1
|
Peng Y, Jiang DY, Yao SY, Zhang X, Kazuo S, Liu J, Du MQ, Lin LX, Chen Q, Jin H. Gene-modified animal models of Parkinson's disease. Exp Neurol 2025; 390:115287. [PMID: 40328415 DOI: 10.1016/j.expneurol.2025.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that commonly occurs in older individuals and clinically manifests as resting tremors, bradykinesia, muscle stiffness, and impaired postural balance. From a genetic perspective, animal models using gene-editing technologies offer distinct advantages in replicating the pathophysiological traits of PD, while also functionally exploring potential treatment targets. In this review, we highlight the available gene- modified animal models related to various mechanisms of PD, including abnormal expression of alpha-synuclein protein, dysfunction of the autophagy-lysosome system, abnormalities in the ubiquitin-proteasome system, and mitochondrial dysfunction. We further discuss their respective strengths, limitations, and prospects, aiming to provide the most up to date information for the application of PD animal models and the advancement of anti-PD drugs.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China..
| | - Dai-Yi Jiang
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Xiuli Zhang
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Sugimoto Kazuo
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Lan-Xin Lin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China.; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, China
| |
Collapse
|
2
|
Xu J, Lei H, Yang C, Qiu Y, Wu X. HucMSCs-Derived Extracellular Vesicles Deliver RPS27A Protein to Manipulate the MDM2-P53 Axis and Ameliorate Neurological Dysfunction in Parkinson's Disease. J Neuroimmune Pharmacol 2025; 20:52. [PMID: 40338442 DOI: 10.1007/s11481-025-10209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Extracellular vesicles released from mesenchymal stem cells (MSCs-EV) have shown anti-inflammatory effects in Parkinson's disease (PD). This study was designed to assess the neuroprotective effects of human umbilical cord MSCs (hucMSCs) and the possible mechanisms involved. SH-SY5Y cells were induced with MPP+, and the impact of hucMSCs-EV on the damage to SH-SY5Y cells was examined. Mice were induced with PD-like symptoms by MPTP and the effects of hucMSCs-EV on neurological damage in mouse brain tissue were detected as well. HucMSCs-EV inhibited apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells. HucMSCs-EV suppressed behavioral deficits and neuronal apoptosis in MPTP-induced mice, with an increased number of dopamine neurons in brain tissues and decreased p-alpha-syn expression in dopamine neurons. The expression of ribosomal protein S27A (RPS27A) in SH-SY5Y cells was elevated after co-culture of neurons and hucMSCs-EV, and RPS27A silencing abated the effect of hucMSCs-EV in vivo and in vitro. RPS27A bound to the MDM2 promoter, thus promoting P53 ubiquitination and degradation. MDM2 overexpression strengthened the therapeutic effect of hucMSCs-EV. We conclude that hucMSCs-EV promote the interaction between RPS27A and MDM2 by delivering RPS27A, which regulates the MDM2-P53 axis to promote degradation of P53 to ameliorate neurological damage in PD.
Collapse
Affiliation(s)
- Jinyu Xu
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China
- Department of Neurosurgery, 411 Hospital Affiliated to Shanghai University, Shanghai, 200081, P.R. China
| | - Hongbing Lei
- Department of Neurosurgery, Shanghai Mental Health Center, Shanghai, 201108, P.R. China
| | - Chunhui Yang
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China
- Department of Neurosurgery, The Yang Zhi Rehabilitation Hospital Affiliated to Tongji University, Shanghai, 201613, P.R. China
| | - Yiqing Qiu
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, No.168, Changhai Road, Yangpu District, Shanghai, 200433, P.R. China.
| |
Collapse
|
3
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
4
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
5
|
Navarro E, Esteras N. A new mutation in the Parkinson's-related FBXO7 gene impairs mitochondrial and proteasomal function. FEBS J 2024; 291:2562-2564. [PMID: 38708447 DOI: 10.1111/febs.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Around 10% of Parkinson's disease (PD) cases are associated with mutations in various genes, including FBXO7, which encodes the substrate-recognition component for the Skp1-Cullin-F-box (SCF) class of ubiquitin E3 ligases that target proteins for proteasomal degradation. In their recent study, Al Rawi et al. characterized a new mutation in FBXO7, L250P, in a pediatric patient. Their findings reveal that the L250P mutation abolishes Fbxo7 interaction with the proteasome regulator, proteasome inhibitor 31kD (PI31), affecting proteasomal activity and the ubiquitination of some of the ligase's targets. Furthermore, the authors show that this previously undescribed mutation impairs mitochondrial function and mitophagy, emphasizing the importance of mitochondrial and proteasomal dysfunction in PD pathogenesis.
Collapse
Affiliation(s)
- Elisa Navarro
- Department of Biochemistry and Molecular Biology, School of Medicine, Neurochemistry Research Institute, Complutense University of Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Noemí Esteras
- Department of Biochemistry and Molecular Biology, School of Medicine, Neurochemistry Research Institute, Complutense University of Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| |
Collapse
|
6
|
Al Rawi S, Simpson L, Agnarsdóttir G, McDonald NQ, Chernuha V, Elpeleg O, Zeviani M, Barker RA, Spiegel R, Laman H. Study of an FBXO7 patient mutation reveals Fbxo7 and PI31 co-regulate proteasomes and mitochondria. FEBS J 2024; 291:2565-2589. [PMID: 38466799 DOI: 10.1111/febs.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCFFbxo7-mediated ubiquitination of MiD49. The L250P mutation reduces the SCFFbxo7 ligase-mediated ubiquitination of a subset of its known substrates. Although MiD49/51 expression was reduced in patient cells, there was no effect on the mitochondrial network. However, patient cells show reduced levels of mitochondrial function and mitophagy, higher levels of ROS and are less viable under stress. Our study demonstrates that Fbxo7 and PI31 regulate proteasomes and mitochondria and reveals a new function for PI31 in enhancing the SCFFbxo7 E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Sara Al Rawi
- Department of Pathology, University of Cambridge, UK
| | - Lorna Simpson
- Department of Pathology, University of Cambridge, UK
| | | | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, London, UK
| | - Veronika Chernuha
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Centre and Sackler Faculty of Medicine, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Massimo Zeviani
- Mitochondrial Biology Unit, The MRC and University of Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, UK
| | - Ronen Spiegel
- Pediatric Department, Emek Medical Center, Afula, Israel
| | - Heike Laman
- Department of Pathology, University of Cambridge, UK
| |
Collapse
|
7
|
Subramaniyan S, Kuriakose BB, Mushfiq S, Prabhu NM, Muthusamy K. Gene Signals and SNPs Associated with Parkinson's Disease: A Nutrigenomics and Computational Prospective Insights. Neuroscience 2023; 533:77-95. [PMID: 37858629 DOI: 10.1016/j.neuroscience.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Parkinson's disease is the most prevalent chronic neurodegenerative disease. Neurological conditions for PD were influenced by a variety of epigenetic factors and SNPs in some of the coexisting genes that were expressed. This article focused on nutrigenomics of PD and the prospective highlighting of how these genes are regulated in terms of nutritive factors and the genetic basis of PD risk, onset, and progression. Multigenetic associations of the following genetic alterations in the genes of SNCA, LRRK2, UCHL1, PARK2,PINK1, DJ-1, and ATP13A2 have been reported with the familial and de novo genetic origins of PD. Over the past two decades, significant attempts have been made to understand the biological mechanisms that are potential causes for this disease, as well as to identify therapeutic substances for the prevention and management of PD. Nutrigenomics has sparked considerable interest due to its nutritional, safe, and therapeutic effects on a variety of chronic diseases. In this study, we summarise some of the nutritive supplements that have an impact on PD.
Collapse
Affiliation(s)
- Swetha Subramaniyan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sakeena Mushfiq
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | | | |
Collapse
|
8
|
Xu Y, Kusuyama J, Osana S, Matsuhashi S, Li L, Takada H, Inada H, Nagatomi R. Lactate promotes neuronal differentiation of SH-SY5Y cells by lactate-responsive gene sets through NDRG3-dependent and -independent manners. J Biol Chem 2023:104802. [PMID: 37172727 DOI: 10.1016/j.jbc.2023.104802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joji Kusuyama
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Graduate School of Informatics and Engineering, University of Electro-Communications
| | - Satayuki Matsuhashi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Longfei Li
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Takada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hitoshi Inada
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.
| |
Collapse
|
9
|
The characteristics of FBXO7 and its role in human diseases. Gene X 2023; 851:146972. [DOI: 10.1016/j.gene.2022.146972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
10
|
Zhang C, Chen S, Li X, Xu Q, Lin Y, Lin F, Yuan M, Zi Y, Cai J. Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomed Pharmacother 2022; 155:113768. [DOI: 10.1016/j.biopha.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
11
|
Harris R, Yang M, Schmidt C, Royet C, Singh S, Natarajan A, Morris M, Frezza C, Laman H. Fbxo7 promotes Cdk6 activity to inhibit PFKP and glycolysis in T cells. J Cell Biol 2022; 221:e202203095. [PMID: 35670764 PMCID: PMC9178409 DOI: 10.1083/jcb.202203095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
Fbxo7 is associated with cancer and Parkinson's disease. Although Fbxo7 recruits substrates for SCF-type ubiquitin ligases, it also promotes Cdk6 activation in a ligase-independent fashion. We discovered PFKP, the gatekeeper of glycolysis, in a screen for Fbxo7 substrates. PFKP is an essential Cdk6 substrate in some T-ALL cells. We investigated the molecular relationship between Fbxo7, Cdk6, and PFKP, and the effect of Fbxo7 on T cell metabolism, viability, and activation. Fbxo7 promotes Cdk6-independent ubiquitination and Cdk6-dependent phosphorylation of PFKP. Importantly, Fbxo7-deficient cells have reduced Cdk6 activity, and hematopoietic and lymphocytic cells show high expression and significant dependency on Fbxo7. CD4+ T cells with reduced Fbxo7 show increased glycolysis, despite lower cell viability and activation levels. Metabolomic studies of activated CD4+ T cells confirm increased glycolytic flux in Fbxo7-deficient cells, alongside altered nucleotide biosynthesis and arginine metabolism. We show Fbxo7 expression is glucose-responsive at the mRNA and protein level and propose Fbxo7 inhibits PFKP and glycolysis via its activation of Cdk6.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Chloe Royet
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron-UMR5247, Montpellier, France
| | - Sarbjit Singh
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Amarnath Natarajan
- Eppley Institute for Cancer Research, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - May Morris
- Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron-UMR5247, Montpellier, France
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Heike Laman
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Impaired mitochondrial accumulation and Lewy pathology in neuron-specific FBXO7-deficient mice. Mol Brain 2022; 15:54. [PMID: 35701754 PMCID: PMC9199167 DOI: 10.1186/s13041-022-00936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2022] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease, the second most common neurodegenerative disorder, is characterized by the loss of nigrostriatal dopamine neurons. FBXO7 (F-box protein only 7) (PARK15) mutations cause early-onset Parkinson’s disease. FBXO7 is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its neuronal relevance and function have not been elucidated. To determine its function in neurons, we generated neuronal cell-specific FBXO7 conditional knockout mice (FBXO7flox/flox: Nestin-Cre) by crossing previously characterized FBXO7 floxed mice (FBXO7flox/flox) with Nestin-Cre mice (Nestin-Cre). The resultant Fbxo7flox/flox: Nestin-Cre mice showed juvenile motor dysfunction, including hindlimb defects and decreased numbers of dopaminergic neurons. Fragmented mitochondria were observed in dopaminergic and cortical neurons. Furthermore, p62- and synuclein-positive Lewy body-like aggregates were identified in neurons. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system that includes the ubiquitin–proteasome system, in controlling intracellular inclusion body formation. These data indicate that the pathologic processes associated with the proteolytic and mitochondrial degradation systems play a crucial role in the pathogenesis of PD.
Collapse
|
13
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
14
|
Harris R, Randle S, Laman H. Analysis of the FBXO7 promoter reveals overlapping Pax5 and c-Myb binding sites functioning in B cells. Biochem Biophys Res Commun 2021; 554:41-48. [PMID: 33774278 PMCID: PMC8082276 DOI: 10.1016/j.bbrc.2021.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 02/03/2023]
Abstract
Fbxo7 is a key player in the differentiation and function of numerous blood cell types, and in neurons, oligodendrocytes and spermatocytes. In an effort to gain insight into the physiological and pathological settings where Fbxo7 is likely to play a key role, we sought to define the transcription factors which direct FBXO7 expression. Using sequence alignments across 28 species, we defined the human FBXO7 promoter and found that it contains two conserved regions enriched for multiple transcription factor binding sites. Many of these have roles in either neuronal or haematopoietic development. Using various FBXO7 promoter reporters, we found ELF4, Pax5 and c-Myb have functional binding sites that activate transcription. We find endogenous Pax5 is bound to the FBXO7 promoter in pre-B cells, and that the exogenous expression of Pax5 represses Fbxo7 transcription in early pro-B cells.
Collapse
Affiliation(s)
- Rebecca Harris
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Suzanne Randle
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Heike Laman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| |
Collapse
|
15
|
Yang W, Hao W, Meng Z, Ding S, Li X, Zhang T, Huang W, Xu L, Zhang Y, Yang J, Gu X. Molecular Regulatory Mechanism and Toxicology of Neurodegenerative Processes in MPTP/Probenecid-Induced Progressive Parkinson's Disease Mice Model Revealed by Transcriptome. Mol Neurobiol 2021; 58:603-616. [PMID: 32997292 PMCID: PMC7843579 DOI: 10.1007/s12035-020-02128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by a variety of unclear complex pathogenic factors. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced progressive PD mice is a well-recognized classic model for studying PD, but the molecular toxicology of this model is still unclear. Here, for the first time, we report gradual neurodegenerative processes in MPTP/p-induced progressive PD mice model using RNA-seq. Transcriptional responses are orchestrated to regulate the expression of many genes in substantia nigra, such as Ntf3, Pitx3, Th, and Drd2, leading to the degeneration of dopaminergic neurons at last. We proposed that the established model could be divided into three phases based on their molecular toxicological features: "the stress response phase" which maintained the microenvironment homeostasis, "the pre-neurodegenerative phase" which demonstrated observed MPTP/p cytotoxicity and gradual degeneration of dopaminergic neurons, and "the neurodegenerative phase" which reflected distinct damage and dopaminergic neuron apoptotic process. Glia cells exhibited a certain protective effect on dopaminergic neurons in 3rd and 6th MPTP/p-induced cytotoxicity. But in 10th MPTP/p injection, glia cells play a promoting role in PD and tissue damages caused by oxidative stress. This study also indicated that the substantia nigra of PD mice showed unique patterns of changes at each stage. Moreover, neurotrophic signaling pathway, ECM-receptor interaction, oxidative phosphorylation, apoptosis and necroptosis were enriched at 3rd and 6th MPTP/p injection, which might be associated with the PD progress. This study provided an extensive data set of molecular toxicology for elucidating of PD progression and offered comprehensive theoretical knowledge for the development of new therapy.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenwen Hao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyan Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodi Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixiao Huang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xiaosong Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
16
|
Huang T, Fang L, He R, Weng H, Chen X, Ye Q, Qu D. Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels. Aging (Albany NY) 2020; 13:77-88. [PMID: 33291077 PMCID: PMC7835017 DOI: 10.18632/aging.202236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Pink1, Parkin and Fbxo7, three autosomal recessive familial genes of Parkinson’s disease (PD), have been implicated in mitophagy pathways for quality control and clearance of damaged mitochondria, but the interplay of these three genes still remains unclear. Here we present that Fbxo7 and Pink1 play a reciprocal role in the regulation of their protein levels. Regardless of the genotypes of Fbxo7, the wild type and the PD familial mutants of Fbxo7 stabilize the processed form of Pink1, supporting the prior study that none of the PD familial mutations in Fbxo7 have an effect on the interaction with Pink1. On the other hand, the interaction of Fbxo7 with Bag2 further facilitates its capability to stabilize Pink1. Intriguingly, the stabilization of Fbxo7 by Pink1 is specifically observed in substantial nigra pars compacta but striatum and cerebral cortex. Taken together, our findings support the notion that Fbxo7 as a scaffold protein has a chaperon activity in the stabilization of proteins.
Collapse
Affiliation(s)
- Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lijun Fang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huidan Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dianbo Qu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| |
Collapse
|
17
|
The proteasome regulator PI31 is required for protein homeostasis, synapse maintenance, and neuronal survival in mice. Proc Natl Acad Sci U S A 2019; 116:24639-24650. [PMID: 31754024 PMCID: PMC6900516 DOI: 10.1073/pnas.1911921116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The conserved proteasome-binding protein PI31 serves as an adapter to couple proteasomes with cellular motors to mediate their transport to distal tips of neurons where protein breakdown occurs. We generated global and conditional PI31 knockout mouse strains and show that this protein is required for protein homeostasis, and that its conditional inactivation in neurons disrupts synaptic structures and long-term survival. This work establishes a critical role for PI31 and local protein degradation in the maintenance of neuronal architecture, circuitry, and function. Because mutations in the PI31 pathway cause neurodegenerative diseases in humans, reduced PI31 activity may contribute to the etiology of these diseases. Proteasome-mediated degradation of intracellular proteins is essential for cell function and survival. The proteasome-binding protein PI31 (Proteasomal Inhibitor of 31kD) promotes 26S assembly and functions as an adapter for proteasome transport in axons. As localized protein synthesis and degradation is especially critical in neurons, we generated a conditional loss of PI31 in spinal motor neurons (MNs) and cerebellar Purkinje cells (PCs). A cKO of PI31 in these neurons caused axon degeneration, neuronal loss, and progressive spinal and cerebellar neurological dysfunction. For both MNs and PCs, markers of proteotoxic stress preceded axonal degeneration and motor dysfunction, indicating a critical role for PI31 in neuronal homeostasis. The time course of the loss of MN and PC function in developing mouse central nervous system suggests a key role for PI31 in human neurodegenerative diseases.
Collapse
|
18
|
Rathje CC, Randle SJ, Al Rawi S, Skinner BM, Nelson DE, Majumdar A, Johnson EEP, Bacon J, Vlazaki M, Affara NA, Ellis PJ, Laman H. A Conserved Requirement for Fbxo7 During Male Germ Cell Cytoplasmic Remodeling. Front Physiol 2019; 10:1278. [PMID: 31649556 PMCID: PMC6795710 DOI: 10.3389/fphys.2019.01278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has physiologically important functions in regulating mitophagy, proteasome activity and the cell cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here, we show that in addition to the previously known Parkinsonian and hematopoietic phenotypes, male mice with reduced Fbxo7 expression are sterile. In these males, despite successful meiosis, nuclear elongation and eviction of histones from chromatin, the developing spermatids are phagocytosed by Sertoli cells during late spermiogenesis, as the spermatids undergo cytoplasmic remodeling. Surprisingly, despite the loss of all germ cells, there was no evidence of the symplast formation and cell sloughing that is typically associated with spermatid death in other mouse sterility models, suggesting that novel cell death and/or cell disposal mechanisms may be engaged in Fbxo7 mutant males. Mutation of the Drosophila Fbxo7 ortholog, nutcracker (ntc) also leads to sterility with germ cell death during cytoplasmic remodeling, indicating that the requirement for Fbxo7 at this stage is conserved. The ntc phenotype was attributed to decreased levels of the proteasome regulator, DmPI31 and reduced proteasome activity. Consistent with the fly model, we observe a reduction in PI31 levels in mutant mice; however, there is no alteration in proteasome activity in whole mouse testes. Our results are consistent with findings that Fbxo7 regulates PI31 protein levels, and indicates that a defect at the late stages of spermiogenesis, possibly due to faulty spatial dynamics of proteasomes during cytoplasmic remodeling, may underlie the fertility phenotype in mice.
Collapse
Affiliation(s)
- Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Suzanne J Randle
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sara Al Rawi
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin M Skinner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David E Nelson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Antara Majumdar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emma E P Johnson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Bacon
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Myrto Vlazaki
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nabeel A Affara
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Ellis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Heike Laman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
19
|
Wang W, Qin JJ, Rajaei M, Li X, Yu X, Hunt C, Zhang R. Targeting MDM2 for novel molecular therapy: Beyond oncology. Med Res Rev 2019; 40:856-880. [PMID: 31587329 DOI: 10.1002/med.21637] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
The murine double minute 2 (MDM2) oncogene exerts major oncogenic activities in human cancers; it is not only the best-documented negative regulator of the p53 tumor suppressor, but also exerts p53-independent activities. There is an increasing interest in developing MDM2-based targeted therapies. Several classes of MDM2 inhibitors have been evaluated in preclinical models, with a few entering clinical trials, mainly for cancer therapy. However, noncarcinogenic roles for MDM2 have also been identified, demonstrating that MDM2 is involved in many chronic diseases and conditions such as inflammation and autoimmune diseases, dementia and neurodegenerative diseases, heart failure and cardiovascular diseases, nephropathy, diabetes, obesity, and sterility. MDM2 inhibitors have been shown to have promising therapeutic efficacy for treating inflammation and other nonmalignant diseases in preclinical evaluations. Therefore, targeting MDM2 may represent a promising approach for treating and preventing these nonmalignant diseases. In addition, a better understanding of how MDM2 works in nonmalignant diseases may provide new biomarkers for their diagnosis, prognostic prediction, and monitoring of therapeutic outcome. In this review article, we pay special attention to the recent findings related to the roles of MDM2 in the pathogenesis of several nonmalignant diseases, the therapeutic potential of its downregulation or inhibition, and its use as a biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.,Drug Discovery Institute, University of Houston, Houston, Texas
| | - Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiaoyi Yu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Courtney Hunt
- Drug Discovery Institute, University of Houston, Houston, Texas
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.,Drug Discovery Institute, University of Houston, Houston, Texas
| |
Collapse
|