1
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
3
|
Chahine Z, Le Roch KG. Decrypting the complexity of the human malaria parasite biology through systems biology approaches. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:940321. [PMID: 37200864 PMCID: PMC10191146 DOI: 10.3389/fsysb.2022.940321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.
Collapse
|
4
|
Evolutionary insights into the microneme-secreted, chitinase-containing high molecular weight protein complexes involved in Plasmodium invasion of the mosquito midgut. Infect Immun 2021; 90:e0031421. [PMID: 34606368 DOI: 10.1128/iai.00314-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While general mechanisms by which Plasmodium ookinetes invade the mosquito midgut have been studied, details remain to be understood regarding the interface of the ookinete, specifically its barriers to invasion, such as the proteolytic milieu, the chitin-containing, protein cross-linked peritrophic matrix, and the midgut epithelium. Here we review knowledge of Plasmodium chitinases and the mechanisms by which they mediate the ookinete crossing the peritrophic matrix. The integration of new genomic insights into previous findings advances our understanding of Plasmodium evolution. Recently obtained Plasmodium spp. genomic data enable identification of the conserved residues in the experimentally demonstrated hetero-multimeric, high molecular weight complex comprised of a short chitinase covalently linked to binding partners, von Willebrand factor A domain-related protein (WARP) and secreted ookinete adhesive protein (SOAP). Artificial intelligence-based high-resolution structural modeling using the DeepMind AlphaFold algorithm yielded highly informative 3D structures and insights into how short chitinases, WARP, and SOAP may interact at the atomic level to form the ookinete-secreted peritrophic matrix invasion complex. Elucidating the significance of the divergence of ookinete-secreted micronemal proteins among Plasmodium species could lead to a better understanding of ookinete invasion machinery and the co-evolution of Plasmodium-mosquito interactions.
Collapse
|
5
|
Patra KP, Kaur H, Kolli SK, Wozniak JM, Prieto JH, Yates JR, Gonzalez DJ, Janse CJ, Vinetz JM. A Hetero-Multimeric Chitinase-Containing Plasmodium falciparum and Plasmodium gallinaceum Ookinete-Secreted Protein Complex Involved in Mosquito Midgut Invasion. Front Cell Infect Microbiol 2021; 10:615343. [PMID: 33489941 PMCID: PMC7821095 DOI: 10.3389/fcimb.2020.615343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria parasites are transmitted by Anopheles mosquitoes. During its life cycle in the mosquito vector the Plasmodium ookinete escapes the proteolytic milieu of the post-blood meal midgut by traversing the midgut wall. This process requires penetration of the chitin-containing peritrophic matrix lining the midgut epithelium, which depends in part on ookinete-secreted chitinases. Plasmodium falciparum ookinetes have one chitinase (PfCHT1), whereas ookinetes of the avian-infecting parasite, P. gallinaceum, have two, a long and a short form, PgCHT1 and PgCHT2, respectively. Published data indicates that PgCHT2 forms a high molecular weight (HMW) reduction-sensitive complex; and one binding partner is the ookinete-produced von Willebrand A-domain-containing protein, WARP. Size exclusion chromatography data reported here show that P. gallinaceum PgCHT2 and its ortholog, P. falciparum PfCHT1 are covalently-linked components of a HMW chitinase-containing complex (> 1,300 kDa). Mass spectrometry of ookinete-secreted proteins isolated using a new chitin bead pull-down method identified chitinase-associated proteins in P. falciparum and P. gallinaceum ookinete-conditioned culture media. Mass spectrometry of this complex showed the presence of several micronemal proteins including von Willebrand factor A domain-related protein (WARP), ookinete surface enolase, and secreted ookinete adhesive protein (SOAP). To test the hypothesis that ookinete-produced PfCHT1 can form a high molecular homo-multimer or, alternatively, interacts with P. berghei ookinete-produced proteins to produce an HMW hetero-multimer, we created chimeric P. berghei parasites expressing PfCHT1 to replace PbCHT1, enabling the production of large numbers of PfCHT1-expressing ookinetes. We show that chimeric P. berghei ookinetes express monomeric PfCHT1, but a HMW complex containing PfCHT1 is not present. A better understanding of the chitinase-containing HMW complex may enhance development of next-generation vaccines or drugs that target malaria transmission stages.
Collapse
Affiliation(s)
- Kailash P Patra
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Hargobinder Kaur
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob M Wozniak
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Judith Helena Prieto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Department of Chemistry, Western Connecticut State University, Danbury, CT, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Swearingen KE, Lindner SE. Plasmodium Parasites Viewed through Proteomics. Trends Parasitol 2018; 34:945-960. [PMID: 30146456 PMCID: PMC6204299 DOI: 10.1016/j.pt.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
Early sequencing efforts that produced the genomes of several species of malaria parasites (Plasmodium genus) propelled transcriptomic and proteomic efforts. In this review, we focus upon some of the exciting proteomic advances from studies of Plasmodium parasites over approximately the past decade. With improvements to both instrumentation and data-processing capabilities, long-standing questions about the forms and functions of these important pathogens are rapidly being answered. In particular, global and subcellular proteomics, quantitative proteomics, and the detection of post-translational modifications have all revealed important features of the parasite's regulatory mechanisms. Finally, we provide our perspectives on future applications of proteomics to Plasmodium research, as well as suggestions for further improvement through standardization of data deposition, analysis, and accessibility.
Collapse
Affiliation(s)
- Kristian E Swearingen
- Institute for Systems Biology, Seattle, WA 98109, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
7
|
Transcriptome analysis based detection of Plasmodium falciparum development in Anopheles stephensi mosquitoes. Sci Rep 2018; 8:11568. [PMID: 30068910 PMCID: PMC6070505 DOI: 10.1038/s41598-018-29969-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/18/2018] [Indexed: 02/03/2023] Open
Abstract
The Plasmodium life cycle within the mosquito involves the gamete, zygote, motile ookinete, and the oocyst stage that supports sporogony and sporozoite formation. We mapped the P. falciparum transcriptome as the parasite progresses through the oocyst stage of development on days 2, 4, 6, and 8 post-P. falciparum infectious blood meal. Through these genomic studies, we identified 212 novel transmission stage biomarkers including genes that are developmentally expressed at a single time point and genes that are pan-developmentally expressed at all four time points in P. falciparum oocysts. Validation of a small subset of genes at the transcriptional and translational level resulted in identification of a signature of genes/proteins that can detect parasites within the mosquito as early as day 2 post-infectious blood meal and can be used to distinguish early versus late stage P. falciparum oocyst development in the mosquito. Currently, circumsporozoite protein (CSP), which is detectable only after day 7 post-infection, is the only marker used for detection of P. falciparum infection in mosquitoes. Our results open the prospect to develop a non-CSP based detection assay for assessment of P. falciparum infection in mosquitoes and evaluate the effect of intervention measures on malaria transmission in an endemic setting.
Collapse
|
8
|
Maternally supplied S-acyl-transferase is required for crystalloid organelle formation and transmission of the malaria parasite. Proc Natl Acad Sci U S A 2016; 113:7183-8. [PMID: 27303037 DOI: 10.1073/pnas.1522381113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmission of the malaria parasite from the mammalian host to the mosquito vector requires the formation of adequately adapted parasite forms and stage-specific organelles. Here we show that formation of the crystalloid-a unique and short-lived organelle of the Plasmodium ookinete and oocyst stage required for sporogony-is dependent on the precisely timed expression of the S-acyl-transferase DHHC10. DHHC10, translationally repressed in female Plasmodium berghei gametocytes, is activated translationally during ookinete formation, where the protein is essential for the formation of the crystalloid, the correct targeting of crystalloid-resident protein LAP2, and malaria parasite transmission.
Collapse
|
9
|
Lasonder E, Rijpma SR, van Schaijk BCL, Hoeijmakers WAM, Kensche PR, Gresnigt MS, Italiaander A, Vos MW, Woestenenk R, Bousema T, Mair GR, Khan SM, Janse CJ, Bártfai R, Sauerwein RW. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res 2016; 44:6087-101. [PMID: 27298255 PMCID: PMC5291273 DOI: 10.1093/nar/gkw536] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these ‘repressed transcripts’ have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.
Collapse
Affiliation(s)
- Edwin Lasonder
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Sanna R Rijpma
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Ben C L van Schaijk
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Wieteke A M Hoeijmakers
- Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Philip R Kensche
- Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Mark S Gresnigt
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Annet Italiaander
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martijn W Vos
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Rob Woestenenk
- Flow Cytometry Facility, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Teun Bousema
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Gunnar R Mair
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, D-69120 Heidelberg, Germany
| | - Shahid M Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Richárd Bártfai
- Malaria Epigenomics Group, Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Parasitology, Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
10
|
Santos JM, Kehrer J, Franke-Fayard B, Frischknecht F, Janse CJ, Mair GR. The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission. Sci Rep 2015; 5:16034. [PMID: 26526684 PMCID: PMC4630622 DOI: 10.1038/srep16034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022] Open
Abstract
The post-translational addition of C-16 long chain fatty acids to protein cysteine residues is catalysed by palmitoyl-S-acyl-transferases (PAT) and affects the affinity of a modified protein for membranes and therefore its subcellular localisation. In apicomplexan parasites this reversible protein modification regulates numerous biological processes and specifically affects cell motility, and invasion of host cells by Plasmodium falciparum merozoites and Toxoplasma gondii tachyzoites. Using inhibitor studies we show here that palmitoylation is key to transformation of zygotes into ookinetes during initial mosquito infection with P. berghei. We identify DHHC2 as a unique PAT mediating ookinete formation and morphogenesis. Essential for life cycle progression in asexual blood stage parasites and thus refractory to gene deletion analyses, we used promoter swap (ps) methodology to maintain dhhc2 expression in asexual blood stages but down regulate expression in sexual stage parasites and during post-fertilization development of the zygote. The ps mutant showed normal gamete formation, fertilisation and DNA replication to tetraploid cells, but was characterised by a complete block in post-fertilisation development and ookinete formation. Our report highlights the crucial nature of the DHHC2 palmitoyl-S-acyltransferase for transmission of the malaria parasite to the mosquito vector through its essential role for ookinete morphogenesis.
Collapse
Affiliation(s)
- Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.,Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Lauron EJ, Aw Yeang HX, Taffner SM, Sehgal RNM. De novo assembly and transcriptome analysis of Plasmodium gallinaceum identifies the Rh5 interacting protein (ripr), and reveals a lack of EBL and RH gene family diversification. Malar J 2015; 14:296. [PMID: 26243218 PMCID: PMC4524024 DOI: 10.1186/s12936-015-0814-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023] Open
Abstract
Background Malaria parasites that infect birds can have narrow or broad host-tropisms. These differences in host specificity make avian malaria a useful model for studying the evolution and transmission of parasite assemblages across geographic ranges. The molecular mechanisms involved in host-specificity and the biology of avian malaria parasites in general are important aspects of malaria pathogenesis that warrant further examination. Here, the transcriptome of the malaria parasite Plasmodium gallinaceum was characterized to investigate the biology and the conservation of genes across various malaria parasite species. Methods The P. gallinaceum transcriptome was annotated and KEGG pathway mapping was performed. The ripr gene and orthologous genes that play critical roles in the purine salvage pathway were identified and characterized using bioinformatics and phylogenetic methods. Results Analysis of the transcriptome sequence database identified essential genes of the purine salvage pathway in P. gallinaceum that shared high sequence similarity to Plasmodium falciparum when compared to other mammalian Plasmodium spp. However, based on the current sequence data, there was a lack of orthologous genes that belonged to the erythrocyte-binding-like (EBL) and reticulocyte-binding-like homologue (RH) family in P. gallinaceum. In addition, an orthologue of the Rh5 interacting protein (ripr) was identified. Conclusions These findings suggest that the pathways involved in parasite red blood cell invasion are significantly different in avian Plasmodium parasites, but critical metabolic pathways are conserved throughout divergent Plasmodium taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0814-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elvin J Lauron
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Han Xian Aw Yeang
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, USA.
| | - Samantha M Taffner
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
12
|
Philip N, Waters AP. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector. Cell Host Microbe 2015; 18:122-31. [PMID: 26118994 PMCID: PMC4509507 DOI: 10.1016/j.chom.2015.05.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/29/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. Calcineurin regulates colonization of host cells across the Plasmodium life cycle Calcineurin regulates male gametogenesis AID technology is broadly applicable to study protein function in Plasmodium Multiplexing of AID technology results in substantially reduced animal use
Collapse
Affiliation(s)
- Nisha Philip
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Andrew P Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
13
|
Kaneko I, Iwanaga S, Kato T, Kobayashi I, Yuda M. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor. PLoS Pathog 2015; 11:e1004905. [PMID: 26018192 PMCID: PMC4446032 DOI: 10.1371/journal.ppat.1004905] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors. Although malarial parasites have a complex life cycle, they harbor only 30 transcription factors in their genome. The majority of these transcription factors belong to a single family referred to as the AP2 family. Our previous study suggested that stage-specific AP2 family transcription factors have critical roles in maintaining the Plasmodium parasite life cycle. However, it remains fairly elusive as to how these transcription factors regulate each stage. AP2-O is an AP2 family transcription factor that is expressed during the mosquito midgut-invading stage, the ookinete, and is essential for normal development of this stage. In the present study, we identified the entire set of AP2-O target genes to elucidate how this AP2 family transcription factor contributes to the formation of this stage. Our results showed that AP2-O directly regulates 10% of the parasite genome and is involved in the whole process of mosquito midgut-invasion by ookinetes. The global and comprehensive regulation by the AP2 family transcription factor that we revealed provides a model for transcriptional regulation of this parasite and may explain how malarial parasites regulate their complex life cycle using a small number of sequence-specific transcription factors.
Collapse
Affiliation(s)
- Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shiroh Iwanaga
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tomomi Kato
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Issei Kobayashi
- Core-Lab, Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
14
|
Almelli T, Nuel G, Bischoff E, Aubouy A, Elati M, Wang CW, Dillies MA, Coppée JY, Ayissi GN, Basco LK, Rogier C, Ndam NT, Deloron P, Tahar R. Differences in gene transcriptomic pattern of Plasmodium falciparum in children with cerebral malaria and asymptomatic carriers. PLoS One 2014; 9:e114401. [PMID: 25479608 PMCID: PMC4257676 DOI: 10.1371/journal.pone.0114401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum.
Collapse
Affiliation(s)
- Talleh Almelli
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Grégory Nuel
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Emmanuel Bischoff
- Institut Pasteur, Unit of Molecular Immunology of Parasites, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3012, Paris, France
| | - Agnès Aubouy
- Institut de Recherche pour le Développement (IRD), UMR 152 Pharmacochimie et pharmacologie pour le développement - (PHARMA-DEV), Université Paul Sabatier, Toulouse, France
| | - Mohamed Elati
- Institute of Systems and Synthetic Biology, CNRS, University of Evry, Genopole, Evry, France
| | - Christian William Wang
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Marie-Agnès Dillies
- Plate-forme Transcriptome et Epigénome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Plate-forme Transcriptome et Epigénome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Leonardo Kishi Basco
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Laboratoire de Recherche sur le Paludisme, B. P. 288, Yaoundé, Cameroon
- Institut de Recherche pour le Développement (IRD), UMR 198 Unité de Recherche des Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine La Timone, Aix-Marseille Université, Marseille, France
| | - Christophe Rogier
- Institut Pasteur de Madagascar, B.P. 1274, Ambatofotsikely, Antananarivo, Madagascar
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Rachida Tahar
- Institut de Recherche pour le Développement (IRD), UMR 216 Mère et Enfant Face aux Infections Tropicales, Université Paris-Descartes, Près Sorbonne Paris-Cité, Paris, France
- PRES Sorbone Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Laboratoire de Recherche sur le Paludisme, B. P. 288, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
15
|
Knuepfer E, Suleyman O, Dluzewski AR, Straschil U, O'Keeffe AH, Ogun SA, Green JL, Grainger M, Tewari R, Holder AA. RON12, a novel Plasmodium-specific rhoptry neck protein important for parasite proliferation. Cell Microbiol 2013; 16:657-72. [PMID: 23937520 PMCID: PMC3922828 DOI: 10.1111/cmi.12181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
Apicomplexan parasites invade host cells by a conserved mechanism: parasite proteins are secreted from apical organelles, anchored in the host cell plasma membrane, and then interact with integral membrane proteins on the zoite surface to form the moving junction (MJ). The junction moves from the anterior to the posterior of the parasite resulting in parasite internalization into the host cell within a parasitophorous vacuole (PV). Conserved as well as coccidia-unique rhoptry neck proteins (RONs) have been described, some of which associate with the MJ. Here we report a novel RON, which we call RON12. RON12 is found only in Plasmodium and is highly conserved across the genus. RON12 lacks a membrane anchor and is a major soluble component of the nascent PV. The bulk of RON12 secretion happens late during invasion (after parasite internalization) allowing accumulation in the fully formed PV with a small proportion of RON12 also apparent occasionally in structures resembling the MJ. RON12, unlike most other RONs is not essential, but deletion of the gene does affect parasite proliferation. The data suggest that although the overall mechanism of invasion by Apicomplexanparasites is conserved, additional components depending on the parasite–host cell combination are required.
Collapse
Affiliation(s)
- Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kumnuan R, Pattaradilokrat S, Chumpolbanchorn K, Pimnon S, Narkpinit S, Harnyuttanakorn P, Saiwichai T. In vivo transmission blocking activities of artesunate on the avian malaria parasite Plasmodium gallinaceum. Vet Parasitol 2013; 197:447-54. [PMID: 23937960 DOI: 10.1016/j.vetpar.2013.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/05/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Infection and transmission of the avian malaria parasite Plasmodium gallinaceum in domestic chickens is associated with high economic burden and presents a major challenge to poultry industry in South East Asia. Development of drugs targeting both asexual blood stage parasites and sexual stages of the avian malarias will be beneficial for malaria treatment and eradication. However, current drugs recommended for treatment of the avian malaria parasites target specifically the asexual blood stage parasites, but have little or no impact to the gametocytes, the major target for development of transmission-blocking strategies. In the present work, we established a simple procedure to evaluate gametocytocidal and transmission blocking activities in a P. gallinaceum-avian model. The assays involved administration of seven consecutive daily doses of test compounds into P. gallinaceum-infected chickens with 10% parasitaemia and 1% gametocytaemia. Our studies indicated that intramuscular injection with seven daily low doses (the minimum effective dose of 10mg/kg) of artesunate blocked the gametocyte production and transmission to the mosquito vector Aedes aegypti. This assay can be further applicable for testing new compounds against P. gallinaceum and for other parasitic protozoa infecting birds.
Collapse
Affiliation(s)
- Rapeeporn Kumnuan
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
17
|
Turturice BA, Lamm MA, Tasch JJ, Zalewski A, Kooistra R, Schroeter EH, Sharma S, Kawazu SI, Kanzok SM. Expression of cytosolic peroxiredoxins in Plasmodium berghei ookinetes is regulated by environmental factors in the mosquito bloodmeal. PLoS Pathog 2013; 9:e1003136. [PMID: 23382676 PMCID: PMC3561267 DOI: 10.1371/journal.ppat.1003136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO), expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT) ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions must be taken into account when investigating Plasmodium-mosquito interactions. The malaria parasite Plasmodium is transmitted by Anopheles mosquitoes. Within the midgut of the insect, it is exposed to multiple environmental stresses, including cytotoxic reactive oxygen species (ROS). To avoid destruction, the parasite develops into a motile ookinete capable of leaving the midgut. Yet, ookinete development lasts over several hours and requires the parasite to adapt to an increasingly challenging environment. Here we show that ookinetes of the rodent parasite Plasmodium berghei during development in the mosquito midgut increase the expression of the protective antioxidant proteins peroxiredoxin-1 (TPx-1) and 1-Cys peroxiredoxin (1-Cys Prx). This upregulation was also inducible in cultured ookinetes by challenging them with ROS. This suggests that ookinetes actively modulate the expression of their antioxidant proteins in response to the changing conditions in the mosquito. We also found that ookinetes lacking TPx-1 (TPx-1KO) upregulated 1-Cys Prx expression significantly earlier than wild type ookinetes. This indicates that the TPx-1KO parasites compensate for the loss of TPx-1 by altering the expression pattern of the functionally related 1-Cys Prx. The observed dynamic regulation of the cytosolic antioxidant proteins may help the Plasmodium ookinete to adapt to rapidly changing environmental conditions and thus to increase the probability of survival, maturation and escape from the mosquito midgut.
Collapse
Affiliation(s)
- Benjamin A. Turturice
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michael A. Lamm
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - James J. Tasch
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Angelika Zalewski
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rachel Kooistra
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Eric H. Schroeter
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Shin-Ichiro Kawazu
- Obihiro University of Agriculture and Veterinarian Medicine, National Research Center for Protozoan Diseases, Obihiro, Hokkaido, Japan
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cai H, Hong C, Gu J, Lilburn TG, Kuang R, Wang Y. Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S5. [PMID: 23282319 PMCID: PMC3524314 DOI: 10.1186/1752-0509-6-s3-s5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Malaria causes over one million deaths annually, posing an enormous health and economic burden in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has been significantly hampered by our limited knowledge of the cellular networks associated with parasite development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI subnetworks across species to identify network components in the malaria parasite P. falciparum. Results Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species, P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein processing, and metabolism. Conclusions In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about cellular networks.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
19
|
Identification and expression of maebl, an erythrocyte-binding gene, in Plasmodium gallinaceum. Parasitol Res 2012; 112:945-54. [PMID: 23224610 DOI: 10.1007/s00436-012-3211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 11/21/2012] [Indexed: 01/03/2023]
Abstract
Avian malaria is of significant ecological importance and serves as a model system to study broad patterns of host switching and host specificity. The erythrocyte invasion mechanism of the malaria parasite Plasmodium is mediated, in large part, by proteins of the erythrocyte-binding-like (ebl) family of genes. However, little is known about how these genes are conserved across different species of Plasmodium, especially those that infect birds. Using bioinformatical methods in conjunction with polymerase chain reaction (PCR) and genetic sequencing, we identified and annotated one member of the ebl family, merozoite apical erythrocyte-binding ligand (maebl), from the chicken parasite Plasmodium gallinaceum. We then detected the expression of maebl in P. gallinaceum by PCR analysis of cDNA isolated from the blood of infected chickens. We found that maebl is a conserved orthologous gene in avian, mammalian, and rodent Plasmodium species. The duplicate extracellular binding domains of MAEBL, responsible for erythrocyte binding, are the most conserved regions. Our combined data corroborate the conservation of maebl throughout the Plasmodium genus and may help elucidate the mechanisms of erythrocyte invasion in P. gallinaceum and the host specificity of Plasmodium parasites.
Collapse
|
20
|
Cai H, Zhou Z, Gu J, Wang Y. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium.. Curr Bioinform 2012; 7. [PMID: 24298232 DOI: 10.2174/157489312803900965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
21
|
Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, Riglar DT, Rogers KL, Whitchurch CB, Ralph SA, Speed TP, Baum J. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One 2012; 7:e46160. [PMID: 23049965 PMCID: PMC3458004 DOI: 10.1371/journal.pone.0046160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.
Collapse
Affiliation(s)
- Elizabeth S. Zuccala
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander M. Gout
- Bioinformatics Divisions, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chaitali Dekiwadia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Danushka S. Marapana
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Fiona Angrisano
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - David T. Riglar
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L. Rogers
- Imaging Facility, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Cynthia B. Whitchurch
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Terence P. Speed
- Bioinformatics Divisions, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jake Baum
- Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
22
|
Taechalertpaisarn T, Crosnier C, Bartholdson SJ, Hodder AN, Thompson J, Bustamante LY, Wilson DW, Sanders PR, Wright GJ, Rayner JC, Cowman AF, Gilson PR, Crabb BS. Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41. PLoS One 2012; 7:e41937. [PMID: 22848665 PMCID: PMC3407074 DOI: 10.1371/journal.pone.0041937] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022] Open
Abstract
The genomes of Plasmodium parasites that cause malaria in humans, other primates, birds, and rodents all encode multiple 6-cys proteins. Distinct 6-cys protein family members reside on the surface at each extracellular life cycle stage and those on the surface of liver infective and sexual stages have been shown to play important roles in hepatocyte growth and fertilization respectively. However, 6-cys proteins associated with the blood-stage forms of the parasite have no known function. Here we investigate the biochemical nature and function of two blood-stage 6-cys proteins in Plasmodium falciparum, the most pathogenic species to afflict humans. We show that native P12 and P41 form a stable heterodimer on the infective merozoite surface and are secreted following invasion, but could find no evidence that this complex mediates erythrocyte-receptor binding. That P12 and P41 do not appear to have a major role as adhesins to erythrocyte receptors was supported by the observation that antisera to these proteins did not substantially inhibit erythrocyte invasion. To investigate other functional roles for these proteins their genes were successfully disrupted in P. falciparum, however P12 and P41 knockout parasites grew at normal rates in vitro and displayed no other obvious phenotypic changes. It now appears likely that these blood-stage 6-cys proteins operate as a pair and play redundant roles either in erythrocyte invasion or in host-immune interactions.
Collapse
Affiliation(s)
- Tana Taechalertpaisarn
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Cecile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - S. Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Anthony N. Hodder
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jenny Thompson
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Leyla Y. Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Danny W. Wilson
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alan F. Cowman
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Departments of Immunology and Medicine, Monash University, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Departments of Immunology and Medicine, Monash University, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Patra KP, Vinetz JM. New ultrastructural analysis of the invasive apparatus of the Plasmodium ookinete. Am J Trop Med Hyg 2012; 87:412-7. [PMID: 22802443 DOI: 10.4269/ajtmh.2012.11-0609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasion of the mosquito midgut by the Plasmodium ookinete determines the success of transmission of malaria parasites from humans to mosquitoes and therefore, is a potential target for molecular intervention. Here, we show higher-resolution ultrastructural details of developing and mature P. gallinaceum ookinetes than previously available. Improved fixation and processing methods yielded substantially improved transmission electron micrographs of ookinetes, particularly with regard to visualization of subcellular secretory and other organelles. These new images provide new insights into the synthesis and function of vital invasive machinery focused on the following features: apical membrane protrusions presumptively used for attachment and protein secretion, dark spherical bodies at the apical end of the mature ookinete, and the presence of a dense array of micronemes apposed to microtubules at the apical end of the ookinete involved in constitutive secretion. This work advances understanding of the molecular and cellular details of the Plasmodium ookinete and provides the basis of future, more detailed mechanistic experimentation on the biology of the Plasmodium ookinete.
Collapse
Affiliation(s)
- Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
24
|
Abstract
Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.
Collapse
|
25
|
Application of genomics to field investigations of malaria by the international centers of excellence for malaria research. Acta Trop 2012; 121:324-32. [PMID: 22182668 DOI: 10.1016/j.actatropica.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022]
Abstract
Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and Plasmodium vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence for Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden.
Collapse
|
26
|
McClean CM, Alvarado HG, Neyra V, Llanos-Cuentas A, Vinetz JM. Optimized in vitro production of Plasmodium vivax ookinetes. Am J Trop Med Hyg 2011; 83:1183-6. [PMID: 21118919 DOI: 10.4269/ajtmh.2010.10-0195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous reports have described obtaining mature Plasmodium vivax ookinetes in vitro using blood from infected patients using a simplified, field-based protocol. Here, we report protocols that produce improved P. vivax ookinete yields and morphological development. Optimal conditions included induction of gametogenesis using 10 mM Tris, 170 mM NaCl, 10 mM glucose, 25 mM NaHCO(3), and 100 μM xanthurenic acid for 90 minutes at pH 8.0-8.2, followed by culture in RPMI-1640, 50 mg/mL hypoxanthine, 25 mM HEPES, 29 mM NaHCO(3), 2 mM L-glutamine, and 20% fetal bovine serum at pH 8.4 for 36 hours. Ookinetes were produced in 86% (18/21) of optimized in vitro cultures; yields ranged from 6.5 × 10(4) to 2.8 × 10(6); percent gametocyte conversion ranged from 1.4% to 4.7%. This improved method is suitable for preparation of P. vivax ookinetes in quantities sufficient for biochemical, molecular, and cell biological analysis where basic laboratory facilities are in proximity to patients with vivax malaria.
Collapse
Affiliation(s)
- Colleen M McClean
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California 92093-0741, USA.
| | | | | | | | | |
Collapse
|
27
|
Li F, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM. Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the plasmodium ookinete. J Biol Chem 2010; 285:8076-83. [PMID: 20056606 DOI: 10.1074/jbc.m109.063388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To invade its definitive host, the mosquito, the malaria parasite must cross the midgut peritrophic matrix that is composed of chitin cross-linked by chitin-binding proteins and then develop into an oocyst on the midgut basal lamina. Previous evidence indicates that Plasmodium ookinete-secreted chitinase is important in midgut invasion. The mechanistic role of other ookinete-secreted enzymes in midgut invasion has not been previously examined. De novo mass spectrometry sequencing of a protein obtained by benzamidine affinity column of Plasmodium gallinaceum ookinete axenic culture supernatant demonstrated the presence of an ookinete-secreted plasmepsin, an aspartic protease previously only known to be present in the digestive vacuole of asexual stage malaria parasites. This plasmepsin, the ortholog of Plasmodium falciparum plasmepsin 4, was designated PgPM4. PgPM4 and PgCHT2 (the P. gallinaceum ortholog of P. falciparum chitinase PfCHT1) are both localized on the ookinete apical surface, and both are present in micronemes. Aspartic protease inhibitors (peptidomimetic and natural product), calpain inhibitors, and anti-PgPM4 monoclonal antibodies significantly reduced parasite infectivity for mosquitoes. These results suggest that plasmepsin 4, previously known only to function in the digestive vacuole of asexual blood stage Plasmodium, plays a role in how the ookinete interacts with the mosquito midgut interactions as it becomes an oocyst. These data are the first to delineate a role for an aspartic protease in mediating Plasmodium invasion of the mosquito and demonstrate the potential for plasmepsin 4 as a malaria transmission-blocking vaccine target.
Collapse
Affiliation(s)
- Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
SUMMARYIt is difficult to recapture the excitement of recent research into the malaria parasites.Plasmodiumhas shown itself to be a most elegant, resourceful and downright devious cell. To reveal any of its manifold secrets is a hard-won privilege. The thrill of this intellectual endeavour, however, has to be tempered by the realism that we have made unremarkable progress in attacking malaria in the field, where it remains almost as omnipresent as it ever was in the 19th and 20th centuries, and both the parasite and vector have become more difficult to control than ever before. This personal view looks back at the significant progress made, and forward to the challenges of the future, focusing on work on sexual development.
Collapse
|
29
|
Lal K, Delves MJ, Bromley E, Wastling JM, Tomley FM, Sinden RE. Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. Int J Parasitol 2009; 39:755-61. [PMID: 19136003 DOI: 10.1016/j.ijpara.2008.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/18/2008] [Accepted: 11/30/2008] [Indexed: 12/20/2022]
Abstract
Successful development of Plasmodium sexual stages is essential for parasite survival, but the genes involved are poorly understood. We 'knocked out' the male development gene-1 (mdv-1) locus in Plasmodium berghei and found it to be important in female gametocyte activation. Indirect immunofluorescence assays show MDV-1 has a punctate cytoplasmic distribution in gametocytes. After activation of both females and males, MDV-1 is more peripherally located but in males exclusively it becomes concentrated in a few large foci. In vitro ookinete conversion assays that test the ability of activated female gametocytes to develop into retort stage ookinetes, suggests a complicit role for MDV-1, with the knock-out parasite producing 86% reduction in ookinetes. The retort stage ookinete develops from the zygote by increasing growth of an apical protrusion and MDV-1 locates at the 'leading' extracellular apical pole of this protrusion. In the fully developed ookinete MDV-1 is localised to the posterior pole. In vivo, the knock-out parasites demonstrate a phenotype in which there is a 90% reduction of parasite transmission to oocysts in mosquitoes.
Collapse
Affiliation(s)
- Kalpana Lal
- The Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Post-translationally modified protein isoforms are common in red blood cell stages of the malaria parasite. New studies highlight the wide diversity of post-translational protein modifications in the intra-erythrocytic stages of the malaria parasite, raising new avenues for inquiry.
Collapse
Affiliation(s)
- Robert E Sinden
- The Malaria Centre, Department of Life Sciences, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
31
|
Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR, Wastling JM, Tomley FM, Sinden RE. Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 2009; 9:1142-51. [PMID: 19206106 PMCID: PMC2706521 DOI: 10.1002/pmic.200800404] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Indexed: 01/06/2023]
Abstract
Secretion of microneme proteins is essential to Plasmodium invasion but the molecular composition of these secretory organelles remains poorly defined. Here, we describe the first Plasmodium microneme proteome. Purification of micronemes by subcellular fractionation from cultured ookinetes was confirmed by enrichment of known micronemal proteins and electron microscopy. Quantitation of electron micrographs showed >14-fold microneme enrichment compared to the intact ookinete, such that micronemes comprised 85% of the identifiable organelles in the fraction. Gel LC-MS/MS of the most abundant protein constituents of the fraction identified three known micronemal proteins chitinase, CTRP, SOAP, together with protein disulphide isomerase (PDI) and HSP70. Highly sensitive MudPIT shotgun proteomics described a total of 345 proteins in the fraction. M1 aminopeptidase and PDI, the former a recognised target of drug development, were both shown to have a micronemal location by IFA. We further identified numerous proteins with established vesicle trafficking and signaling functions consistent with micronemes being part of a regulated secretory pathway. Previously uncharacterised proteins comprise the largest functional group of the microneme proteome and will include secreted proteins important to invasion.
Collapse
Affiliation(s)
- Kalpana Lal
- Division of Cell and Molecular Biology, Imperial College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wastling JM, Xia D, Sohal A, Chaussepied M, Pain A, Langsley G. Proteomes and transcriptomes of the Apicomplexa--where's the message? Int J Parasitol 2008; 39:135-43. [PMID: 18996390 DOI: 10.1016/j.ijpara.2008.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 11/19/2022]
Abstract
The Apicomplexa have some of the most comprehensive and integrated proteome datasets of all pathogenic micro-organisms. Coverage is currently at a level where these data can be used to help predict the potential biological function of proteins in these parasites, without having to defer to measurement of mRNA levels. Transcriptomic data for the Apicomplexa (microarrays, expressed sequence tag (EST) collections, serial analysis of gene expression (SAGE) and massively parallel signature sequencing (MPSS) tags) are also copious, enabling us to investigate the extent to which global mRNA levels correlate with proteomic data. Here, we present a proteomic and transcriptomic perspective of gene expression in key apicomplexan parasites, including Plasmodium spp., Toxoplasma gondii, Cryptosporidium parvum, Neospora caninum and Theileria spp., and discuss the alternative views of gene expression that they provide. Although proteomic evidence does not exist for every gene, many examples of readily detected proteins whose corresponding genes display little or no detectable transcription, are seen across the Apicomplexa. These examples are not easily explained by the "guilt by association", or "stock and go" hypotheses of gene transcription. With the advent of ultra-high-throughput sequencing technologies there will be a quantum shift in transcriptional analysis which, combined with improving quantitative proteome datasets, will provide a core component of a systems-wide approach to studying the Apicomplexa.
Collapse
Affiliation(s)
- J M Wastling
- Department of Pre-Clinical Veterinary Science, Faculty of Veterinary Science, University of Liverpool, Liverpool L69 7ZJ, UK.
| | | | | | | | | | | |
Collapse
|