1
|
Prakobdi C, Dhellemmes L, Leclercq L, Rydzek G, Cottet H. Surfactant-based coatings for protein separation by capillary electrophoresis - A review. Anal Chim Acta 2025; 1356:343945. [PMID: 40288884 DOI: 10.1016/j.aca.2025.343945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Capillary electrophoresis (CE) is a highly efficient and versatile analytical method for the separation of biomacromolecules such as proteins and peptides. One major concern to reach high separation efficiency is the adsorption of analytes on the capillary wall and the heterogeneity of the capillary surface charge which generates hydrodynamic dispersion due to local electroosmotic (EOF) fluctuations. RESULTS Double chain surfactants have been described as potential interesting candidates for capillary coatings in CE. They are notably offering a very homogenous surface charge leading to very high separation efficiency with reported values up to 1 million plates per meter. SIGNIFICANCE This review provides an overview of double chain surfactant coatings used in CE with an emphasis on the coating protocol, the nature of the surfactant, the preparation of the coating solution (concentration, temperature, sonication or extrusion), the physicochemical parameters affecting their properties (pH, ionic strength, nature of the anion in the coating solution, coating additives, capillary internal diameter), and the coating stability/durability.
Collapse
Affiliation(s)
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Gaulthier Rydzek
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
2
|
Wittmann A, Wilke Y, Grammel N, Wätzig H. Evaluation of a cIEF Fractionation Workflow for Offline MS Analysis of Charge Variants of the Monoclonal Antibody Matuzumab. Electrophoresis 2025; 46:240-249. [PMID: 39964944 PMCID: PMC11865688 DOI: 10.1002/elps.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Biological drugs like monoclonal antibodies require careful analysis and characterization to ensure product quality, safety, and efficacy. Charge variants of the molecule are of key interest and are analyzed using imaged capillary isoelectric focusing (icIEF). However, deeper characterization of these variants poses challenges. Two workflows for their characterization exist: an ion-exchange chromatography method for variant collection before mass spectrometry (MS) analysis, which is labor-intensive, and direct coupling of CE to MS, which allows detailed structural characterization but has limitations, for example, due to incompatibilities with ES ionization using high BGE concentrations. This study evaluates a platform that fractionates charge variants for offline MS analysis. The suitability of a procedure in which analytical icIEF methods are converted into preparative cIEF fractionation methods by increasing the sample concentration and adding 20 mM arginine as a cathodic spacer was tested. After chemical mobilization and fraction collection, the identity of the fractions was determined by fluorescence measurement and reinjection of the protein-containing fractions, using the previously developed analytical icIEF method. MS was subsequently performed. The general suitability of the workflow was demonstrated using Matuzumab. Transferring the analytical method from a concentration of 0.2 to 1.2 mg/mL in fractionation yielded an identical number of peaks and visually comparable peak profiles. The preparative separation took 50 min, with an additional 25 min for mobilization and 45 s per fraction collection, totaling approximately 2.5 h. Verification of charge variant isolation was straightforward via analytical icIEF. Following fractionation, MS allowed for the identification of the main peaks. Preliminary results with other antibodies indicated that the concentration range for MS experiments needs further investigation. Future work will aim to optimize sensitivity, selectivity, analysis time, and reproducibility.
Collapse
Affiliation(s)
- Antonia Wittmann
- Institute of Pharmaceutical Technology and BiopharmaceuticsTU BraunschweigBraunschweigGermany
- Institute of Medicinal and Pharmaceutical ChemistryTU BraunschweigBraunschweigGermany
| | - Yannick Wilke
- Institute of Medicinal and Pharmaceutical ChemistryTU BraunschweigBraunschweigGermany
| | | | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical ChemistryTU BraunschweigBraunschweigGermany
| |
Collapse
|
3
|
Chibuike M, Rathnayaka C, Shivanka S, Choi J, Verber M, Park S, Soper SA. Millisecond Label-Free Single Peptide Detection and Identification Using Nanoscale Electrochromatography and Resistive Pulse Sensing. Anal Chem 2025; 97:427-435. [PMID: 39713813 PMCID: PMC12006914 DOI: 10.1021/acs.analchem.4c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We are developing a unique protein identification method that consists of generating peptides proteolytically from a single protein molecule (i.e., peptide fingerprints) with peptide detection and identification carried out using nanoscale electrochromatography and label-free resistive pulse sensing (RPS). As a step in realizing this technology, we report herein the nanoscale electrochromatography of model peptides using thermoplastic columns with surfaces engineered to identify peptides via their molecularly dependent mobility (i.e., time-of-flight, ToF). ToFs were elucidated using a dual in-plane nanopore sensor, which consisted of two in-plane nanopores placed on either end of the nanoelectrochromatography column. The surface of the nanocolumn, which consisted of poly(methyl methacrylate) (PMMA), was activated with an O2 plasma, creating surface carboxylic acid groups (-COOH) inducing a surface charge on the column wall as well as affecting its hydrophilicity. To understand scaling effects, we carried out microchip and nanochannel electrochromatography of the peptides labeled with an ATTO 532 reporter to allow for single-molecule tracking. Our results indicated that the apparent mobilities of the model peptides did not allow for their separation in a microchannel, but when performed in a nanocolumn, clear differences in their apparent mobilities could be observed especially when operated at high electric field strengths. We next performed label-free detection of peptides using the dual in-plane nanopore sensor with the two pores separated by a 5 μm (length) column with a 50 nm width and depth. When a single peptide molecule passed through an in-plane nanopore, the sensor read a pair of resistive pulses with a time difference equivalent to ToF. We identified the peptides by evaluating their ToF, normalized RPS current transient amplitude (ΔI/I0), and RPS peak dwell time (td). We could identify the model peptides with nearly 100% classification accuracy at the single-molecule level using machine learning with a single molecule measurement requiring <10 ms.
Collapse
Affiliation(s)
- Maximillian Chibuike
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Suresh Shivanka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Junseo Choi
- Department of Engineering Technology, Texas State University, San Marcos, Texas 78666, United States
| | - Matthew Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sunggook Park
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
4
|
Mendes GM, d'Orlye F, Trapiella-Alfonso L, Duarte GRM, Varenne A. Streamlined integrated protein isoelectric focusing using microfluidic paper-based device. J Chromatogr A 2024; 1732:465222. [PMID: 39111183 DOI: 10.1016/j.chroma.2024.465222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
An innovative integrated paper-based microdevice was developed for protein separation by isoelectric focusing (IEF), allowing for robust design thanks to a 3D-printed holder integrating separation channel, reservoirs, and electrodes. To reach robustness and precision, the optimization focused on the holder geometry, the paper nature, the reservoir design, the IEF medium, and various focusing parameters. A well-established and stable pH gradient was obtained on a glass-fiber paper substrate with simple sponge reservoirs, and the integration of the electrodes in the holder led to a straightforward system. The separation medium composed of water/glycerol (85/15, v/v) allowed for reducing medium evaporation while being an efficient medium for most hydrophobic and hydrophilic proteins, compatible with mass spectrometry detection for further proteomics developments. To our knowledge, this is the first report of the use of glycerol solutions as a separation medium in a paper-based microdevice. Analytical performances regarding pH gradient generation, pI determination, separation efficiency, and resolution were estimated while varying the IEF experimental parameters. The overall process led to an efficient separation within 25 min. Then, this methodology was applied to a sample composed of saliva doped with proteins. A minimal matrix effect was evidenced, underscoring the practical viability of our platform. This low-cost, versatile and robust paper-based IEF microdevice opens the way to various applications, ranging from sample pre-treatment to integration in an overall proteomic-on-a-chip device.
Collapse
Affiliation(s)
- Geovana M Mendes
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France; Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Fanny d'Orlye
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France.
| | - Laura Trapiella-Alfonso
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gabriela R M Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Anne Varenne
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France.
| |
Collapse
|
5
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Gebretsadik H, Kahsay G, Adams E, Van Schepdael A. A comprehensive review of capillary electrophoresis-based techniques for erythropoietin isoforms analysis. J Chromatogr A 2023; 1708:464331. [PMID: 37660565 DOI: 10.1016/j.chroma.2023.464331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Different CE techniques have been used to analyze erythropoietin. These techniques have been shown to be effective in differentiating and quantifying erythropoietin isoforms, including natural and recombinant origins. This review provides a comprehensive overview of various capillary electrophoresis-based techniques used for the analysis of erythropoietin isoforms. The importance of erythropoietin in clinical practice and the necessity for the accurate analysis of its isoforms are first discussed. Various techniques that have been used for erythropoietin isoform analysis are then described. The main body of the review focuses on the different capillary electrophoresis-based methods that have been developed for erythropoietin isoform analysis, including capillary zone electrophoresis and capillary isoelectric focusing. The advantages and drawbacks of each method as well as their applications are discussed. Suggestions into the future directions of the area are also described.
Collapse
Affiliation(s)
- Hailekiros Gebretsadik
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Getu Kahsay
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Erwin Adams
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Ann Van Schepdael
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
8
|
Hajba L, Jeong S, Chung DS, Guttman A. Capillary Gel Electrophoresis of Proteins: Historical overview and recent advances. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Logerot E, Perrin C, Ladner Y, Aubriet F, Carré V, Enjalbal C. Quantitating α-amidated peptide degradation by separative technologies and ultra-high resolution mass spectrometry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
12
|
Duša F, Moravcová D, Šlais K. Low-molecular-mass colored compounds for fine tracing of pH gradient on broad and narrow scale in isoelectric focusing. Anal Chim Acta 2022; 1221:340035. [DOI: 10.1016/j.aca.2022.340035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
|
13
|
Photopolymerization with EDTA and Riboflavin for Proteins Analysis in Polyacrylamide Gel Electrophoresis. Protein J 2022; 41:438-443. [PMID: 35895218 DOI: 10.1007/s10930-022-10068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 10/16/2022]
Abstract
A new method for photosensitized polymerization of polyacrylamide gels was proposed. Photopolymerization of acrylamide/N,N'-methylenebisacrylamide (AM/Bis) was assisted with combination of catalyst ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) and photoinitiator riboflavin (RF). The prepared cross-linked AM/Bis + EDTA/RF gels were tested in electrophoretic SDS-PAGE system at high concentration of AM (20 wt%). The efficiency of these systems for electrophoretic separation of histones of human blood lymphocytes was demonstrated. In principle, such gels with small pores in the separation zone can offer advantages for resolution of proteins. The advantages of proposed method also include simple technique and possibility of gel preparation in a timely manner (for 10-15 min). However, in microporous gel systems some limitations in electroblotting technique could occur, which is particularly crucial for hydrophobic proteins.
Collapse
|
14
|
Krieg D, Winter G, Svilenov HL. It is never too late for a cocktail - Development and analytical characterization of fixed-dose antibody combinations. J Pharm Sci 2022; 111:2149-2157. [DOI: 10.1016/j.xphs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
|
15
|
Szabo M, Sarkozy D, Szigeti M, Farsang R, Kardos Z, Kozma A, Csanky E, Chung DS, Szekanecz Z, Guttman A. Introduction of a Capillary Gel Electrophoresis-Based Workflow for Biotherapeutics Characterization: Size, Charge, and N-Glycosylation Variant Analysis of Bamlanivimab, an Anti-SARS-CoV-2 Product. Front Bioeng Biotechnol 2022; 10:839374. [PMID: 35350184 PMCID: PMC8957997 DOI: 10.3389/fbioe.2022.839374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a major public health problem worldwide with 5–10% hospitalization and 2–3% global mortality rates at the time of this publication. The disease is caused by a betacoronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The receptor-binding domain (RBD) of the Spike protein expressed on the surface of the virus plays a key role in the viral entry into the host cell via the angiotensin-converting enzyme 2 receptor. Neutralizing monoclonal antibodies having the RBD as a target have the ability to inhibit angiotensin-converting enzyme 2 (ACE2) receptor binding, therefore, prevent SARS-CoV-2 infection, represent a promising pharmacological strategy. Bamlanivimab is the first anti-spike neutralizing monoclonal antibody, which got an emergency use authorization from the FDA for COVID-19 treatment. Albeit, bamlanivimab is primarily a neutralizing mAb, some of its effector function related activity was also emphasized. The effector function of antibody therapeutics is greatly affected by their N-linked carbohydrates at the conserved Fc region, possibly influenced by the manufacturing process. Various capillary gel electrophoresis methods are widely accepted in the biopharmaceutical industry for the characterization of therapeutic antibodies. In this paper we introduce a capillary gel electrophoresis based workflow for 1) size heterogeneity analysis to determine the presence/absence of the non-glycosylated heavy chain (NGHC) fragment (SDS-CGE); 2) capillary gel isoelectric focusing for possible N-glycosylation mediated charge heterogeneity determination, e.g., for excess sialylation and finally, 3) capillary gel electrophoresis for N-glycosylation profiling and sequencing. Our results have shown the presence of negligible amount of non-glycosylated heavy chain (NGHC) while 25% acidic charge variants were detected. Comprehensive N-glycosylation characterization revealed the occurrence of approximately 8.2% core-afucosylated complex and 17% galactosylated N-linked oligosaccharides, suggesting the possible existence of antibody dependent cell mediated cytotoxicity (ADCC) effector function in addition to the generally considered neutralizing effect of this particular therapeutic antibody molecule.
Collapse
Affiliation(s)
- Miklos Szabo
- Borsod Academic County Hospital, Miskolc, Hungary
| | - Daniel Sarkozy
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Marton Szigeti
- Translational Glycomics Group, Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Robert Farsang
- Translational Glycomics Group, Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | | | - Adam Kozma
- Borsod Academic County Hospital, Miskolc, Hungary
| | | | - Doo Soo Chung
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Zoltan Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Guttman
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Translational Glycomics Group, Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
- *Correspondence: Andras Guttman,
| |
Collapse
|
16
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
17
|
Segl M, Stutz H. Bottom-Up Analysis of Proteins by Peptide Mass Fingerprinting with tCITP-CZE-ESI-TOF MS After Tryptic Digest. Methods Mol Biol 2022; 2531:93-106. [PMID: 35941481 DOI: 10.1007/978-1-0716-2493-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of proteins in samples of moderate to complex composition is primarily done by bottom-up approaches. Therefore, proteins are enzymatically digested, mostly by trypsin, and the resulting peptides are then separated prior to their transfer to a mass spectrometer. The following protocol portrays a bottom-up method, which was optimized for the application of CZE-ESI-TOF MS. Protein denaturation is achieved by addition of 2,2,2-trifluoroethanol (TFE) and heat treatment. Afterwards, disulfide bonds are reduced with tris-(2-carboxyethyl)phosphine (TCEP) and subsequently alkylated with iodoacetamide (IAA). The tryptic digest is performed in an ammonium bicarbonate buffer at pH 8.0. The digested protein sample is then concentrated in-capillary by transient capillary isotachophoresis (tCITP) with subsequent CZE separation of tryptic peptides in an acidic background electrolyte. Hyphenation to a time-of-flight (TOF) mass spectrometer is carried out by a triple-tube coaxial sheath flow interface, which uses electrospray ionization (ESI). Peptide identification is done by peptide mass fingerprinting (PMF). The protocol is outlined exemplarily for a model protein, i.e., bovine β-lactoglobulin A.
Collapse
Affiliation(s)
- Marius Segl
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria
| | - Hanno Stutz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
18
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
19
|
Shimazaki Y, Yabu S. Characterization of enzymatic activity of lysozyme in lysozyme–ovotransferrin complex before and after treatment with trypsin. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Youji Shimazaki
- Graduate School of Science and Engineering (Science) Ehime University Matsuyama Japan
- Faculty of Science Ehime University Matsuyama Japan
| | - Shunta Yabu
- Faculty of Science Ehime University Matsuyama Japan
| |
Collapse
|
20
|
Separation based characterization methods for the N-glycosylation analysis of prostate-specific antigen. J Pharm Biomed Anal 2020; 194:113797. [PMID: 33288345 DOI: 10.1016/j.jpba.2020.113797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer has the highest malignancy rate diagnosed in men worldwide. Albeit, the gold standard serum prostate-specific antigen (PSA) assays reduced the mortality rate of the disease, the number of false positive diagnoses steeply increased. Therefore, there is an urgent need for complementary biomarkers to enhance the specificity and selectivity of current diagnostic methods. Information about PSA glycosylation can help to fulfill this gap as alterations of its carbohydrate moieties due to cancerous transformation may represent additional markers to distinguish malignant from benign tumors. However, development of suitable methods and instrumentations to investigate the N-glycosylation profile of PSA represents a challenge. In this paper, we critically review the current bioanalytical trends and strategies in the field of PSA glycobiomarker research focusing on separation based characterization methods.
Collapse
|
21
|
Schmailzl J, Vorage MW, Stutz H. Intact and middle-down CIEF of commercial therapeutic monoclonal antibody products under non-denaturing conditions. Electrophoresis 2020; 41:1109-1117. [PMID: 32250465 PMCID: PMC7317833 DOI: 10.1002/elps.202000013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 11/06/2022]
Abstract
A two‐step CIEF with chemical mobilization was developed for charge profiling of the therapeutic mAb rituximab under non‐denaturing separation conditions. CIEF of the intact mAb was combined with a middle‐down approach analyzing Fc/2 and F(ab´)2 fragments after digest with a commercial cysteine protease (IdeS). CIEF methods were optimized separately for the intact mAb and its fragments due to their divergent pIs. Best resolution was achieved by combining Pharmalyte (PL) 8–10.5 with PL 3–10 for variants of intact rituximab and of F(ab´)2 fragments, respectively, whereas PL 6.7–7.7 in combination with PL 3–10 was used for Fc/2 variants. Charge heterogeneity in Fc/2 dominates over F(ab´)2. In addition, a copy product of rituximab, and adalimumab were analyzed. Both mAbs contain additional alkaline C‐terminal lysine variants as confirmed by digest with carboxypeptidase B. The optimized CIEF methods for intact mAb and Fc/2 were tested for their potential as platform approaches for these mAbs. The CIEF method for Fc/2 was slightly adapted in this process. The pI values for major intact mAb variants were determined by adjacent pI markers resulting in 9.29 (rituximab) and 8.42 (adalimumab). In total, seven to eight charge variants could be distinguished for intact adalimumab and rituximab, respectively.
Collapse
Affiliation(s)
| | - Marcel W Vorage
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Hanno Stutz
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools in the Characterization of Biosimilars, Salzburg, Austria
| |
Collapse
|
22
|
Yu Kong, Feng H, Yang G, Kong L, Hou Z, Li H, Gao M. Stacking and Detecting Blood Glutathione as a Cation under Strong Acidic Conditions by Capillary Electrophoresis using Acetonitrile-salt Stacking Method. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820020094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Chen H, Zhang L, Zhang W, Wang S. Construction of discontinuous capillary isoelectric focusing system and its application in pre-fractionation of exosomal proteins. Talanta 2020; 208:119876. [DOI: 10.1016/j.talanta.2019.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/28/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023]
|
24
|
Research and Application Progress of Paper-based Microfluidic Sample Preconcentration. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61203-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ramos Y, González A, Sosa‐Acosta P, Perez‐Riverol Y, García Y, Castellanos‐Serra L, Gil J, Sánchez A, González LJ, Besada V. Sodium dodecyl sulfate free gel electrophoresis/electroelution sorting for peptide fractionation. J Sep Sci 2019; 42:3712-3717. [DOI: 10.1002/jssc.201900495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yassel Ramos
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Annia González
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Patricia Sosa‐Acosta
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Yasset Perez‐Riverol
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)Wellcome Trust Genome Campus Hinxton Cambridge United Kingdom
| | - Yairet García
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | | | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund University, Lund Lund Sweden
| | - Aniel Sánchez
- Section for Clinical ChemistryDepartment of Translational MedicineLund UniversitySkåne University Hospital Malmö Malmö Sweden
| | - Luis J. González
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Vladimir Besada
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| |
Collapse
|
26
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
27
|
Capillary isoelectric focusing with free or immobilized pH gradient in silica particles packed column. Anal Chim Acta 2019; 1079:230-236. [DOI: 10.1016/j.aca.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
|
28
|
Abdul Keyon AS, Miskam M, Ishak NS, Mahat NA, Mohamed Huri MA, Abdul Wahab R, Chandren S, Abdul Razak FI, Ng NT, Ali TG. Capillary electrophoresis for the analysis of antidepressant drugs: A review. J Sep Sci 2019; 42:906-924. [PMID: 30605233 DOI: 10.1002/jssc.201800859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/11/2022]
Abstract
Depression is a common mental disorder that may lead to major mental health problems, and antidepressant drugs have been used as a treatment of choice to mitigate symptoms of major depressive disorders by ameliorating the chemical imbalances of neurotransmitters in brain. Since abusing antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressant drugs can cause severe adverse effects, continuous toxicological monitoring of the parent compounds as well as their metabolites using numerous analytical methods appears pertinent. Among them, capillary electrophoresis has been popularly utilized since the method has a lot of advantages viz. using small amounts of sample and solvents, ease of operation, and rapid analysis. This review paper brings a survey of more than 30 papers on capillary electrophoresis of antidepressant drugs published approximately from 1999 until 2018. It focuses on the reported capillary electrophoresis techniques and their applications and challenges for determining antidepressant drugs and their metabolites. It is organized according to the commonly used capillary zone electrophoresis method, followed by non-aqueous capillary electrophoresis and micellar electrokinetic chromatography, with details on breakthrough findings. Where available, information is given about the background electrolyte used, detector utilized, and sensitivity obtained.
Collapse
Affiliation(s)
- Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Nur Syazwani Ishak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Mohamad Afiq Mohamed Huri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Fazira Ilyana Abdul Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Nyuk-Ting Ng
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Timothy Gandu Ali
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
29
|
Comparison of imaged capillary isoelectric focusing and cation exchange chromatography for monitoring dextrose-mediated glycation of monoclonal antibodies in infusion solutions. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:156-163. [DOI: 10.1016/j.jchromb.2018.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
|
30
|
Wang J, Zhu Z, Jia W, Qiu L, Chang Y, Li J, Ma L, You Y, Wang J, Liu L, Xia J, Liu X, Li Y, Jiang P. Resolving quantum dots and peptide assembly and disassembly using bending capillary electrophoresis. Electrophoresis 2018; 40:1019-1026. [DOI: 10.1002/elps.201800466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Zhilan Zhu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Wenjing Jia
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Yufeng Chang
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Jie Li
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Luping Ma
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Ying You
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Jianpeng Wang
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Jiang Xia
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
- Department of ChemistryThe Chinese University of Hong Kong Shatin P. R. China
| | - Xiaoqian Liu
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| | - Yong‐Qiang Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionCollaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou P. R. China
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life ScienceChangzhou University Changzhou P. R. China
| |
Collapse
|
31
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 2018; 42:398-414. [DOI: 10.1002/jssc.201801090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| |
Collapse
|
32
|
Wang J, Qiu L, You Y, Ma L, Zhu Z, Yang L, Wang J, Wang X, Liu L, Liu X, Chang Y, Li J, Gao L, Li YQ. A novel in-capillary assay for dynamically monitoring fast binding between antibody and peptides using CE. J Sep Sci 2018; 41:4544-4550. [DOI: 10.1002/jssc.201800946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/16/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Ying You
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Luping Ma
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Zhilan Zhu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li Yang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Jianpeng Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Xiang Wang
- Radiology Department; The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University; Changzhou Jiangsu P. R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Xiaoqian Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Yufeng Chang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Jie Li
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Liqian Gao
- School of Pharmaceutical Science (Shenzhen); Sun Yat-Sen University (SYSU); Guangzhou Guangdong P. R. China
| | - Yong-Qiang Li
- State Key Laboratory of Radiation Medicine and Protection; School of Radiation Medicine and Protection; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions; Soochow University; Suzhou P. R.China
| |
Collapse
|
33
|
Espina-Benitez MB, Marconi F, Randon J, Demesmay C, Dugas V. Evaluation of boronate affinity solid-phase extraction coupled in-line to capillary isoelectric focusing for the analysis of catecholamines in urine. Anal Chim Acta 2018; 1034:195-203. [DOI: 10.1016/j.aca.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
|
34
|
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
35
|
Fast high-throughput screening of glutathione S-transferase polymorphism by voltage programming-based multi-channel microchip electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:10-17. [DOI: 10.1016/j.jchromb.2018.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/31/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023]
|
36
|
Paul P, Sänger-van de Griend C, Adams E, Van Schepdael A. A simple, low-cost and robust capillary zone electrophoresis method with capacitively coupled contactless conductivity detection for the routine determination of four selected penicillins in money-constrained laboratories. Electrophoresis 2018; 39:2521-2529. [DOI: 10.1002/elps.201800033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Prasanta Paul
- KU Leuven-University of Leuven; Pharmaceutical Analysis; Department of Pharmaceutical and Pharmacological Sciences; Leuven Belgium
| | - Cari Sänger-van de Griend
- Analytical Pharmaceutical Chemistry; Uppsala University; Husargatan Sweden
- Kantisto BV; Calenburglaan The Netherlands
| | - Erwin Adams
- KU Leuven-University of Leuven; Pharmaceutical Analysis; Department of Pharmaceutical and Pharmacological Sciences; Leuven Belgium
| | - Ann Van Schepdael
- KU Leuven-University of Leuven; Pharmaceutical Analysis; Department of Pharmaceutical and Pharmacological Sciences; Leuven Belgium
| |
Collapse
|
37
|
Mo J, Jin R, Yan Q, Sokolowska I, Lewis MJ, Hu P. Quantitative analysis of glycation and its impact on antigen binding. MAbs 2018; 10:406-415. [PMID: 29436927 PMCID: PMC5916557 DOI: 10.1080/19420862.2018.1438796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glycation has been observed in antibody therapeutics manufactured by the fed-batch fermentation process. It not only increases the heterogeneity of antibodies, but also potentially affects product safety and efficacy. In this study, non-glycated and glycated fractions enriched from a monoclonal antibody (mAb1) as well as glucose-stressed mAb1 were characterized using a variety of biochemical, biophysical and biological assays to determine the effects of glycation on the structure and function of mAb1. Glycation was detected at multiple lysine residues and reduced the antigen binding activity of mAb1. Heavy chain Lys100, which is located in the complementary-determining region of mAb1, had the highest levels of glycation in both stressed and unstressed samples, and glycation of this residue was likely responsible for the loss of antigen binding based on hydrogen/deuterium exchange mass spectrometry analysis. Peptide mapping and intact liquid chromatography-mass spectrometry (LC-MS) can both be used to monitor the glycation levels. Peptide mapping provides site specific glycation results, while intact LC-MS is a quicker and simpler method to quantitate the total glycation levels and is more useful for routine testing. Capillary isoelectric focusing (cIEF) can also be used to monitor glycation because glycation induces an acidic shift in the cIEF profile. As expected, total glycation measured by intact LC-MS correlated very well with the percentage of total acidic peaks or main peak measured by cIEF. In summary, we demonstrated that glycation can affect the function of a representative IgG1 mAb. The analytical characterization, as described here, should be generally applicable for other therapeutic mAbs.
Collapse
Affiliation(s)
- Jingjie Mo
- a Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences , Janssen Research & Development, LLC , Malvern , Pennsylvania , United States
| | - Renzhe Jin
- a Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences , Janssen Research & Development, LLC , Malvern , Pennsylvania , United States
| | - Qingrong Yan
- a Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences , Janssen Research & Development, LLC , Malvern , Pennsylvania , United States
| | - Izabela Sokolowska
- a Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences , Janssen Research & Development, LLC , Malvern , Pennsylvania , United States
| | - Michael J Lewis
- a Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences , Janssen Research & Development, LLC , Malvern , Pennsylvania , United States
| | - Ping Hu
- a Large Molecules Analytical Development, Pharmaceutical Development & Manufacturing Sciences , Janssen Research & Development, LLC , Malvern , Pennsylvania , United States
| |
Collapse
|
38
|
Xie SF, Gao H, Niu LL, Xie ZS, Fang F, Wu ZY, Yang FQ. Carrier ampholyte-free isoelectric focusing on a paper-based analytical device for the fractionation of proteins. J Sep Sci 2018; 41:2085-2091. [DOI: 10.1002/jssc.201701438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Song-Fang Xie
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Han Gao
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Li-Li Niu
- The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Zhen-Sheng Xie
- The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Fang Fang
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Zhi-Yong Wu
- Research Center for Analytical Science; Chemistry Department; College of Sciences; Northeastern University; Shenyang P. R. China
| | - Fu-Quan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
39
|
Turner A, Schiel JE. Qualification of NISTmAb charge heterogeneity control assays. Anal Bioanal Chem 2018; 410:2079-2093. [PMID: 29423598 PMCID: PMC5830499 DOI: 10.1007/s00216-017-0816-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
The NISTmAb is a monoclonal antibody Reference Material from the National Institute of Standards and Technology; it is a class-representative IgG1κ intended serve as a pre-competitive platform for harmonization and technology development in the biopharmaceutical industry. The publication series of which this paper is a part describes NIST's overall control strategy to ensure NISTmAb quality and availability over its lifecycle. In this paper, the development and qualification of methods for monitoring NISTmAb charge heterogeneity are described. Capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF) assays were optimized and evaluated as candidate assays for NISTmAb quality control. CIEF was found to be suitable as a structural characterization assay yielding information on the apparent pI of the NISTmAb. CZE was found to be better suited for routine monitoring of NISTmAb charge heterogeneity and was qualified for this purpose. This paper is intended to provide relevant details of NIST's charge heterogeneity control strategy to facilitate implementation of the NISTmAb as a test molecule in the end user's laboratory. Graphical Abstract Representative capillary zone electropherogram of the NIST monoclonal antibody (NISTmAb). The NISTmAb is a publicly available research tool intended to facilitate advancement of biopharmaceutical analytics.
Collapse
Affiliation(s)
- Abigail Turner
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
- Medimmune, LLC, 55 Watkins Mill Rd, Gaithersburg, MD, 20878, USA
| | - John E Schiel
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA.
| |
Collapse
|
40
|
Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis. Anal Bioanal Chem 2018; 410:1689-1695. [DOI: 10.1007/s00216-017-0809-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 11/25/2022]
|
41
|
Kubo T, Nishimura N, Furuta H, Kubota K, Naito T, Otsuka K. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Cheng J, Chen DDY. Nonaqueous capillary electrophoresis mass spectrometry method for determining highly hydrophobic peptides. Electrophoresis 2017; 39:1216-1221. [PMID: 28990192 DOI: 10.1002/elps.201700364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
A nonaqueous capillary electrophoresis mass spectrometry (NACE-MS) method was developed to separate and determine highly hydrophobic temporin peptides. The nonaqueous background electrolyte solution was a mixture of 20% acetonitrile, 78% methanol and 2% formic acid, with 20 mM ammonium formate. The separation of six peptides was completed within 12 min. The CE system was connected to a triple quadrupole mass spectrometer operating in MRM mode using a chemical modifier solution of 2 mM ammonium formate in ethanol with the flow through microvial interface. The mass spectrometer offered a second dimension of separation for peptides having identical migration times but different structures. The new method represents the first system capable of reliably determining hydrophobic peptides without using reversed phase liquid chromatography mass spectrometry.
Collapse
Affiliation(s)
- Jianhui Cheng
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
44
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
45
|
Liang S, Fu X, Xiao H, Li T, Xu J, Zhang Y. Strategy for the separation of concentrated samples by capillary electrophoresis. J Sep Sci 2017; 40:3734-3739. [DOI: 10.1002/jssc.201700512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Shuang Liang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Xia Fu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Hongting Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Tianxiang Li
- Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
| | - Yong Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin China
| |
Collapse
|
46
|
Bjerrum EJ, Jensen JH, Tolborg JL. pICalculax: Improved Prediction of Isoelectric Point for Modified Peptides. J Chem Inf Model 2017; 57:1723-1727. [PMID: 28671456 DOI: 10.1021/acs.jcim.7b00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The isoelectric point of a peptide is a physicochemical property that can be accurately predicted from the sequence of the peptide when the peptide is built from natural amino acids. Peptides can however have chemical modifications, such as phosphorylations, amidations, and unnatural amino acids, which can result in erroneous predictions if not accounted for. Here we report on an open source program, pICalculax, which in an extensible way can handle pI calculations of modified peptides. Tests on a database of modified peptides and experimentally determined pI values show an improvement in pI predictions when taking the modifications into account. The correlation coefficient improves from 0.45 to 0.91, and the root-mean-square deviation likewise improves from 3.3 to 0.9. The program is available at https://github.com/EBjerrum/pICalculax.
Collapse
Affiliation(s)
- Esben J Bjerrum
- Wildcard Pharmaceutical Consulting , Frødings Alle 41, 2860 Søborg, Denmark.,Biochemfusion Aps , Løvspringsvej 4C, 1.tv, 2920 Charlottenlund, Denmark
| | - Jan H Jensen
- Biochemfusion Aps , Løvspringsvej 4C, 1.tv, 2920 Charlottenlund, Denmark
| | | |
Collapse
|
47
|
Sun Y, Li Y, Xu J, Huang L, Qiu T, Zhong S. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein. Colloids Surf B Biointerfaces 2017; 155:142-149. [DOI: 10.1016/j.colsurfb.2017.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/25/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
|
48
|
Fukai N, Kitagawa S, Ohtani H. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis. Electrophoresis 2017; 38:1724-1729. [DOI: 10.1002/elps.201700013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nao Fukai
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology; Nagoya Japan
| | - Shinya Kitagawa
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology; Nagoya Japan
| | - Hajime Ohtani
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology; Nagoya Japan
| |
Collapse
|
49
|
Rodrigues KT, Cieslarová Z, Tavares MFM, Simionato AVC. Strategies Involving Mass Spectrometry Combined with Capillary Electrophoresis in Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:99-141. [DOI: 10.1007/978-3-319-47656-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Pergande MR, Cologna SM. Isoelectric Point Separations of Peptides and Proteins. Proteomes 2017; 5:proteomes5010004. [PMID: 28248255 PMCID: PMC5372225 DOI: 10.3390/proteomes5010004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
The separation of ampholytic components according to isoelectric point has played an important role in isolating, reducing complexity and improving peptide and protein detection. This brief review outlines the basics of isoelectric focusing, including a summary of the historical achievements and considerations in experimental design. Derivative methodologies of isoelectric focusing are also discussed including common detection methods used. Applications in a variety of fields using isoelectric point based separations are provided as well as an outlook on the field for future studies.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|