1
|
Schäfer Hackenhaar F, Refhagen N, Hagleitner M, van Leeuwen F, Marquart HV, Madsen HO, Landfors M, Osterman P, Schmiegelow K, Flaegstad T, Jónsson Ó, Kanerva J, Abrahamsson J, Heyman M, Norén Nyström U, Hultdin M, Degerman S. CpG island methylator phenotype classification improves risk assessment in pediatric T-cell acute lymphoblastic leukemia. Blood 2025; 145:2161-2178. [PMID: 39841000 DOI: 10.1182/blood.2024026027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Current intensive treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL) has substantial side effects, highlighting a need for novel biomarkers to improve risk stratification. Canonical biomarkers, such as genetics and immunophenotype, are largely not used in pediatric T-ALL stratification. This study aimed to validate the prognostic relevance of DNA methylation CpG island methylator phenotype (CIMP) risk stratification in 2 pediatric T-ALL patient cohorts: the Nordic Society of Paediatric Haematology (NOPHO) ALL2008 T-ALL study cohort (n = 192) and the Dutch Childhood Oncology Group (DCOG) ALL-10/ALL-11 validation cohorts (n = 156). Both cohorts revealed that combining CIMP classification at diagnosis with measurable residual disease (MRD) at treatment day 29 (D29) or 33 (D33) significantly improved outcome prediction. The poor prognosis subgroup, characterized by CIMP low/D29 or D33 MRD ≥ 0.1%, had a cumulative incidence of relapse (pCIR5yr) of 29% and 23% and overall survival (pOS5yr) of 59.7% and 65.4%, in NOPHO and DCOG, respectively. Conversely, a good prognosis subgroup was also identified representing CIMP high/D29 or D33 MRD < 0.1% with pCIR5yr of 0% and 3.4% and pOS5yr of 98.2% and 94.8%, in NOPHO and DCOG, respectively. For NOPHO, MRD was also evaluated on D15, and the relapse prediction accuracy of CIMP/D29 MRD (0.79) and CIMP/D15 MRD (0.75) classification was comparable, indicating potential for earlier stratification. The evaluation of the biology behind the CIMP subgroups revealed associations with transcriptome profiles, genomic aberrations, and mitotic history, suggesting distinct routes for leukemia development. In conclusion, integrating MRD assessment with the novel CIMP biomarker has the potential to improve risk stratification in pediatric T-ALL and guide future therapeutic decisions.
Collapse
Affiliation(s)
| | - Nina Refhagen
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Frank van Leeuwen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans Ole Madsen
- Department of Clinical Immunology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Pia Osterman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Ólafur Jónsson
- Pediatric Hematology-Oncology, Children's Hospital, Landspitali University Hospital, Reykjavik, Iceland
| | - Jukka Kanerva
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jonas Abrahamsson
- Department of Pediatrics, Institution for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Heyman
- Department of Pediatrics, University Hospitals, Astrid Lindgrens Barnsjukhus, Stockholm, Sweden
| | | | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Simonin M, Touzart A. Epigenetics-based stratification in pediatric T-ALL. Blood 2025; 145:2108-2110. [PMID: 40338578 DOI: 10.1182/blood.2024028016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
|
3
|
Sreedharanunni S, Kaur P, Raina S, Bose P, Kumar A, Sharma P, Naseem S, Jain A, Khadwal A, Sachdeva MUS. Flow Cytometric Intracellular 5-Methyl Cytosine Expression and Its Correlation With Cytogenetics and Measurable Residual Disease in Adult B-Lineage Acute Lymphoblastic Leukemia. Int J Lab Hematol 2025; 47:349-353. [PMID: 39660809 DOI: 10.1111/ijlh.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prabhjot Kaur
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudhanshi Raina
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Bose
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arun Kumar
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shano Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arihant Jain
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Carlund O, Thörn E, Osterman P, Fors M, Dernstedt A, Forsell MNE, Erlanson M, Landfors M, Degerman S, Hultdin M. Semimethylation is a feature of diffuse large B-cell lymphoma, and subgroups with poor prognosis are characterized by global hypomethylation and short telomere length. Clin Epigenetics 2024; 16:68. [PMID: 38773655 PMCID: PMC11110316 DOI: 10.1186/s13148-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ β ≤ 0.8) with large intertumor variation and overall low hypermethylation (β > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (β < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.
Collapse
Affiliation(s)
- Olivia Carlund
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Elina Thörn
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Pia Osterman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maja Fors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Andy Dernstedt
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Mattias N E Forsell
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Martin Erlanson
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Walia Y, de Bock CE, Huang Y. The landscape of alterations affecting epigenetic regulators in T-cell acute lymphoblastic leukemia: Roles in leukemogenesis and therapeutic opportunities. Int J Cancer 2024; 154:1522-1536. [PMID: 38155420 DOI: 10.1002/ijc.34819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy accounting for 10%-15% of pediatric and 20%-25% of adult ALL cases. Epigenetic irregularities in T-ALL include alterations in both DNA methylation and the post-translational modifications on histones which together play a critical role in the initiation and development of T-ALL. Characterizing the oncogenic mutations that result in these epigenetic changes combined with the reversibility of epigenetic modifications represents an opportunity for the development of epigenetic therapies. Oncogenic mutations and deregulated expression of DNA methyltransferases (DNMTs), Ten-Eleven Translocation dioxygenases (TETs), Histone acetyltransferases (HATs) and members of Polycomb Repressor Complex 2 (PRC2) have all been identified in T-ALL. This review focuses on the current understanding of how these mutations lead to epigenetic changes in T-ALL, their association with disease pathogenesis and the current efforts to exploit these clinically through the development of epigenetic therapies in T-ALL treatment.
Collapse
Affiliation(s)
- Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
6
|
Shin HJ, Hua JT, Li H. Recent advances in understanding DNA methylation of prostate cancer. Front Oncol 2023; 13:1182727. [PMID: 37234978 PMCID: PMC10206257 DOI: 10.3389/fonc.2023.1182727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation, is widely studied in cancer. DNA methylation patterns have been shown to distinguish between benign and malignant tumors in various cancers, including prostate cancer. It may also contribute to oncogenesis, as it is frequently associated with downregulation of tumor suppressor genes. Aberrant patterns of DNA methylation, in particular the CpG island hypermethylator phenotype (CIMP), have shown associative evidence with distinct clinical features and outcomes, such as aggressive subtypes, higher Gleason score, prostate-specific antigen (PSA), and overall tumor stage, overall worse prognosis, as well as reduced survival. In prostate cancer, hypermethylation of specific genes is significantly different between tumor and normal tissues. Methylation patterns could distinguish between aggressive subtypes of prostate cancer, including neuroendocrine prostate cancer (NEPC) and castration resistant prostate adenocarcinoma. Further, DNA methylation is detectable in cell-free DNA (cfDNA) and is reflective of clinical outcome, making it a potential biomarker for prostate cancer. This review summarizes recent advances in understanding DNA methylation alterations in cancers with the focus on prostate cancer. We discuss the advanced methodology used for evaluating DNA methylation changes and the molecular regulators behind these changes. We also explore the clinical potential of DNA methylation as prostate cancer biomarkers and its potential for developing targeted treatment of CIMP subtype of prostate cancer.
Collapse
Affiliation(s)
- Hyun Jin Shin
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Pre-Clinical Evaluation of the Hypomethylating Agent Decitabine for the Treatment of T-Cell Lymphoblastic Lymphoma. Cancers (Basel) 2023; 15:cancers15030647. [PMID: 36765607 PMCID: PMC9913791 DOI: 10.3390/cancers15030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.
Collapse
|
8
|
A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14215384. [DOI: 10.3390/cancers14215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Recent years have brought a novel insight into our understanding of childhood acute lymphoblastic leukemia (ALL), along with several breakthrough treatment methods. However, multiple aspects of mechanisms behind this disease remain to be elucidated. Evidence suggests that leukemogenesis in ALL is widely influenced by epigenetic modifications. These changes include: DNA hypermethylation, histone modification and miRNA alteration. DNA hypermethylation in promoter regions, which leads to silencing of tumor suppressor genes, is a common epigenetic alteration in ALL. Histone modifications are mainly caused by an increased expression of histone deacetylases. A dysregulation of miRNA results in changes in the expression of their target genes. To date, several hundred genes were identified as suppressed by epigenetic mechanisms in ALL. What is promising is that epigenetic alterations in ALL may be used as potential biomarkers for classification of subtypes, predicting relapse and disease progression and assessing minimal residual disease. Furthermore, since epigenetic lesions are potentially reversible, an activation of epigenetically silenced genes with the use of hypomethylating agents or histone deacetylase inhibitors may be utilized as a therapeutic strategy for ALL. The following review summarizes our current knowledge about epigenetic modifications in ALL and describes potential uses of epigenetics in the clinical management of this disease.
Collapse
|
9
|
Investigation of measurable residual disease in acute myeloid leukemia by DNA methylation patterns. Leukemia 2022; 36:80-89. [PMID: 34131280 PMCID: PMC8727289 DOI: 10.1038/s41375-021-01316-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Assessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation (DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.
Collapse
|
10
|
Xu H, Yu H, Jin R, Wu X, Chen H. Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia. Cells 2021; 10:cells10123349. [PMID: 34943855 PMCID: PMC8699354 DOI: 10.3390/cells10123349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Acute lymphoblastic leukemia is the most common malignancy in children and is characterized by numerous genetic and epigenetic abnormalities. Epigenetic mechanisms, including DNA methylations and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. Emerging studies are increasing our understanding of the epigenetic role of leukemogenesis and have demonstrated the potential of DNA methylations and histone modifications as a biomarker for lineage and subtypes classification, predicting relapse, and disease progression in acute lymphoblastic leukemia. Epigenetic abnormalities are relatively reversible when treated with some small molecule-based agents compared to genetic alterations. In this review, we conclude the genetic and epigenetic characteristics in ALL and discuss the future role of DNA methylation and histone modifications in predicting relapse, finally focus on the individual and precision therapy targeting epigenetic alterations.
Collapse
|
11
|
Touzart A, Mayakonda A, Smith C, Hey J, Toth R, Cieslak A, Andrieu GP, Tran Quang C, Latiri M, Ghysdael J, Spicuglia S, Dombret H, Ifrah N, Macintyre E, Lutsik P, Boissel N, Plass C, Asnafi V. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci Transl Med 2021; 13:13/595/eabc4834. [PMID: 34039737 DOI: 10.1126/scitranslmed.abc4834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/10/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Adult "T cell" acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is associated with poor outcomes, requiring additional therapeutic options. The DNA methylation landscapes of adult T-ALL remain undercharacterized. Here, we systematically analyzed the DNA methylation profiles of normal thymic-sorted T cell subpopulations and 143 primary adult T-ALLs as part of the French GRAALL 2003-2005 trial. Our results indicated that T-ALL is epigenetically heterogeneous consisting of five subtypes (C1-C5), which were either associated with co-occurring DNA methyltransferase 3 alpha (DNMT3A)/isocitrate dehydrogenase [NADP(+)] 2 (IDH2) mutations (C1), TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) deregulation (C2), T cell leukemia homeobox 3 (TLX3) (C3), TLX1/in cis-homeobox A9 (HOXA9) (C4), or in trans-HOXA9 overexpression (C5). Integrative analysis of DNA methylation and gene expression identified potential cluster-specific oncogenes and tumor suppressor genes. In addition to an aggressive hypomethylated subgroup (C1), our data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor outcome and primary therapeutic response. Using mouse xenografts, we demonstrated that hypermethylated T-ALL samples exhibited therapeutic responses to the DNA hypomethylating agent 5-azacytidine, which significantly (survival probability; P = 0.001 for C3, 0.01 for C4, and 0.0253 for C5) delayed tumor progression. These findings suggest that epigenetic-based therapies may provide an alternative treatment option in hypermethylated T-ALL.
Collapse
Affiliation(s)
- Aurore Touzart
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Anand Mayakonda
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Smith
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Joschka Hey
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.,Germany-Israeli Helmholtz Research School in Cancer Biology, 69120 Heidelberg, Germany
| | - Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Guillaume P Andrieu
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Christine Tran Quang
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Mehdi Latiri
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Jacques Ghysdael
- Institut Curie, Orsay, France.,CNRS UMR3348, Institut Curie, Orsay, France.,INSERM 1278, Centre Universitaire, Orsay, France.,PSL Research University, Paris, France.,Paris-Saclay, 91400 Orsay, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), Equipe labellisée Ligue, UMR1090, 13288 Marseille, France
| | - Hervé Dombret
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, 49933 Angers, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France
| | - Pavlo Lutsik
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nicolas Boissel
- Université Paris Diderot, Institut Universitaire d'Hématologie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, 75010 Paris, France
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. .,German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker -Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75743 Paris, France.
| |
Collapse
|
12
|
Ylitalo EB, Thysell E, Landfors M, Brattsand M, Jernberg E, Crnalic S, Widmark A, Hultdin M, Bergh A, Degerman S, Wikström P. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin Epigenetics 2021; 13:133. [PMID: 34193246 PMCID: PMC8244194 DOI: 10.1186/s13148-021-01119-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with metastatic prostate cancer (PC) are treated with androgen deprivation therapy (ADT) that initially reduces metastasis growth, but after some time lethal castration-resistant PC (CRPC) develops. A better understanding of the tumor biology in bone metastases is needed to guide further treatment developments. Subgroups of PC bone metastases based on transcriptome profiling have been previously identified by our research team, and specifically, heterogeneities related to androgen receptor (AR) activity have been described. Epigenetic alterations during PC progression remain elusive and this study aims to explore promoter gene methylation signatures in relation to gene expression and tumor AR activity. MATERIALS AND METHODS Genome-wide promoter-associated CpG methylation signatures of a total of 94 tumor samples, including paired non-malignant and malignant primary tumor areas originating from radical prostatectomy samples (n = 12), and bone metastasis samples of separate patients with hormone-naive (n = 14), short-term castrated (n = 4) or CRPC (n = 52) disease were analyzed using the Infinium Methylation EPIC arrays, along with gene expression analysis by Illumina Bead Chip arrays (n = 90). AR activity was defined from expression levels of genes associated with canonical AR activity. RESULTS Integrated epigenome and transcriptome analysis identified pronounced hypermethylation in malignant compared to non-malignant areas of localized prostate tumors. Metastases showed an overall hypomethylation in relation to primary PC, including CpGs in the AR promoter accompanied with induction of AR mRNA levels. We identified a Methylation Classifier for Androgen receptor activity (MCA) signature, which separated metastases into two clusters (MCA positive/negative) related to tumor characteristics and patient prognosis. The MCA positive metastases showed low methylation levels of genes associated with canonical AR signaling and patients had a more favorable prognosis after ADT. In contrast, MCA negative patients had low AR activity associated with hypermethylation of AR-associated genes, and a worse prognosis after ADT. CONCLUSIONS A promoter methylation signature classifies PC bone metastases into two groups and predicts tumor AR activity and patient prognosis after ADT. The explanation for the methylation diversities observed during PC progression and their biological and clinical relevance need further exploration.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopedics, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
Lin C, Chen D, Xiao T, Lin D, Lin D, Lin L, Zhu H, Xu J, Huang W, Yang T. DNA methylation-mediated silencing of microRNA-204 enhances T cell acute lymphoblastic leukemia by up-regulating MMP-2 and MMP-9 via NF-κB. J Cell Mol Med 2021; 25:2365-2376. [PMID: 33566449 PMCID: PMC7933971 DOI: 10.1111/jcmm.15896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023] Open
Abstract
T cell acute lymphoblastic leukaemia (T‐ALL) is a highly aggressive haematological cancer of the bone marrow. The abnormal expression of microRNAs (miRNAs) is reportedly involved in T‐ALL development and progression. Thus, we aimed to decipher the involvement of miR‐204 silencing mediated by DNA methylation in the occurrence of T cell acute lymphoblastic leukaemia (T‐ALL). miR‐204 expression was determined in bone marrow and peripheral blood samples from T‐ALL patients by real‐time quantitative PCR (RT‐qPCR) with its effect on cell proliferation evaluated by functional assays. In addition, bisulphite sequencing PCR was employed to detect the DNA methylation level of the miR‐204 promoter region, and the binding site between miR‐204 and IRAK1 was detected by luciferase assay. We found that miR‐204 was down‐regulated in T cells of T‐ALL patients, which was caused by the increased DNA methylation in the promoter region of miR‐204. Moreover, overexpression of miR‐204 inhibited T‐ALL cell proliferation while enhancing their apoptosis through interleukin receptor‐associated kinase 1 (IRAK1), which enhanced the expression of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 through activation of p‐p65. Thus, miR‐204 modulated MMP‐2 and MMP‐9 through IRAK1/NF‐κB signalling pathway, which was confirmed by in vivo assay. Taken together, DNA methylation‐mediated miR‐204 silencing increased the transcription of IRAK1, thus activating the NF‐κB signalling pathway and up‐regulating the downstream targets MMP‐2/MMP‐9.
Collapse
Affiliation(s)
- Congmeng Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Dabing Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tingting Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dandan Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.,Minxi Vocational & Technical College, Longyan, China
| | - Dayi Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Haojie Zhu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingjing Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwen Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
Maćkowska N, Drobna-Śledzińska M, Witt M, Dawidowska M. DNA Methylation in T-Cell Acute Lymphoblastic Leukemia: In Search for Clinical and Biological Meaning. Int J Mol Sci 2021; 22:ijms22031388. [PMID: 33573325 PMCID: PMC7866817 DOI: 10.3390/ijms22031388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. By global methylation analysis, two major phenotypes might be observed in T-ALL: hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.
Collapse
|
15
|
Roels J, Thénoz M, Szarzyńska B, Landfors M, De Coninck S, Demoen L, Provez L, Kuchmiy A, Strubbe S, Reunes L, Pieters T, Matthijssens F, Van Loocke W, Erarslan-Uysal B, Richter-Pechańska P, Declerck K, Lammens T, De Moerloose B, Deforce D, Van Nieuwerburgh F, Cheung LC, Kotecha RS, Mansour MR, Ghesquière B, Van Camp G, Berghe WV, Kowalczyk JR, Szczepański T, Davé UP, Kulozik AE, Goossens S, Curtis DJ, Taghon T, Dawidowska M, Degerman S, Van Vlierberghe P. Aging of preleukemic thymocytes drives CpG island hypermethylation in T-cell acute lymphoblastic leukemia. Blood Cancer Discov 2020; 1:274-289. [PMID: 33179015 PMCID: PMC7116343 DOI: 10.1158/2643-3230.bcd-20-0059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer cells display DNA hypermethylation at specific CpG islands in comparison to their normal healthy counterparts, but the mechanism that drives this so-called CpG island methylator phenotype (CIMP) remains poorly understood. Here, we show that CpG island methylation in human T-cell acute lymphoblastic leukemia (T-ALL) mainly occurs at promoters of Polycomb Repressor Complex 2 (PRC2) target genes that are not expressed in normal or malignant T-cells and which display a reciprocal association with H3K27me3 binding. In addition, we revealed that this aberrant methylation profile reflects the epigenetic history of T-ALL and is established already in pre-leukemic, self-renewing thymocytes that precede T-ALL development. Finally, we unexpectedly uncover that this age-related CpG island hypermethylation signature in T-ALL is completely resistant to the FDA-approved hypomethylating agent Decitabine. Altogether, we here provide conceptual evidence for the involvement of a pre-leukemic phase characterized by self-renewing thymocytes in the pathogenesis of human T-ALL.
Collapse
Affiliation(s)
- Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Morgan Thénoz
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Stien De Coninck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lien Provez
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | - Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia
| | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia
| | - Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, England
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, Leuven, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Utpal P Davé
- Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, Indiana
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, and Hopp Children's Cancer Center at NCT Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - David J Curtis
- Australian Centre for Blood Diseases (ACBD), Monash University, Melbourne, Australia
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
16
|
Erarslan-Uysal B, Kunz JB, Rausch T, Richter-Pechańska P, van Belzen IA, Frismantas V, Bornhauser B, Ordoñez-Rueada D, Paulsen M, Benes V, Stanulla M, Schrappe M, Cario G, Escherich G, Bakharevich K, Kirschner-Schwabe R, Eckert C, Loukanov T, Gorenflo M, Waszak SM, Bourquin JP, Muckenthaler MU, Korbel JO, Kulozik AE. Chromatin accessibility landscape of pediatric T-lymphoblastic leukemia and human T-cell precursors. EMBO Mol Med 2020; 12:e12104. [PMID: 32755029 PMCID: PMC7507092 DOI: 10.15252/emmm.202012104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023] Open
Abstract
We aimed at identifying the developmental stage at which leukemic cells of pediatric T-ALLs are arrested and at defining leukemogenic mechanisms based on ATAC-Seq. Chromatin accessibility maps of seven developmental stages of human healthy T cells revealed progressive chromatin condensation during T-cell maturation. Developmental stages were distinguished by 2,823 signature chromatin regions with 95% accuracy. Open chromatin surrounding SAE1 was identified to best distinguish thymic developmental stages suggesting a potential role of SUMOylation in T-cell development. Deconvolution using signature regions revealed that T-ALLs, including those with mature immunophenotypes, resemble the most immature populations, which was confirmed by TF-binding motif profiles. We integrated ATAC-Seq and RNA-Seq and found DAB1, a gene not related to leukemia previously, to be overexpressed, abnormally spliced and hyper-accessible in T-ALLs. DAB1-negative patients formed a distinct subgroup with particularly immature chromatin profiles and hyper-accessible binding sites for SPI1 (PU.1), a TF crucial for normal T-cell maturation. In conclusion, our analyses of chromatin accessibility and TF-binding motifs showed that pediatric T-ALL cells are most similar to immature thymic precursors, indicating an early developmental arrest.
Collapse
Affiliation(s)
- Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ianthe Aem van Belzen
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Viktoras Frismantas
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Diana Ordoñez-Rueada
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kseniya Bakharevich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sebastian M Waszak
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
17
|
Haider Z, Landfors M, Golovleva I, Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U, Hultdin M, Degerman S. DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Cancer J 2020; 10:45. [PMID: 32345961 PMCID: PMC7188684 DOI: 10.1038/s41408-020-0310-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite having common overlapping immunophenotypic and morphological features, T-cell lymphoblastic leukemia (T-ALL) and lymphoma (T-LBL) have distinct clinical manifestations, which may represent separate diseases. We investigated and compared the epigenetic and genetic landscape of adult and pediatric T-ALL (n = 77) and T-LBL (n = 15) patient samples by high-resolution genome-wide DNA methylation and Copy Number Variation (CNV) BeadChip arrays. DNA methylation profiling identified the presence of CpG island methylator phenotype (CIMP) subgroups within both pediatric and adult T-LBL and T-ALL. An epigenetic signature of 128 differentially methylated CpG sites was identified, that clustered T-LBL and T-ALL separately. The most significant differentially methylated gene loci included the SGCE/PEG10 shared promoter region, previously implicated in lymphoid malignancies. CNV analysis confirmed overlapping recurrent aberrations between T-ALL and T-LBL, including 9p21.3 (CDKN2A/CDKN2B) deletions. A significantly higher frequency of chromosome 13q14.2 deletions was identified in T-LBL samples (36% in T-LBL vs. 0% in T-ALL). This deletion, encompassing the RB1, MIR15A and MIR16-1 gene loci, has been reported as a recurrent deletion in B-cell malignancies. Our study reveals epigenetic and genetic markers that can distinguish between T-LBL and T-ALL, and deepen the understanding of the biology underlying the diverse disease localization.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Martin Erlanson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, and Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flægstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Kimura S, Seki M, Kawai T, Goto H, Yoshida K, Isobe T, Sekiguchi M, Watanabe K, Kubota Y, Nannya Y, Ueno H, Shiozawa Y, Suzuki H, Shiraishi Y, Ohki K, Kato M, Koh K, Kobayashi R, Deguchi T, Hashii Y, Imamura T, Sato A, Kiyokawa N, Manabe A, Sanada M, Mansour MR, Ohara A, Horibe K, Kobayashi M, Oka A, Hayashi Y, Miyano S, Hata K, Ogawa S, Takita J. DNA methylation-based classification reveals difference between pediatric T-cell acute lymphoblastic leukemia and normal thymocytes. Leukemia 2019; 34:1163-1168. [PMID: 31732719 DOI: 10.1038/s41375-019-0626-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Shunsuke Kimura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Kubota
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatrics, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Ryoji Kobayashi
- Department of Pediatrics, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Akira Ohara
- Department of Pediatrics, Toho University, Tokyo, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Satoru Miyano
- Human Genome Center Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Pediatrics, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Touzart A, Boissel N, Belhocine M, Smith C, Graux C, Latiri M, Lhermitte L, Mathieu EL, Huguet F, Lamant L, Ferrier P, Ifrah N, Macintyre E, Dombret H, Asnafi V, Spicuglia S. Low level CpG island promoter methylation predicts a poor outcome in adult T-cell acute lymphoblastic leukemia. Haematologica 2019; 105:1575-1581. [PMID: 31537687 PMCID: PMC7271605 DOI: 10.3324/haematol.2019.223677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer cells undergo massive alterations in their DNA methylation patterns which result in aberrant gene expression and malignant phenotypes. Abnormal DNA methylation is a prognostic marker in several malignancies, but its potential prognostic significance in adult T-cell acute lymphoblastic leukemia (T-ALL) is poorly defined. Here, we performed methylated DNA immunoprecipitation to obtain a comprehensive genome-wide analysis of promoter methylation in adult T-ALL (n=24) compared to normal thymi (n=3). We identified a CpG hypermethylator phenotype that distinguishes two T-ALL subgroups and further validated it in an independent series of 17 T-lymphoblastic lymphoma. Next, we identified a methylation classifier based on nine promoters which accurately predict the methylation phenotype. This classifier was applied to an independent series of 168 primary adult T-ALL treated accordingly to the GRAALL03/05 trial using methylation-specific multiplex ligation-dependent probe amplification. Importantly hypomethylation correlated with specific oncogenic subtypes of T-ALL and identified patients associated with a poor clinical outcome. This methylation-specific multiplex ligation-dependent probe amplification based methylation profiling could be useful for therapeutic stratification of adult T-ALL in routine practice. The GRAALL-2003 and -2005 studies were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively.
Collapse
Affiliation(s)
- Aurore Touzart
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Nicolas Boissel
- Université Paris Diderot, Institut de Recherche Saint-Louis, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Hematology Department, Paris, France
| | - Mohamed Belhocine
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France.,Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France.,Equipe Labéllisée Ligue Contre le Cancer, Marseille, France
| | - Charlotte Smith
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Carlos Graux
- Department of Hematology, Mont-Godinne University Hospital, Yvoir, Belgium
| | - Mehdi Latiri
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Ludovic Lhermitte
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Eve-Lyne Mathieu
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France.,Equipe Labéllisée Ligue Contre le Cancer, Marseille, France
| | - Françoise Huguet
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Laurence Lamant
- Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et INSERM U 892, Angers, France
| | - Elizabeth Macintyre
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Hervé Dombret
- Université Paris Diderot, Institut de Recherche Saint-Louis, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Hematology Department, Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France .,Equipe Labéllisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
20
|
Haider Z, Larsson P, Landfors M, Köhn L, Schmiegelow K, Flaegstad T, Kanerva J, Heyman M, Hultdin M, Degerman S. An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression. Cancer Med 2018; 8:311-324. [PMID: 30575306 PMCID: PMC6346238 DOI: 10.1002/cam4.1917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
Classification of pediatric T‐cell acute lymphoblastic leukemia (T‐ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T‐ALL patients were characterized by genome‐wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2‐1, and novel genes in T‐ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP− subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL‐TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP−), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T‐ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Linda Köhn
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Mats Heyman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Borssén M, Nordlund J, Haider Z, Landfors M, Larsson P, Kanerva J, Schmiegelow K, Flaegstad T, Jónsson ÓG, Frost BM, Palle J, Forestier E, Heyman M, Hultdin M, Lönnerholm G, Degerman S. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 2018. [PMID: 29515676 PMCID: PMC5836434 DOI: 10.1186/s13148-018-0466-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Few biological markers are associated with survival after relapse of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In pediatric T-cell ALL, we have identified promoter-associated methylation alterations that correlate with prognosis. Here, the prognostic relevance of CpG island methylation phenotype (CIMP) classification was investigated in pediatric BCP-ALL patients. Methods Six hundred and one BCP-ALL samples from Nordic pediatric patients (age 1–18) were CIMP classified at initial diagnosis and analyzed in relation to clinical data. Results Among the 137 patients that later relapsed, patients with a CIMP− profile (n = 42) at initial diagnosis had an inferior overall survival (pOS5years 33%) compared to CIMP+ patients (n = 95, pOS5years 65%) (p = 0.001), which remained significant in a Cox proportional hazards model including previously defined risk factors. Conclusion CIMP classification is a strong candidate for improved risk stratification of relapsed BCP-ALL. Electronic supplementary material The online version of this article (10.1186/s13148-018-0466-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magnus Borssén
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Jessica Nordlund
- 2Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Zahra Haider
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Mattias Landfors
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Pär Larsson
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Jukka Kanerva
- 3Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Kjeld Schmiegelow
- 4Department of Paediatrics and Adolescent Medicine, Rigshospitalet, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flaegstad
- 5Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Ólafur Gísli Jónsson
- 6Pediatric Hematology-Oncology, Children's Hospital, Landspitali University Hospital, Reykjavik, Iceland
| | - Britt-Marie Frost
- 7Department of Women's and Children's Health, Pediatrics, University of Uppsala, Uppsala, Sweden
| | - Josefine Palle
- 7Department of Women's and Children's Health, Pediatrics, University of Uppsala, Uppsala, Sweden
| | - Erik Forestier
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Mats Heyman
- 8Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Hultdin
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Gudmar Lönnerholm
- 7Department of Women's and Children's Health, Pediatrics, University of Uppsala, Uppsala, Sweden
| | - Sofie Degerman
- 1Department of Medical Biosciences, Umeå University, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| |
Collapse
|
22
|
Chaber R, Gurgul A, Wróbel G, Haus O, Tomoń A, Kowalczyk J, Szmatoła T, Jasielczuk I, Rybka B, Ryczan-Krawczyk R, Duszeńko E, Stąpor S, Ciebiera K, Paszek S, Potocka N, Arthur CJ, Zawlik I. Whole-genome DNA methylation characteristics in pediatric precursor B cell acute lymphoblastic leukemia (BCP ALL). PLoS One 2017; 12:e0187422. [PMID: 29125853 PMCID: PMC5695275 DOI: 10.1371/journal.pone.0187422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022] Open
Abstract
In addition to genetic alterations, epigenetic abnormalities have been shown to underlie the pathogenesis of acute lymphoblastic leukemia (ALL)—the most common pediatric cancer. The purpose of this study was to characterize the whole genome DNA methylation profile in children with precursor B-cell ALL (BCP ALL) and to compare this profile with methylation observed in normal bone marrow samples. Additional efforts were made to correlate the observed methylation patterns with selected clinical features. We assessed DNA methylation from bone marrow samples obtained from 38 children with BCP ALL at the time of diagnosis along with 4 samples of normal bone marrow cells as controls using Infinium MethylationEPIC BeadChip Array. Patients were diagnosed and stratified into prognosis groups according to the BFM ALL IC 2009 protocol. The analysis of differentially methylated sites across the genome as well as promoter methylation profiles allowed clear separation of the leukemic and control samples into two clusters. 86.6% of the promoter-associated differentially methylated sites were hypermethylated in BCP ALL. Seven sites were found to correlate with the BFM ALL IC 2009 high risk group. Amongst these, one was located within the gene body of the MBP gene and another was within the promoter region- PSMF1 gene. Differentially methylated sites that were significantly related with subsets of patients with ETV6-RUNX1 fusion and hyperdiploidy. The analyzed translocations and change of genes’ sequence context does not affect methylation and methylation seems not to be a mechanism for the regulation of expression of the resulting fusion genes.
Collapse
Affiliation(s)
- Radosław Chaber
- Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Artur Gurgul
- National Research Institute of Animal Production, Laboratory of Genomics, Balice, Poland
| | - Grażyna Wróbel
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Medical University of Wroclaw, Wroclaw, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Tomoń
- Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Jerzy Kowalczyk
- Department of Pediatric, Hematology, Oncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Tomasz Szmatoła
- National Research Institute of Animal Production, Laboratory of Genomics, Balice, Poland
| | - Igor Jasielczuk
- National Research Institute of Animal Production, Laboratory of Genomics, Balice, Poland
| | - Blanka Rybka
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Medical University of Wroclaw, Wroclaw, Poland
| | - Renata Ryczan-Krawczyk
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Medical University of Wroclaw, Wroclaw, Poland
| | - Ewa Duszeńko
- Department of Hematology, Medical University, Wroclaw, Poland
| | - Sylwia Stąpor
- Department of Hematology, Medical University, Wroclaw, Poland
| | | | - Sylwia Paszek
- Centre for Innovative Research in Medical and Natural Sciences, Laboratory of Molecular Biology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Natalia Potocka
- Centre for Innovative Research in Medical and Natural Sciences, Laboratory of Molecular Biology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | | | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Laboratory of Molecular Biology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Department of Genetics, Institution of Experimental and Clinical Medicine, University of Rzeszow, Rzeszow, Poland
- * E-mail:
| |
Collapse
|
23
|
Frobel J, Božić T, Lenz M, Uciechowski P, Han Y, Herwartz R, Strathmann K, Isfort S, Panse J, Esser A, Birkhofer C, Gerstenmaier U, Kraus T, Rink L, Koschmieder S, Wagner W. Leukocyte Counts Based on DNA Methylation at Individual Cytosines. Clin Chem 2017; 64:566-575. [PMID: 29118064 DOI: 10.1373/clinchem.2017.279935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND White blood cell counts are routinely measured with automated hematology analyzers, by flow cytometry, or by manual counting. Here, we introduce an alternative approach based on DNA methylation (DNAm) at individual CG dinucleotides (CpGs). METHODS We identified candidate CpGs that were nonmethylated in specific leukocyte subsets. DNAm levels (ranging from 0% to 100%) were analyzed by pyrosequencing and implemented into deconvolution algorithms to determine the relative composition of leukocytes. For absolute quantification of cell numbers, samples were supplemented with a nonmethylated reference DNA. RESULTS Conventional blood counts correlated with DNAm at individual CpGs for granulocytes (r = -0.91), lymphocytes (r = -0.91), monocytes (r = -0.74), natural killer (NK) cells (r = -0.30), T cells (r = -0.73), CD4+ T cells (r = -0.41), CD8+ T cells (r = -0.88), and B cells (r = -0.66). Combination of these DNAm measurements into the "Epi-Blood-Count" provided similar precision as conventional methods in various independent validation sets. The method was also applicable to blood samples that were stored at 4 °C for 7 days or at -20 °C for 3 months. Furthermore, absolute cell numbers could be determined in frozen blood samples upon addition of a reference DNA, and the results correlated with measurements of automated analyzers in fresh aliquots (r = 0.84). CONCLUSIONS White blood cell counts can be reliably determined by site-specific DNAm analysis. This approach is applicable to very small blood volumes and frozen samples, and it allows for more standardized and cost-effective analysis in clinical application.
Collapse
Affiliation(s)
- Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Tanja Božić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Michael Lenz
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany.,Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Peter Uciechowski
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Han
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Reinhild Herwartz
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Klaus Strathmann
- Institute for Transfusion Medicine, University Hospital Aachen, Aachen, Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - André Esser
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | | | | | - Thomas Kraus
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany; .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
24
|
Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2017; 51:129-138. [PMID: 28887175 DOI: 10.1016/j.semcancer.2017.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. ALL arises from the malignant transformation of progenitor B- and T-cells in the bone marrow into leukemic cells, but the mechanisms underlying this transformation are not well understood. Recent technical advances and decreasing costs of methods for high-throughput DNA sequencing and SNP genotyping have stimulated systematic studies of the epigenetic changes in leukemic cells from pediatric ALL patients. The results emerging from these studies are increasing our understanding of the epigenetic component of leukemogenesis and have demonstrated the potential of DNA methylation as a biomarker for lineage and subtype classification, prognostication, and disease progression in ALL. In this review, we provide a concise examination of the epigenetic studies in ALL, with a focus on DNA methylation and mutations perturbing genes involved in chromatin modification, and discuss the future role of epigenetic analyses in research and clinical management of ALL.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ann-Christine Syvänen
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
25
|
Synergistic Cytotoxic Effect of L-Asparaginase Combined with Decitabine as a Demethylating Agent in Pediatric T-ALL, with Specific Epigenetic Signature. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1985750. [PMID: 28003999 PMCID: PMC5150123 DOI: 10.1155/2016/1985750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022]
Abstract
T-Acute Lymphoblastic Leukemia (T-ALL) remains a subgroup of pediatric ALL, with a lower response to standard chemotherapy. Some recent studies established the fundamental role of epigenetic aberrations such as DNA hypermethylation, to influence patients' outcome and response to chemotherapy. Moreover, L-asparaginase is an important chemotherapeutic agent for treatment of ALL and resistance to this drug has been linked to ASNS expression, which can be silenced through methylation. Therefore, we tested whether the sensitivity of T-ALL cell lines towards L-asparaginase is correlated to the epigenetic status of ASNS gene and whether the sensitivity can be modified by concurrent demethylating treatment. Hence we treated different T-ALL cell lines with L-asparaginase and correlated different responses to the treatment with ASNS expression. Then we demonstrated that the ASNS expression was dependent on the methylation status of the promoter. Finally we showed that, despite the demethylating effect on the ASNS gene expression, the combined treatment with the demethylating agent Decitabine could synergistically improve the L-asparaginase sensitivity in those T-ALL cell lines characterized by hypermethylation of the ASNS gene. In conclusion, this preclinical study identified an unexpected synergistic activity of L-asparaginase and Decitabine in the subgroup of T-ALL with low ASNS expression due to hypermethylation of the ASNS promoter, while it did not restore sensitivity in the resistant cell lines characterized by higher ASNS expression.
Collapse
|
26
|
Karrman K, Johansson B. Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2016; 56:89-116. [PMID: 27636224 DOI: 10.1002/gcc.22416] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
The most common pediatric malignancy is acute lymphoblastic leukemia (ALL), of which T-cell ALL (T-ALL) comprises 10-15% of cases. T-ALL arises in the thymus from an immature thymocyte as a consequence of a stepwise accumulation of genetic and epigenetic aberrations. Crucial biological processes, such as differentiation, self-renewal capacity, proliferation, and apoptosis, are targeted and deranged by several types of neoplasia-associated genetic alteration, for example, translocations, deletions, and mutations of genes that code for proteins involved in signaling transduction, epigenetic regulation, and transcription. Epigenetically, T-ALL is characterized by gene expression changes caused by hypermethylation of tumor suppressor genes, histone modifications, and miRNA and lncRNA abnormalities. Although some genetic and gene expression patterns have been associated with certain clinical features, such as immunophenotypic subtype and outcome, none has of yet generally been implemented in clinical routine for treatment decisions. The recent advent of massive parallel sequencing technologies has dramatically increased our knowledge of the genetic blueprint of T-ALL, revealing numerous fusion genes as well as novel gene mutations. The challenges now are to integrate all genetic and epigenetic data into a coherent understanding of the pathogenesis of T-ALL and to translate the wealth of information gained in the last few years into clinical use in the form of improved risk stratification and targeted therapies. Here, we provide an overview of pediatric T-ALL with an emphasis on the acquired genetic alterations that result in this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kristina Karrman
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Department of Clinical Genetics, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|