1
|
Vázquez-Aldana M, Sixto-Berrocal AM, Arcos-Casarrubias JA, Martínez-Trujillo MA, Cruz-Díaz MR. Biological and chemical synergy in chitin and chitosan production: The role of process sequencing in shrimp shell waste treatment. Int J Biol Macromol 2025; 306:141247. [PMID: 39971031 DOI: 10.1016/j.ijbiomac.2025.141247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
A combined biological and chemical methodology was applied to valorize shrimp shell waste into chitin and chitosan. This strategy aims to enhance process efficiency and sustainability. Various sequences of deproteinization (DP) and demineralization (DM) were evaluated, using Bifidobacterium lactis and Lactobacillus delbrueckii as biocatalysts, respectively. The DP-DM sequence removed up to 96 % of the protein and 98 % of the calcium, surpassing chemical methods. This also eliminated the need to control the pH of the fermentation, resulting in a simpler process. In contrast, the DM-DP sequence required controlling the pH of the process to optimize protease activity. Enzymatic deacetylation preserved the chitosan structure but produced lower molecular weight oligomers. Therefore, an additional chemical step was necessary to achieve a higher degree of deacetylation and improve the purity and structural integrity of chitosan. This combined biological-chemical methodology offers a more efficient and sustainable pathway for producing high-quality chitin and chitosan, showing a superior alternative to purely chemical processes for the treatment of shrimp shell waste. The obtained biopolymers possess desirable physicochemical properties suitable for diverse industrial and biomedical applications, highlighting the potential for scalable and environmentally friendly bioprocessing.
Collapse
Affiliation(s)
- Marlenne Vázquez-Aldana
- Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico
| | - Ana María Sixto-Berrocal
- Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico; Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno. Av. 1° de mayo s/n Colonia Santa Ma, Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico
| | - José Antonio Arcos-Casarrubias
- Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico
| | - María Aurora Martínez-Trujillo
- Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico.
| | - Martín Rogelio Cruz-Díaz
- Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnologico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico; Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno. Av. 1° de mayo s/n Colonia Santa Ma, Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico.
| |
Collapse
|
2
|
Mei Z, Kuzhir P, Godeau G. Update on Chitin and Chitosan from Insects: Sources, Production, Characterization, and Biomedical Applications. Biomimetics (Basel) 2024; 9:297. [PMID: 38786507 PMCID: PMC11118814 DOI: 10.3390/biomimetics9050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Insects, renowned for their abundant and renewable biomass, stand at the forefront of biomimicry-inspired research and offer promising alternatives for chitin and chitosan production considering mounting environmental concerns and the inherent limitations of conventional sources. This comprehensive review provides a meticulous exploration of the current state of insect-derived chitin and chitosan, focusing on their sources, production methods, characterization, physical and chemical properties, and emerging biomedical applications. Abundant insect sources of chitin and chitosan, from the Lepidoptera, Coleoptera, Orthoptera, Hymenoptera, Diptera, Hemiptera, Dictyoptera, Odonata, and Ephemeroptera orders, were comprehensively summarized. A variety of characterization techniques, including spectroscopy, chromatography, and microscopy, were used to reveal their physical and chemical properties like molecular weight, degree of deacetylation, and crystallinity, laying a solid foundation for their wide application, especially for the biomimetic design process. The examination of insect-derived chitin and chitosan extends into a wide realm of biomedical applications, highlighting their unique advantages in wound healing, tissue engineering, drug delivery, and antimicrobial therapies. Their intrinsic biocompatibility and antimicrobial properties position them as promising candidates for innovative solutions in diverse medical interventions.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
- Université Côte d’Azur, Institut Méditerranéen du Risque de l’Environnement et du Développement Durable, 9 rue Julien Laupêtre, 06200 Nice, France
| |
Collapse
|
3
|
Tawfeek HM, Younis MA, Aldosari BN, Almurshedi AS, Abdelfattah A, Abdel-Aleem JA. Impact of the Functional Coating of Silver Nanoparticles on their In Vivo Performance and Biosafety. Drug Dev Ind Pharm 2023:1-8. [PMID: 37184200 DOI: 10.1080/03639045.2023.2214207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
OBJECTIVE AND SIGNIFICANCE Silver nanoparticles (AgNPs) have become an interesting therapeutic modality and drug delivery platform. Herein, we aimed to investigate the impact of functional coating on the in vivo performance of AgNPs as an economic and scalable method to modulate their behavior. METHODS AgNPs were coated with chitosan (CHI) as a model biopolymer using a one-pot reduction-based method, where CHI of two molecular weight ranges were investigated. The resultant CHI-coated AgNPs (AgNPs-CHI) were characterized using UV-VIS spectroscopy, DLS, and TEM. AgNPs were administered intravenously to rats and their biodistribution and serum levels of hepato-renal function markers were monitored 24 h later compared to plain AgNO3 as a positive control. RESULTS UV-VIS spectroscopy confirmed the successful coating of AgNPs with CHI. DLS revealed the superiority of medium molecular weight CHI over its low molecular weight counterpart. AgNPs-CHI demonstrated a semi-complete clearance from the systemic circulation, a liver-dominated tissue tropism, and a limited renal exposure. On the other hand, AgNO3 was poorly cleared from the circulation, with a relatively high renal exposure and a non-specific tissue tropism. AgNPs-CHI were well-tolerated by the liver and kidney without signs of toxicity or inflammation, in contrary with AgNO3 which resulted in a significant elevation of Creatinine (CRE), Urea, and Total Protein (TP), suggesting a significant nephrotoxicity and inflammation. CONCLUSIONS Functional coating of AgNPs with CHI substantially modulated their in vivo behavior, promoting their hepatic selectivity and biotolerability, which can be invested in the development of drug delivery systems for the treatment of liver diseases.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basma Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Jelan A Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
4
|
Jeong DY, Lee ET, Lee J, Shin DC, Lee YH, Park JK. Effect of chemical structural properties of chitooligosaccharides on the immune activity of macrophages. Macromol Res 2023. [DOI: 10.1007/s13233-023-00143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Ali MS, Ho TC, Razack SA, Haq M, Roy VC, Park JS, Kang HW, Chun BS. Oligochitosan recovered from shrimp shells through subcritical water hydrolysis: Molecular size reduction and biological activities. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Chang FC, Zhou Y, James MM, Zareie HM, Ando Y, Yang J, Zhang M. Effect of Degree of Deacetylation of Chitosan/Chitin on Human Neural Stem Cell Culture. Macromol Biosci 2023; 23:e2200389. [PMID: 36281904 DOI: 10.1002/mabi.202200389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/19/2023]
Abstract
Stem cell therapy and research for neural diseases depends on reliable reproduction of neural stem cells. Chitosan-based materials have been proposed as a substrate for culturing human neural stem cells (hNSCs) in the pursuit of clinically compatible culture conditions that are chemically defined and compliant with good manufacturing practices. The physical and biochemical properties of chitosan and chitin are strongly regulated by the degree of deacetylation (DD). However, the effect of DD on hNSC behavior has not been systematically investigated. In this study, films with DD ranging from 93% to 14% are fabricated with chitosan and chitin. Under xeno-free conditions, hNSCs proliferate preferentially on films with a higher DD, exhibiting adherent morphology and retaining multipotency. Lowering the DD leads to formation of neural stem cell spheroids due to unsteady adhesion. The neural spheroids present NSC multipotency protein expression reduction and cytoplasmic translocation. This study provides an insight into the influence of the DD on hNSCs behavior and may serve as a guideline for hNSC research using chitosan-based biomaterials. It demonstrates the capability of controlling hNSC fate by simply tailoring the DD of chitosan.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Matthew Michael James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Hadi M Zareie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.,School of Mathematical and Physical Science, University of Technology, Ultimo, Sydney, NSW, 2007, Australia
| | - Yoshiki Ando
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu, Shiga, 520-2362, Japan
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Yang M, Ren W, Li G, Yang P, Chen R, He H. The effect of structure and preparation method on the bioactivity of polysaccharides from plants and fungi. Food Funct 2022; 13:12541-12560. [PMID: 36421015 DOI: 10.1039/d2fo02029g] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polysaccharides are not only the main components in the cell walls of plants and fungi, but also a structure that supports and protects cells. In the process of obtaining polysaccharides from raw materials containing cell walls, the polysaccharides on the cell walls are the products and also a factor that affects the extraction rate. Polysaccharides derived from plants and fungi have mild characteristics and exhibit various biological activities. The biological activity of polysaccharides is related to their chemical structure. This review summarizes the effects of the physicochemical properties and structure of polysaccharides, from cell walls in raw materials, that have an impact on their biological activities, including molecular weight, monosaccharide composition, chain structure, and uronic acid content. Also, the structure of certain natural polysaccharides limits their biological activity. Chemical modification and degradation of these structures can enhance the pharmacological properties of natural polysaccharides to a certain extent. At the same time, the processing method affects the structure and yield of polysaccharides on the cell wall and in the cell. The extraction and purification methods are summarized, and the effects of preparation methods on the structure and physiological effects of polysaccharides from plants and fungi are discussed.
Collapse
Affiliation(s)
- Manli Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenjing Ren
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Geyuan Li
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Rong Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods. Polymers (Basel) 2022; 14:polym14163417. [PMID: 36015674 PMCID: PMC9416096 DOI: 10.3390/polym14163417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Low molecular weight chitosan (LMWC) has higher solubility and lower viscosity allowing for a wider pharmaceutical application compared to high molecular weight chitosan. LMWC chitosan can be obtained through a chitosan depolymerization process. This research aimed to produce LWMC using the combination of formic acid and ultrasonication method with the optimal condition of the depolymerization process. The chitosan depolymerization method was performed by combining formic acid and ultrasonication. The optimum conditions of the depolymerization process were obtained using the Box–Behnken design. The LMWC obtained from depolymerization was characterized to identify its yield, degree of deacetylation, the molecular weight, structure, morphology, thermal behavior, and crystallinity index. Results: The characterization results of LWMC obtained from the depolymerization process using the optimum conditions showed that the yield was 89.398%; the degree of deacetylation was 98.076%; the molecular weight was 32.814 kDa; there was no change in the chemical structure, LWMC had disorganized shape, there was no change in the thermal behavior, and LWMC had a more amorphous shape compared to native chitosan. Conclusion: The production of LWMC involving depolymerization in the presence of weak acid and ultrasonication can be developed by using the optimal condition of the depolymerization process.
Collapse
|
9
|
Dual Role of Chitin as the Double Edged Sword in Controlling the NLRP3 Inflammasome Driven Gastrointestinal and Gynaecological Tumours. Mar Drugs 2022; 20:md20070452. [PMID: 35877745 PMCID: PMC9323176 DOI: 10.3390/md20070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 01/04/2023] Open
Abstract
The role of NLRP3 in the tumour microenvironment is elusive. In some cancers, the activation of NLRP3 causes a worse prognosis and in some cancers, NLRP3 increases chances of survivability. However, in many cases where NLRP3 has a protumorigenic role, inhibition of NLRP3 would be a crucial step in therapy. Consequently, activation of NLRP3 would be of essence when inflammation is required. Although many ways of inhibiting and activating NLRP3 in cancers have been discussed before, not a lot of focus has been given to chitin and chitosan in this context. The availability of these marine compounds and their versatility in dealing with inflammation needs to be investigated further in relation with cancers, along with other natural extracts. In this review, the effects of NLRP3 on gastrointestinal and gynaecological cancers and the impact of different natural extracts on NLRP3s with special emphasis on chitin and chitosan is discussed. A research gap in using chitin derivatives as anti/pro-inflammatory agents in cancer treatment has been highlighted.
Collapse
|
10
|
Ma N, Wan Y, Zhou L, Wang L, Qian W. Insights into the interaction between chitosan and pepsin by optical interferometry. Int J Biol Macromol 2022; 203:563-571. [PMID: 35120935 DOI: 10.1016/j.ijbiomac.2022.01.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Polysaccharides and proteins have attracted increasing interest in the fields of biomedicine and green chemical as biocomposites due to their inherent versatility. Here, we used silica colloidal crystal (SCC) films combined with an ordered porous layer interferometry (OPLI) method to investigate the interaction between chitosan and pepsin at different concentrations and pH values in real time. Zeta potential was combined with attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform infrared microscopy (FTIR microscopy) to illustrate the interaction mechanism further. The results showed that the variation and slope of the optical thickness (OT) caused by the Fabry-Perot fringes represent the degree and process of interaction. The protonation of chitosan and the net charge carried by pepsin caused various degrees of electrostatic attraction under different pH values. Meanwhile, the rate and degree of hydrolysis were positively correlated with pepsin concentration. This work results provide a theoretical basis for designing novel composites based on the development of polysaccharides and proteins.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
11
|
Khan S, Hussain A, Attar F, Bloukh SH, Edis Z, Sharifi M, Balali E, Nemati F, Derakhshankhah H, Zeinabad HA, Nabi F, Khan RH, Hao X, Lin Y, Hua L, Ten Hagen TLM, Falahati M. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomed Pharmacother 2021; 146:112531. [PMID: 34906771 DOI: 10.1016/j.biopha.2021.112531] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the promising medicinal properties, berberine (BBR), due to its relatively poor solubility in plasma, low bio-stability and limited bioavailability is not used broadly in clinical stages. Due to these drawbacks, drug delivery systems (DDSs) based on nanoscale natural polysaccharides, are applied to address these concerns. Natural polymers are biodegradable, non-immunogenic, biocompatible, and non-toxic agents that are capable of trapping large amounts of hydrophobic compounds in relatively small volumes. The use of nanoscale natural polysaccharide improves the stability and pharmacokinetics of the small molecules and, consequently, increases the therapeutic effects and reduces the side effects of the small molecules. Therefore, this paper presents an overview of the different methods used for increasing the BBR solubility and bioavailability. Afterwards, the pharmacodynamic and pharmacokinetic of BBR nanostructures were discussed followed by the introduction of natural polysaccharides of plant (cyclodextrines, glucomannan), the shells of crustaceans (chitosan), and the cell wall of brown marine algae (alginate)-based origins used to improve the dissolution rate of poorly soluble BBR and their anticancer and antibacterial properties. Finally, the anticancer and antibacterial mechanisms of free BBR and BBR nanostructures were surveyed. In conclusion, this review may pave the way for providing some useful data in the development of BBR-based platforms for clinical applications.
Collapse
Affiliation(s)
- Suliman Khan
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ebrahim Balali
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland; Institute of Pathology, Univesity of Berne, Berne, Switzerland
| | - Faisal Nabi
- Biotechnology Unit, Aligarh Muslim University, India
| | | | - Xiao Hao
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yueting Lin
- High Level Talent Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Linlin Hua
- Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
13
|
Yao W, Xu Z, Sun J, Luo J, Wei Y, Zou J. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. Eur J Pharm Sci 2021; 159:105713. [PMID: 33453389 DOI: 10.1016/j.ejps.2021.105713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Rhein (RH) is a candidate for the treatment of kidney diseases. However, clinical application of RH is impeded by low aqueous solubility and oral bioavailability. Deoxycholic acid-conjugated nanoparticles (DNPs) were prepared by ionic interaction for enhancing intestinal absorption by targeting the apical sodium-dependent bile acid transporter in the small intestine. Resultant DNPs showed relatively high entrapment efficiency (90.7 ± 0.73)% and drug-loading efficiency (6.5 ± 0.29)% with a particle size of approximately 190 nm and good overall dispersibility. In vitro release of RH from DNPs exhibited sustained and pH-dependent profiles. Cellular uptake and apparent permeability coefficient (Papp) of the DNPs were 3.25- and 5.05-fold higher than that of RH suspensions, respectively. An in vivo pharmacokinetic study demonstrated significantly enhanced oral bioavailability of RH when encapsulated in DNPs, with 2.40- and 3.33-fold higher Cmax and AUC0-inf compared to RH suspensions, respectively. DNPs are promising delivery platforms for poorly absorbed drugs by oral administration.
Collapse
Affiliation(s)
- Wenjie Yao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Zhishi Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Jiang Sun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Jingwen Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Yinghui Wei
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China.
| | - Jiafeng Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| |
Collapse
|
14
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
15
|
Shoueir KR, El-Desouky N, Rashad MM, Ahmed MK, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol 2021; 167:1176-1197. [PMID: 33197477 DOI: 10.1016/j.ijbiomac.2020.11.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, β, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.
Collapse
Affiliation(s)
- Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France.
| | - Nagwa El-Desouky
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Moataz M Rashad
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Izabela Janowska
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Pharos University, Alexandria, Egypt.
| |
Collapse
|
16
|
Lan R, Li Y, Shen R, Yu R, Jing L, Guo S. Preparation of low-molecular-weight chondroitin sulfates by complex enzyme hydrolysis and their antioxidant activities. Carbohydr Polym 2020; 241:116302. [DOI: 10.1016/j.carbpol.2020.116302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
|
17
|
Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr Res 2020; 492:108004. [DOI: 10.1016/j.carres.2020.108004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
|
18
|
Queda F, Covas G, Silva T, Santos CA, Bronze MR, Cañada FJ, Corvo MC, Filipe SR, Marques MMB. A top-down chemo-enzymatic approach towards N-acetylglucosamine-N-acetylmuramic oligosaccharides: Chitosan as a reliable template. Carbohydr Polym 2019; 224:115133. [DOI: 10.1016/j.carbpol.2019.115133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|