1
|
Zou L, Wang Y, Wang X, Yang X, Zhang Q, Zheng Q. Stable isotope labeling-based two-step derivatization strategy for analysis of Phosphopeptides. J Proteomics 2024; 297:105128. [PMID: 38382841 DOI: 10.1016/j.jprot.2024.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Investigating site-specific protein phosphorylation remains a challenging task. The present study introduces a two-step chemical derivatization method for accurate identification of phosphopeptides. Methylamine neutralizes carboxyl groups, thus reducing the adsorption of non-phosphorylated peptides during enrichment, while dimethylamine offers a cost-effective reagent for stable isotope labeling of phosphorylation sites. The derivatization improves the mass spectra obtained through liquid chromatography-tandem mass spectrometry. The product ions at m/z 58.07 and 64.10 Da, resulting from dimethylamine-d0 and dimethylamine-d6 labeled phosphorylation sites respectively, can serve as report ions. Derivatized phosphopeptides from casein demonstrate enhanced ionization and formation of product ions, yielding a significant increase in the number of identifiable peptides. When using the parallel reaction monitoring technique, it is possible to distinguish isomeric phosphopeptides with the same amino acid sequence but different phosphorylation sites. By employing a proteomic software and screening the report ions, we identified 29 endogenous phosphopeptides in 10 μL of human saliva with high reliability. These findings indicate that the two-step derivatization strategy has great potential in site-specific phosphorylation and large-scale phosphoproteomics research. SIGNIFICANCE: There is a significant need to improve the accuracy of identifying phosphoproteins and phosphopeptides and analyzing them quantitatively. Several chemical derivatization techniques have been developed to label phosphorylation sites, thus enabling the identification and relative quantification of phosphopeptides. Nevertheless, these methods have limitations, such as incomplete conversion or the need for costly isotopic reagents. Building upon previous contributions, our study moves the field forward due to high efficiency in site-specific labeling, cost-effectiveness, improved sensitivity, and comprehensive product ion coverage. Using the two-step derivatization approach, we successfully identified 29 endogenous phosphopeptides in 10 μL of human saliva with high reliability. The outcomes underscore the possibility of the method for site-specific phosphorylation and large-scale phosphoproteomics investigations.
Collapse
Affiliation(s)
- Lunfei Zou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People's Republic of China
| | - Yao Wang
- Institute of Pathogen and Immunity, Wuhan Centers for Disease Prevention and Control, Wuhan 430024, Hubei, People's Republic of China
| | - Xingdan Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People's Republic of China
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People's Republic of China
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People's Republic of China.
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, Hubei, People's Republic of China
| |
Collapse
|
2
|
Kussmann M. Mass spectrometry as a lens into molecular human nutrition and health. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:370-379. [PMID: 37587732 DOI: 10.1177/14690667231193555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Mass spectrometry (MS) has developed over the last decades into the most informative and versatile analytical technology in molecular and structural biology (). The platform enables discovery, identification, and characterisation of non-volatile biomolecules, such as proteins, peptides, DNA, RNA, nutrients, metabolites, and lipids at both speed and scale and can elucidate their interactions and effects. The versatility, robustness, and throughput have rendered MS a major research and development platform in molecular human health and biomedical science. More recently, MS has also been established as the central tool for 'Molecular Nutrition', enabling comprehensive and rapid identification and characterisation of macro- and micronutrients, bioactives, and other food compounds. 'Molecular Nutrition' thereby helps understand bioaccessibility, bioavailability, and bioefficacy of macro- and micronutrients and related health effects. Hence, MS provides a lens through which the fate of nutrients can be monitored along digestion via absorption to metabolism. This in turn provides the bioanalytical foundation for 'Personalised Nutrition' or 'Precision Nutrition' in which design and development of diets and nutritional products is tailored towards consumer and patient groups sharing similar genetic and environmental predisposition, health/disease conditions and lifestyles, and/or objectives of performance and wellbeing. The next level of integrated nutrition science is now being built as 'Systems Nutrition' where public and personal health data are correlated with life condition and lifestyle factors, to establish directional relationships between nutrition, lifestyle, environment, and health, eventually translating into science-based public and personal heath recommendations and actions. This account provides a condensed summary of the contributions of MS to a precise, quantitative, and comprehensive nutrition and health science and sketches an outlook on its future role in this fascinating and relevant field.
Collapse
Affiliation(s)
- Martin Kussmann
- Abteilung Wissenschaft, Kompetenzzentrum für Ernährung (KErn), Germany
- Kussmann Biotech GmbH, Germany
| |
Collapse
|
3
|
Nagano N, Ichihashi Y, Komatsu T, Matsuzaki H, Hata K, Watanabe T, Misawa Y, Suzuki M, Sakamoto S, Kagami Y, Kashiro A, Takeuchi K, Kanemitsu Y, Ochiai H, Watanabe R, Honda K, Urano Y. Development of fluorogenic substrates for colorectal tumor-related neuropeptidases for activity-based diagnosis. Chem Sci 2023; 14:4495-4499. [PMID: 37152255 PMCID: PMC10155908 DOI: 10.1039/d2sc07029d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
The M3 metalloproteases, neurolysin and THOP1, are neuropeptidases that are expressed in various tissues and metabolize neuropeptides, such as neurotensin. The biological roles of these enzymes are not well characterized, partially because the chemical tools to analyse their activities are not well developed. Here, we developed a fluorogenic substrate probe for neurolysin and thimet oligopeptidase 1 (THOP1), which enabled the analysis of enzymatic activity changes in tissue and plasma samples. In particular, the probe was useful for studying enzyme activities in a single-molecule enzyme assay platform, which can detect enzyme activity with high sensitivity. We detected the activity of neurolysin in plasma samples and revealed higher enzyme activity in the blood samples of patients with colorectal tumor. The result indicated that single-molecule neurolysin activity is a promising candidate for a blood biomarker for colorectal cancer diagnosis.
Collapse
Affiliation(s)
- Norimichi Nagano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuki Ichihashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroyuki Matsuzaki
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Keisuke Hata
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yoshihiro Misawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Misa Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shingo Sakamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yu Kagami
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ayumi Kashiro
- Institute for Advanced Medical Sciences, Nippon Medical School 1-1-5 Sendagi Bunkyo-ku Tokyo 113-0033 Japan
| | - Keiko Takeuchi
- Institute for Advanced Medical Sciences, Nippon Medical School 1-1-5 Sendagi Bunkyo-ku Tokyo 113-0033 Japan
| | - Yukihide Kanemitsu
- National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo 104-0045 Japan
| | - Hiroki Ochiai
- National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo 104-0045 Japan
| | - Rikiya Watanabe
- Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kazufumi Honda
- Institute for Advanced Medical Sciences, Nippon Medical School 1-1-5 Sendagi Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Medicine, Nippon Medical School 1-1-5 Sendagi Bunkyo-ku Tokyo 113-8602 Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
4
|
Prediction, Discovery, and Characterization of Plant- and Food-Derived Health-Beneficial Bioactive Peptides. Nutrients 2022; 14:nu14224810. [PMID: 36432497 PMCID: PMC9697201 DOI: 10.3390/nu14224810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nature may have the answer to many of our questions about human, animal, and environmental health. Natural bioactives, especially when harvested from sustainable plant and food sources, provide a plethora of molecular solutions to nutritionally actionable, chronic conditions. The spectrum of these conditions, such as metabolic, immune, and gastrointestinal disorders, has changed with prolonged human life span, which should be matched with an appropriately extended health span, which would in turn favour more sustainable health care: "adding years to life and adding life to years". To date, bioactive peptides have been undervalued and underexploited as food ingredients and drugs. The future of translational science on bioactive peptides-and natural bioactives in general-is being built on (a) systems-level rather than reductionist strategies for understanding their interdependent, and at times synergistic, functions; and (b) the leverage of artificial intelligence for prediction and discovery, thereby significantly reducing the time from idea and concept to finished solutions for consumers and patients. This new strategy follows the path from benefit definition via design to prediction and, eventually, validation and production.
Collapse
|
5
|
He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics Clin Appl 2022; 16:e2100097. [PMID: 35490333 DOI: 10.1002/prca.202100097] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
In the context of precision medicine, disease treatment requires individualized strategies based on the underlying molecular characteristics to overcome therapeutic challenges posed by heterogeneity. For this purpose, it is essential to develop new biomarkers to diagnose, stratify, or possibly prevent diseases. Plasma is an available source of biomarkers that greatly reflects the physiological and pathological conditions of the body. An increasing number of studies are focusing on proteins and peptides, including many involving the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), and proteomics and peptidomics techniques are emerging as critical tools for developing novel precision medicine preventative measures. Excitingly, the emerging plasma proteomics and peptidomics toolbox exhibits a huge potential for studying pathogenesis of diseases (e.g., COVID-19 and cancer), identifying valuable biomarkers and improving clinical management. However, the enormous complexity and wide dynamic range of plasma proteins makes plasma proteome profiling challenging. Herein, we summarize the recent advances in plasma proteomics and peptidomics with a focus on their emerging roles in COVID-19 and cancer research, aiming to emphasize the significance of plasma proteomics and peptidomics in clinical applications and precision medicine.
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China.,Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, Rozmus D, Cieślińska A, Grzybowski A. Tear Biomarkers in Alzheimer's and Parkinson's Diseases, and Multiple Sclerosis: Implications for Diagnosis (Systematic Review). Int J Mol Sci 2022; 23:10123. [PMID: 36077520 PMCID: PMC9456033 DOI: 10.3390/ijms231710123] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Biological material is one of the most important aspects that allow for the correct diagnosis of the disease, and tears are an interesting subject of research because of the simplicity of collection, as the well as the relation to the components similar to other body fluids. In this review, biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) in tears are investigated and analyzed. Records were obtained from the PubMed and Google Scholar databases in a timeline of 2015-2022. The keywords were: tear film/tear biochemistry/tear biomarkers + diseases (AD, PD, or MS). The recent original studies were analyzed, discussed, and biomarkers present in tears that can be used for the diagnosis and management of AD, PD, and MS diseases were shown. α-synTotal and α-synOligo, lactoferrin, norepinephrine, adrenaline, epinephrine, dopamine, α-2-macroglobulin, proteins involved in immune response, lipid metabolism and oxidative stress, apolipoprotein superfamily, and others were shown to be biomarkers in PD. For AD as potential biomarkers, there are: lipocalin-1, lysozyme-C, and lacritin, amyloid proteins, t-Tau, p-Tau; for MS there are: oligoclonal bands, lipids containing choline, free carnitine, acylcarnitines, and some amino acids. Information systematized in this review provides interesting data and new insight to help improve clinical outcomes for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Angelika Król-Grzymała
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | | | - Ewa Fiedorowicz
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
7
|
Kalló G, Kumar A, Tőzsér J, Csősz É. Chemical Barrier Proteins in Human Body Fluids. Biomedicines 2022; 10:biomedicines10071472. [PMID: 35884778 PMCID: PMC9312486 DOI: 10.3390/biomedicines10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416432
| | - Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021; 22:13128. [PMID: 34884929 PMCID: PMC8658490 DOI: 10.3390/ijms222313128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Collapse
Affiliation(s)
| | | | - Igor Fesenko
- Department of Functional Genomics and Proteomics of Plants, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (I.L.); (V.I.)
| |
Collapse
|
9
|
Yuan C, Ma Z, Tong P, Yu S, Li Y, Elizabeth Gallagher J, Sun X, Zheng S. Peptidomic changes of saliva after nonsurgical treatment of stage I / II generalized periodontitis. Oral Dis 2021; 28:1640-1651. [PMID: 33751696 DOI: 10.1111/odi.13838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the changes of peptidome profiles of saliva, serum and gingival crevicular fluid (GCF) before and after nonsurgical periodontal treatment in patients with generalized periodontitis (stage I / II). SUBJECTS AND METHODS Saliva, serum and GCF samples were collected from 17 patients at baseline (T0 ), one week after ultrasonic supragingival scaling (T1 ) and eight weeks after subgingival scaling and root planning (T2 ). Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) was carried out to detect changes in peptidomic profiles. Then nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nano-LC/ESI-MS/MS) was performed to identify potential peptide biomarkers. RESULTS Most of the peptides from the patients exhibited a decreasing trend from the time point of pre-treatment to that of post-treatment. Cluster analysis and scatter plots using these peptides indicated that salivary peptidome has an acceptable capability of reflecting the status of stage I / II generalized periodontitis. Seven of these peptides were successfully identified as α-1-antitrypsin, immunoglobulin κ variable 4-1, haptoglobin and immunoglobulin heavy constant γ2. CONCLUSIONS Certain peptides in saliva, serum and GCF were down-regulated after nonsurgical periodontal treatment, demonstrating the application prospects of saliva in monitoring and surveillance of periodontal diseases in both clinical settings and communities.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.,Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom
| | - Zhangke Ma
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.,Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom.,Department of Paediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Centre of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Peiyuan Tong
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.,Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom.,Department of Stomatology, Peking University Third Hospital, Beijing, PR China
| | - Shunlan Yu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.,Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, PR China
| | - Jennifer Elizabeth Gallagher
- Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom.,Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.,Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.,Joint International Research Center of Translational and Clinical Research between, Peking University Health Science Center and King's College London, Beijing, PR China, London, United Kingdom
| |
Collapse
|
10
|
Rochat B, Waridel P, Barblan J, Sottas PE, Quadroni M. Robust and sensitive peptidomics workflow for plasma based on specific extraction, lipid removal, capillary LC setup and multinozzle ESI emitter. Talanta 2021; 223:121617. [PMID: 33303132 DOI: 10.1016/j.talanta.2020.121617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
We present a new workflow for the LC-MS determination of native peptides in plasma at picomolar levels. Collected whole blood was quickly diluted with an ice-cold solution in order to stop protease activity. Diluted plasma samples were extracted by protein denaturation followed by solid-phase-extraction with a polymeric stationary phase that removed most proteins and lipids. Using a specific LC-MS setup with 3 pumps, 240 μL of extracts were injected without drying-reconstitution, a step known to cause peptide losses. After an 18-fold dilution on-line, peptides were trapped on a 1 × 10 mm C8 column, back-flushed and resolved on a 0.3 × 100 mm C18 column. Extract reproducibility, robustness (column clogging), extraction yields, matrix effects, calibration curves and limits of detection were evaluated with plasma extracts and spiked-in standards. The sensitivity and applicability of 3 electrospray sources were evaluated at capillary flow rates (10 μL/min). We show that ionization sources must have a spray angle with the MS orifice when "real" extracts are injected and that a multinozzle emitter can improve very significantly peptide detection. Finally, using our workflow, we have performed a peptidomics study on dried-blood-spots collected over 65 h in a healthy volunteer and discovered 5 fragments (2.9-3.8 KDa) of the protein statherin showing circadian oscillations. This is the first time that statherin is observed in blood where its role clearly deserves further investigations. Our peptidomic protocol shows low picomolar limits of detection and can be readily applied with or without minor modifications for most peptide determinations in various biomatrices.
Collapse
Affiliation(s)
- Bertrand Rochat
- Protein Analysis Facility, University of Lausanne, Switzerland; University Hospital of Lausanne, 1015, Lausanne, Switzerland.
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, Switzerland.
| | - Jachen Barblan
- Protein Analysis Facility, University of Lausanne, Switzerland.
| | | | | |
Collapse
|
11
|
Li N, Zhou Y, Wang J, Niu L, Zhang Q, Sun L, Ding X, Guo X, Xie Z, Zhu N, Zhang M, Chen X, Cai T, Yang F. Sequential Precipitation and Delipidation Enables Efficient Enrichment of Low-Molecular Weight Proteins and Peptides from Human Plasma. J Proteome Res 2020; 19:3340-3351. [DOI: 10.1021/acs.jproteome.0c00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhou
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Thermo Fisher Scientific, Shanghai 200000, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Nali Zhu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wei F, Sun X, Tong P, Gao Y, Zhu C, Chen F, Zheng S. The stability of children's salivary peptidome profiles in response to short-term beverage consumption. Clin Chim Acta 2020; 509:101-107. [PMID: 32531253 DOI: 10.1016/j.cca.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Salivary peptidome profiling analysis has advantages of simplicity and non-invasiveness and great potentiality for screening, monitoring or primary diagnosis of diseases, but may be subjected to change against interferences like diet. METHODS We conducted a 5-day study to investigate the influence of 3 kinds of beverages (orange juice, sugar-free tea, and sugar-free liquid yoghurt; water as control) on children's salivary peptidome using mass spectrometry techniques. RESULTS All the groups shared a relatively stable pattern in heatmaps during the experimental days. Principal component analysis plot presented slight shifts in all the intervention groups between the baseline and intervention period while samples were not distinctly separated by date. The numbers of significantly changed peptides after short-term orange juice and tea intervention were four and three, respectively, while no changes occurred in the yoghurt group and control. Four of these peptides were identified as histatin-3, collagen alpha-1(IV) chain, zinc finger protein 805, and quinolinate synthase A. CONCLUSIONS Salivary peptidome has its own stability against beverage intervention, confirming the feasibility and validity of using it as a potential reference for the healthy state of the body, with diet habits recorded and considered as a confounder if necessary.
Collapse
Affiliation(s)
- Fangqiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Peiyuan Tong
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yufeng Gao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
13
|
Peng J, Zhang H, Niu H, Wu R. Peptidomic analyses: The progress in enrichment and identification of endogenous peptides. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Ichihashi Y, Komatsu T, Kyo E, Matsuzaki H, Hata K, Watanabe T, Ueno T, Hanaoka K, Urano Y. Separation-Based Enzymomics Assay for the Discovery of Altered Peptide-Metabolizing Enzymatic Activities in Biosamples. Anal Chem 2019; 91:11497-11501. [PMID: 31424921 DOI: 10.1021/acs.analchem.9b03016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed a novel method to globally monitor the enzymatic activities of biological samples based on performing the global activity analysis on a proteome separated by native electrophoresis. The study of the alteration in peptide-metabolizing enzymatic activity in colorectal tumor specimens led us to the discovery of elevated thimet oligopeptidase activity, which contributed to the faster consumption of immune-stimulating peptide neurotensin.
Collapse
Affiliation(s)
- Yuki Ichihashi
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Etsu Kyo
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hiroyuki Matsuzaki
- Department of Surgical Oncology, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Keisuke Hata
- Department of Surgical Oncology, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,Core Research for Evolutional Science and Technology (CREST) Investigator , Japan Agency for Medical Research and Development (AMED) , 1-7-1 Otemachi , Chiyoda-ku , Tokyo 100-0004 , Japan
| |
Collapse
|
15
|
Filippova A, Lyapina I, Kirov I, Zgoda V, Belogurov A, Kudriaeva A, Ivanov V, Fesenko I. Salicylic acid influences the protease activity and posttranslation modifications of the secreted peptides in the moss Physcomitrella patens. J Pept Sci 2018; 25:e3138. [PMID: 30575224 DOI: 10.1002/psc.3138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.
Collapse
Affiliation(s)
- Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Kirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Victor Zgoda
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Department of Proteomic Research and Mass Spectrometry, Moscow, Russian Federation
| | - Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|