Ziyan Yan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Ping Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Yuhao Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Xingkun Ao
- Hengyang Medical College, University of South China, Hengyang 421001, China; (X.L.); (X.A.)
| | - Zheng Liu
- School of Public Health, University of South China, Hengyang 421001, China;
| | - Duo Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Dafei Xie
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| | - Yongqing Gu
- Hengyang Medical College, University of South China, Hengyang 421001, China; (X.L.); (X.A.)
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.Y.); (P.W.); (Y.L.); (D.W.); (X.L.); (M.Z.); (S.G.); (D.X.)
| |
Collapse
|
17
|
Li ZX, Huang ZN, Luo H, Yang XB, Wang YL, Chen JX, Ma XK, Xu F, Wang TT, Lin L. High BTBD7 expression positive is correlated with SLUG-predicted poor prognosis in hormone receptor-negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1252. [PMID: 34532389 PMCID: PMC8421947 DOI: 10.21037/atm-21-3409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hormone receptor-negative breast cancer (HRNBC), which includes triple-negative breast cancer (TNBC) and human epidermal growth factor receptor 2 (HER-2) overexpressing breast cancer, is prone to metastasis and has a poor prognosis. BTB/POZ domain-containing protein 7 (Btbd7) is thought to regulate SLUG and the epithelial-mesenchymal transition (EMT) process. However, the role of Btbd7 in HRNBC is unclear. METHODS Expression of BTBD7 and SLUG in HRNBC tumor tissue and normal adjacent tissue (NAT) as well as breast cancer cells were characterized by immunohistochemistry and immunofluorescence. MDA-MA-231 cells was transfected with BTBD7 siRNA and detected by qRT-PCR and western blot. Expression levels of Slug and EMT related proteins were detected western blot analysis. cell invasion assays were used to analyse cell invasion ability of MDA-MA-231. GO and KEGG analyses was used to analysis the gene function. RESULTS The total positive rate of BTBD7 expression in HRNBC tumor tissue was 66.7%, which was higher than that in NAT (52.1%) and benign breast lesion tissues (20%). Co-expression of SLUG and BTBD7 proteins could be found in HRNBC tissue and MDA-MA-231 cells. BTBD7 silencing significantly up-regulated the epithelial marker E-cadherin, down-regulated the mesenchymal markers α-SMA and SLUG and suppressed the invasion abilities of MDA-MA-231 cells. GO and KEGG analyses based on 322 DEGs showed that BTBD7 may be associated with generic transcription in breast cancer. CONCLUSIONS The study data indicated that BTBD7 was inversely associated with SLUG expression. Higher BTBD7 was associated with poor clinicopathologic features and prognosis in HRNBC patients. BTBD7 silencing inhibited EMT through regulation of SLUG expression. BTBD7 might act as a potential molecular target for gene therapy in HRNBC patients.
Collapse
Affiliation(s)
- Zi-Xiong Li
- Department of Rheumatology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, China
| | - Ze-Nan Huang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Luo
- Anesthesia and Operation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiong-Bin Yang
- Department of Rheumatology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yu-Lin Wang
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jie-Xin Chen
- Department of Endocrinology, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiao-Kai Ma
- The first affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Feng Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tian-Tian Wang
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Lin
- Department of Rheumatology, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
18
|
Liang B, Zhou Y, Qian M, Xu M, Wang J, Zhang Y, Song X, Wang H, Lin S, Ren C, Monga SP, Wang B, Evert M, Chen Y, Chen X, Huang Z, Calvisi DF, Chen X. TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. J Hepatol 2021; 75:120-131. [PMID: 33577921 PMCID: PMC8217095 DOI: 10.1016/j.jhep.2021.01.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Gain of function (GOF) mutations in the CTNNB1 gene are one of the most frequent genetic events in hepatocellular carcinoma (HCC). T-box transcription factor 3 (TBX3) is a liver-specific target of the Wnt/β-catenin pathway and thought to be an oncogene mediating activated β-catenin-driven HCC formation. METHODS We evaluated the expression pattern of TBX3 in human HCC specimens. Tbx3 was conditionally knocked out in murine HCC models by hydrodynamic tail vein injection of Cre together with c-Met and ΔN90-β-catenin (c-Met/β-catenin) in Tbx3flox/flox mice. TBX3 was overexpressed in human HCC cell lines to investigate the functions of TBX3 in vitro. RESULTS A bimodal expression pattern of TBX3 in human HCC samples was detected: high expression of TBX3 in GOF CTNNB1 HCC and downregulation of TBX3 in non-CTNNB1 mutant tumors. High expression of TBX3 was associated with increased differentiation and decreased expression signatures of tumor growth. Using Tbx3flox/flox mice, we found that ablation of Tbx3 significantly accelerates c-Met/β-catenin-driven HCC formation. Moreover, Tbx3(-) HCC demonstrated increased YAP/TAZ activity. The accelerated tumor growth induced by loss of TBX3 in c-Met/β-catenin mouse HCC was successfully prevented by overexpression of LATS2, which inhibited YAP/TAZ activity. In human HCC cell lines, overexpression of TBX3 inhibited HCC cell growth as well as YAP/TAZ activation. A negative correlation between TBX3 and YAP/TAZ target genes was observed in human HCC samples. Mechanistically, phospholipase D1 (PLD1), a known positive regulator of YAP/TAZ, was identified as a novel transcriptional target repressed by TBX3. CONCLUSION Our study suggests that TBX3 is induced by GOF CTNNB1 mutants and suppresses HCC growth by inactivating PLD1, thus leading to the inhibition of YAP/TAZ oncogenes. LAY SUMMARY TBX3 is a liver-specific target of the Wnt/β-catenin pathway and thought to be an oncogene in promoting liver cancer development. Herein, we demonstrate that TBX3 is in fact a tumor suppressor gene that restricts liver tumor growth. Strategies which increase TBX3 expression and/or activities may be effective for HCC treatment.
Collapse
Affiliation(s)
- Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Manning Qian
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; College of Clinical Medicine, Yangzhou University, Yangzhou, China
| | - Meng Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Department of Gastroenterology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA; Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Satdarshan P Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yifa Chen
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Khojasteh Poor F, Keivan M, Ramazii M, Ghaedrahmati F, Anbiyaiee A, Panahandeh S, Khoshnam SE, Farzaneh M. Mini review: The FDA-approved prescription drugs that target the MAPK signaling pathway in women with breast cancer. Breast Dis 2021; 40:51-62. [PMID: 33896802 DOI: 10.3233/bd-201063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most common cancer and the prevalent type of malignancy among women. Multiple risk factors, including genetic changes, biological age, dense breast tissue, and obesity are associated with BC. The mitogen-activated protein kinases (MAPK) signaling pathway has a pivotal role in regulating biological functions such as cell proliferation, differentiation, apoptosis, and survival. It has become evident that the MAPK pathway is associated with tumorigenesis and may promote breast cancer development. The MAPK/RAS/RAF cascade is closely associated with breast cancer. RAS signaling can enhance BC cell growth and progression. B-Raf is an important kinase and a potent RAF isoform involved in breast tumor initiation and differentiation. Depending on the reasons for cancer, there are different strategies for treatment of women with BC. Till now, several FDA-approved treatments have been investigated that inhibit the MAPK pathway and reduce metastatic progression in breast cancer. The most common breast cancer drugs that regulate or inhibit the MAPK pathway may include Farnesyltransferase inhibitors (FTIs), Sorafenib, Vemurafenib, PLX8394, Dabrafenib, Ulixertinib, Simvastatin, Alisertib, and Teriflunomide. In this review, we will discuss the roles of the MAPK/RAS/RAF/MEK/ERK pathway in BC and summarize the FDA-approved prescription drugs that target the MAPK signaling pathway in women with BC.
Collapse
Affiliation(s)
- Fatemeh Khojasteh Poor
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Panahandeh
- School of Health, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Tian X, Wu L, Jiang M, Zhang Z, Wu R, Miao J, Liu C, Gao S. Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer. Front Oncol 2021; 11:641399. [PMID: 33968740 PMCID: PMC8100313 DOI: 10.3389/fonc.2021.641399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients. Methods GLYAT expression was determined by immune blot and immunohistochemistry in three BC cell lines and primary cancer tissues. The MDA-MB 231 cell line was used for GLYAT gene knockdown experiments while the MCF7 cell line for overexpression experiments. Colony formation experiments, soft agar experiments, and transwell assays were utilized for further inspection of cell proliferation and migration capabilities. Immunofluorescence and western blot were used to detect markers of the epithelial-mesenchymal transition (EMT) and changes in the PI3K/AKT/Snail pathway. The role of GLYAT in tumor growth and metastasis was also assessed in nude mice in vivo. Also, a correlation analysis was performed between clinicopathological features and GLYAT expression in BC patients. Results GLYAT was decreased in human BC tissues and cell lines. Functional analysis showed that knockdown of GLYAT augmented BC cell proliferation in vitro and in vivo. However, this phenomenon was reversed when GLYAT was overexpressed in the transfected cells. Moreover, downregulation of GLYAT promoted the migratory properties of BC cells, likely through the activation of PI3K/AKT/Snail signaling, which subsequently induced the EMT. IHC analysis indicated that GLYAT was decreased in human BC tissues and lower GLYAT expression was correlated with histological grade, tumor TNM stage, Ki-67 status, and poorer survival in BC patients. Furthermore, lower GLYAT expression seemed as an independent risk factor related to poor prognosis in BC patients based on Cox regression analyses. Conclusion Our findings demonstrate that downregulation of GLYAT expression in human breast cancer is correlated with EMT via the PI3K/AKT/Snail pathway and is also associated with histological grade, tumor TNM stage, Ki-67 status, and poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianing Miao
- Key Laboratory of Shengjing Hospital, China Medical University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
22
|
Dong X, Song J, Hu J, Zheng C, Zhang X, Liu H. T-Box Transcription Factor 22 Is an Immune Microenvironment-Related Biomarker Associated With the BRAF V600E Mutation in Papillary Thyroid Carcinoma. Front Cell Dev Biol 2020; 8:590898. [PMID: 33392186 PMCID: PMC7773934 DOI: 10.3389/fcell.2020.590898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignant disease in endocrine systems. T-box transcription factor 22 (TBX22) is a phylogenetically conserved family member that has not been widely characterized in cancers. In this study, we explored the potential clinical significance and biological functions of TBX22 in PTC. Comprehensive analyses of TBX22 were based on the public databases and our local qRT-PCR cohort. We observed that TBX22 was significantly downregulated in PTC compared with normal tissues. TBX22 was associated with several clinicopathological factors in PTC. Low TBX22 expression correlated with BRAF V600E and TERT mutation. Functional enrichment analysis revealed that cancer-related pathways and immune progress were closely associated with TBX22 in PTC. In TBX22-low PTC, high immune infiltration levels with increased CD8+ T cells, natural killer, M1 macrophages, and T-regulatory cells were observed. TBX22 was negatively correlated with the activity of different steps of the anticancer immunity cycle. Functionally, overexpression of TBX22 inhibited the proliferation, invasion, and migration in PTC cells, while knocking down of TBX22 showed the opposite effects. The present findings disclose that TBX22, as an immune microenvironment-related biomarker, could be an important tumor suppresser gene and might inform the management of PTC patients better.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Children's Health Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Hu
- Department of Gastrointestinal Surgery, People's Hospital of Yueqing, Wenzhou, China
| | - Cheng Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiguang Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
The c-Myc/AKT1/TBX3 Axis Is Important to Target in the Treatment of Embryonal Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12020501. [PMID: 32098189 PMCID: PMC7072582 DOI: 10.3390/cancers12020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma is a highly aggressive malignant cancer that arises from skeletal muscle progenitor cells and is the third most common solid tumour in children. Despite significant advances, rhabdomyosarcoma still presents a therapeutic challenge, and while targeted therapy has shown promise, there are limited options because the molecular drivers of rhabdomyosarcoma are poorly understood. We previously reported that the T-box transcription factor 3 (TBX3), which has been identified as a druggable target in many cancers, is overexpressed in rhabdomyosarcoma patient samples and cell lines. To identify new molecular therapeutic targets to treat rhabdomyosarcoma, this study investigates the potential oncogenic role(s) for TBX3 and the factors responsible for upregulating it in this cancer. To this end, rhabdomyosarcoma cell culture models in which TBX3 was either stably knocked down or overexpressed were established and the impact on key hallmarks of cancer were examined using growth curves, soft agar and scratch motility assays, as well as tumour-forming ability in nude mice. Our data show that TBX3 promotes substrate-dependent and -independent proliferation, migration and tumour formation. We further reveal that TBX3 is upregulated by c-Myc transcriptionally and AKT1 post-translationally. This study identifies c-Myc/AKT1/TBX3 as an important axis that could be targeted for the treatment of rhabdomyosarcoma.
Collapse
|
24
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
25
|
Saberianpour S, Rezaie Nezhad Zamani A, Karimi A, Ahmadi M, Khatami N, Pouyafar A, Rahbarghazi R, Nouri M. Hollow Alginate-Poly-L-Lysine-Alginate Microspheres Promoted an Epithelial-Mesenchymal Transition in Human Colon Adenocarcinoma Cells. Adv Pharm Bull 2020; 10:141-145. [PMID: 32002374 PMCID: PMC6983985 DOI: 10.15171/apb.2020.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Today, there is an urgent need to develop a three-dimentional culture systems mimicking native in vivo condition in order to screen potency of drugs and possibly any genetic alterations in tumor cells. Due to the existence of limitations in animal models, the development of three dimensional systems is highly recommended. To this end, we encapsulated human colon adenocarcinoma cell line HT29 with alginate-poly-L-lysine (Alg-PLL) microspheres and the rate of epithelial-mesenchymal transition was monitored. Methods: Cells were randomly divided into three groups; control, alginate and Alg-PLL. To encapsulate cells, we mixed HT-29 cells (1 × 106 ) with 1 mL of 0.05% PLL and 1% Alg mixture and electrosprayed into CaCl2 solution by using a high-voltage power. Cells from all groups were maintained at 37˚C in a humidified atmosphere containing 5% CO2 for 7 days. Cell viability was assessed by MTT assay. To monitor the stemness feature, we measured the transcription of genes such as Snail, Zeb, and Vimentin by using real-time PCR analysis. Results: Addition of PLL to Alg in a hallowed state increased the cell survival rate compared to the control and Alg groups (P<0.05). Cells inside Alg-PLL tended to form microcellular aggregates while in Alg microspheres an even distribution of HT-29 cells was found. Real-time PCR analysis showed the up-regulation of Snail, Zeb, and Vimentin in Alg-PLL microspheres compared to the other groups, showing the acquisition of stemness feature (P<0.05). Conclusion: This study showed that hallow Alg-PLL microspheres increased the epithelialmesenchymal transition rate after 7 days in in vitro condition. Such approaches could be touted as appropriate in vitro models for drug screening.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khatami
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Ayda Pouyafar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Isoform-specific promotion of breast cancer tumorigenicity by TBX3 involves induction of angiogenesis. J Transl Med 2020; 100:400-413. [PMID: 31570773 PMCID: PMC7044113 DOI: 10.1038/s41374-019-0326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
TBX3 is a member of the highly conserved family of T-box transcription factors involved in embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in tumorigenesis has been widely studied, less is known about the specific functions of the different isoforms (TBX3iso1 and TBX3iso2) which differ in their DNA-binding domain. We therefore sought to investigate the functional consequence of this highly conserved splice event as it relates to TBX3-induced tumorigenesis. By utilizing a nude mouse xenograft model, we have identified differential tumorigenic potential between TBX3 isoforms, with TBX3iso1 overexpression more commonly associated with invasive carcinoma and high tumor vascularity. Transcriptional analysis of signaling pathways altered by TBX3iso1 and TBX3iso2 overexpression revealed significant differences in angiogenesis-related genes. Importantly, osteopontin (OPN), a cancer-associated secreted phosphoprotein, was significantly up-regulated with TBX3iso1 (but not TBX3iso2) overexpression. This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines (21PT, 21NT, and MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells was associated with induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan in pericellular matrices. These transcriptional changes were accompanied by the ability to induce endothelial cell vascular channel formation by conditioned media in vitro, which could be inhibited through addition of an OPN neutralizing antibody. Within the TCGA breast cancer cohort, we identified an 8.1-fold higher TBX3iso1 to TBX3iso2 transcript ratio in tumors relative to control, and this ratio was positively associated with high-tumor grade and an aggressive molecular subtype. Collectively, the described changes involving TBX3iso1-dependent promotion of angiogenesis may thus serve as an adaptive mechanism within breast cancer cells, potentially explaining differences in tumor formation rates between TBX3 isoforms in vivo. This study is the first of its kind to report significant functional differences between the two TBX3 isoforms, both in vitro and in vivo.
Collapse
|
27
|
Lee YJ, Park JH, Oh SM. TOPK promotes epithelial-mesenchymal transition and invasion of breast cancer cells through upregulation of TBX3 in TGF-β1/Smad signaling. Biochem Biophys Res Commun 2019; 522:270-277. [PMID: 31757421 DOI: 10.1016/j.bbrc.2019.11.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
TOPK has been suggested to contribute to invasion of lung, prostate, gastric, pancreatic or breast cancer cells. However, how TOPK mediates TGF-β1/Smad signaling leading to epithelial-mesenchymal transition (EMT) and invasion of breast cancer cells remains unknown. Here we report that TOPK upregulates T-box transcription factor TBX3 to enhance TGF-β1-induced EMT and invasion of MDA-MB-231 breast cancer cells. Expression of endogenous TOPK was promoted by TGF-β1 treatment of MDA-MB-231 cells time-dependently. In addition, knockdown of TOPK attenuated TGF-β1-induced phosphorylation or transcriptional activity of Smad3. Meanwhile, levels of both mRNA and protein of TBX3 induced by TGF-β1 were abolished by TOPK depletion. Also, knockdown of TBX3 inhibited TGF-β1 induction of EMT-related genes Snail, Slug or Fibronectin. Furthermore, ablation of TOPK or TBX3 suppressed TGF-β1-induced MDA-MB-231 cell invasion. Collectively, we conclude that TOPK positively regulates TBX3 in TGF-β1/Smad signaling pathway, thereby enhancing EMT and invasion of breast cancer cells, implying a mechanistic role of TOPK in TGF-β1/Smad signaling.
Collapse
Affiliation(s)
- Young-Ju Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea; Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, South Korea.
| |
Collapse
|