1
|
Khare M, Piparia S, Tantisira KG. Pharmacogenetics of childhood uncontrolled asthma. Expert Rev Clin Immunol 2025; 21:181-194. [PMID: 37190963 PMCID: PMC10657335 DOI: 10.1080/1744666x.2023.2214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.
Collapse
Affiliation(s)
- Manaswitha Khare
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Hospital Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital of San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Voorhies K, Mohammed A, Chinthala L, Kong SW, Lee IH, Kho AT, McGeachie M, Mandl KD, Raby B, Hayes M, Davis RL, Wu AC, Lutz SM. GSDMB/ORMDL3 Rare/Common Variants Are Associated with Inhaled Corticosteroid Response among Children with Asthma. Genes (Basel) 2024; 15:420. [PMID: 38674355 PMCID: PMC11049905 DOI: 10.3390/genes15040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.
Collapse
Affiliation(s)
- Kirsten Voorhies
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Akram Mohammed
- Center in Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lokesh Chinthala
- Center in Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alvin T. Kho
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael McGeachie
- Channing Division for Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kenneth D. Mandl
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Benjamin Raby
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Melanie Hayes
- Center in Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert L. Davis
- Center in Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ann Chen Wu
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Sharon M. Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
3
|
Ong MS, Sordillo JE, Dahlin A, McGeachie M, Tantisira K, Wang AL, Lasky-Su J, Brilliant M, Kitchner T, Roden DM, Weiss ST, Wu AC. Machine Learning Prediction of Treatment Response to Inhaled Corticosteroids in Asthma. J Pers Med 2024; 14:246. [PMID: 38540988 PMCID: PMC10970828 DOI: 10.3390/jpm14030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Although inhaled corticosteroids (ICS) are the first-line therapy for patients with persistent asthma, many patients continue to have exacerbations. We developed machine learning models to predict the ICS response in patients with asthma. METHODS The subjects included asthma patients of European ancestry (n = 1371; 448 children; 916 adults). A genome-wide association study was performed to identify the SNPs associated with ICS response. Using the SNPs identified, two machine learning models were developed to predict ICS response: (1) least absolute shrinkage and selection operator (LASSO) regression and (2) random forest. RESULTS The LASSO regression model achieved an AUC of 0.71 (95% CI 0.67-0.76; sensitivity: 0.57; specificity: 0.75) in an independent test cohort, and the random forest model achieved an AUC of 0.74 (95% CI 0.70-0.78; sensitivity: 0.70; specificity: 0.68). The genes contributing to the prediction of ICS response included those associated with ICS responses in asthma (TPSAB1, FBXL16), asthma symptoms and severity (ABCA7, CNN2, PTRN3, and BSG/CD147), airway remodeling (ELANE, FSTL3), mucin production (GAL3ST), leukotriene synthesis (GPX4), allergic asthma (ZFPM1, SBNO2), and others. CONCLUSIONS An accurate risk prediction of ICS response can be obtained using machine learning methods, with the potential to inform personalized treatment decisions. Further studies are needed to examine if the integration of richer phenotype data could improve risk prediction.
Collapse
Affiliation(s)
- Mei-Sing Ong
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (A.C.W.)
| | - Joanne E. Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (A.C.W.)
| | - Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.D.); (M.M.); (A.L.W.); (J.L.-S.); (S.T.W.)
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.D.); (M.M.); (A.L.W.); (J.L.-S.); (S.T.W.)
| | - Kelan Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego and Rady Children’s Hospital, San Diego, CA 92123, USA;
| | - Alberta L. Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.D.); (M.M.); (A.L.W.); (J.L.-S.); (S.T.W.)
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.D.); (M.M.); (A.L.W.); (J.L.-S.); (S.T.W.)
| | - Murray Brilliant
- Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (M.B.); (T.K.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Terrie Kitchner
- Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (M.B.); (T.K.)
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (A.D.); (M.M.); (A.L.W.); (J.L.-S.); (S.T.W.)
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (A.C.W.)
| |
Collapse
|
4
|
Denning DW, Pfavayi LT. Poorly controlled asthma - Easy wins and future prospects for addressing fungal allergy. Allergol Int 2023; 72:493-506. [PMID: 37544851 DOI: 10.1016/j.alit.2023.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Poorly controlled asthma is especially common in low resource countries. Aside from lack of access to, or poor technique with, inhaled beta-2 agonists and corticosteroids, the most problematic forms of asthma are frequently associated with both fungal allergy and exposure, especially in adults leading to more asthma exacerbations and worse asthma. The umbrella term 'fungal asthma' describes many disorders linked to fungal exposure and/or allergy to fungi. One fungal asthma endotype, ABPA, is usually marked by a very high IgE and its differential diagnosis is reviewed. Both ABPA and fungal bronchitis in bronchiectasis are marked by thick excess airway mucus production. Dermatophyte skin infection can worsen asthma and eradication of the skin infection improves asthma. Exposure to fungi in the workplace, home and schools, often in damp or water-damaged buildings worsens asthma, and remediation improves symptom control and reduces exacerbations. Antifungal therapy is beneficial for fungal asthma as demonstrated in nine of 13 randomised controlled studies, reducing symptoms, corticosteroid need and exacerbations while improving lung function. Other useful therapies include azithromycin and some biologics approved for the treatment of severe asthma. If all individuals with poorly controlled and severe asthma could be 'relieved' of their fungal allergy and infection through antifungal therapy without systemic corticosteroids, the health benefits would be enormous and relatively inexpensive, improving the long term health of over 20 million adults and many children. Antifungal therapy carries some toxicity, drug interactions and triazole resistance risks, and data are incomplete. Here we summarise what is known and what remains uncertain about this complex topic.
Collapse
Affiliation(s)
- David W Denning
- Manchester Fungal Infection Group, The University of Manchester and Manchester Academic Health Science Centre, Manchester, UK.
| | - Lorraine T Pfavayi
- Institute of Immunology & Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Herrera‐Luis E, Ortega VE, Ampleford EJ, Sio YY, Granell R, de Roos E, Terzikhan N, Vergara E, Hernandez‐Pacheco N, Perez‐Garcia J, Martin‐Gonzalez E, Lorenzo‐Diaz F, Hashimoto S, Brinkman P, Jorgensen AL, Yan Q, Forno E, Vijverberg SJ, Lethem R, Espuela‐Ortiz A, Gorenjak M, Eng C, González‐Pérez R, Hernández‐Pérez JM, Poza‐Guedes P, Sardón O, Corcuera P, Hawkins G, Marsico A, Bahmer T, Rabe KF, Hansen G, Kopp MV, Rios R, Cruz M, González‐Barcala F, Olaguibel JM, Plaza V, Quirce S, Canino G, Cloutier M, del Pozo V, Rodriguez‐Santana JR, Korta‐Murua J, Villar J, Potočnik U, Figueiredo C, Kabesch M, Mukhopadhyay S, Pirmohamed M, Hawcutt D, Melén E, Palmer CN, Turner S, Maitland‐van der Zee AH, von Mutius E, Celedón JC, Brusselle G, Chew FT, Bleecker E, Meyers D, Burchard EG, Pino‐Yanes M. Multi-ancestry genome-wide association study of asthma exacerbations. Pediatr Allergy Immunol 2022; 33:e13802. [PMID: 35754128 PMCID: PMC9671132 DOI: 10.1111/pai.13802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10-5 and replication: ORC allele = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.
Collapse
Affiliation(s)
- Esther Herrera‐Luis
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Victor E. Ortega
- Division of Respiratory MedicineDepartment of Internal MedicineMayo ClinicScottsdaleArizonaUSA
| | - Elizabeth J. Ampleford
- Department of Internal MedicineCenter for Precision MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yang Yie Sio
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Raquel Granell
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Emmely de Roos
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Natalie Terzikhan
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Ernesto Elorduy Vergara
- Institute of Computation BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Natalia Hernandez‐Pacheco
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Javier Perez‐Garcia
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Elena Martin‐Gonzalez
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Fabian Lorenzo‐Diaz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Simone Hashimoto
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Brinkman
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Andrea L. Jorgensen
- Department of Health Data ScienceInstitute of Population HealthUniversity of LiverpoolLiverpoolUK
| | - Qi Yan
- Department of Obstetrics and GynecologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Erick Forno
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Susanne J. Vijverberg
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ryan Lethem
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Antonio Espuela‐Ortiz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and PharmacogenomicsFaculty of MedicineUniversity of MariborMariborSlovenia
| | - Celeste Eng
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ruperto González‐Pérez
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - José M. Hernández‐Pérez
- Pulmonary MedicineHospital Universitario de N.S de CandelariaSanta Cruz de TenerifeSpain
- Pulmonary MedicineHospital General de La PalmaLa Palma, Santa Cruz de TenerifeSpain
| | - Paloma Poza‐Guedes
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - Olaia Sardón
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Paula Corcuera
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
| | - Greg A. Hawkins
- Department of BiochemistryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Annalisa Marsico
- Computational Health CenterHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & AllergologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)LübeckGermany
- Department of Paediatric Respiratory MedicineInselspitalUniversity Children's Hospital of BernUniversity of BernBernSwitzerland
| | - Raimon Rios
- Programa de Pós Graduação em Imunologia (PPGIm)Instituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | - Maria Jesus Cruz
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de NeumologíaHospital Vall d’HebronBarcelonaSpain
| | | | - José María Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de AlergologíaComplejo Hospitalario de NavarraPamplonaNavarraSpain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Departamento de Medicina RespiratoriaHospital de la Santa Creu i Sant PauInstituto de Investigación Biomédica Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Department of AllergyLa Paz University HospitalIdiPAZMadridSpain
| | - Glorisa Canino
- Behavioral Sciences Research InstituteUniversity of Puerto RicoSan JuanPuerto Rico
| | - Michelle Cloutier
- Department of PediatricsUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Immunology DepartmentInstituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Javier Korta‐Murua
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Multidisciplinary Organ Dysfunction Evaluation Research NetworkResearch UnitHospital Universitario Dr. NegrínLas Palmas de Gran CanariaSpain
| | - Uroš Potočnik
- Laboratory for Biochemistry, Molecular Biology and GenomicsFaculty for Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia
| | - Camila Figueiredo
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | - Michael Kabesch
- Department of Paediatric Pneumology and AllergyUniversity Children's Hospital Regensburg (KUNO)RegensburgGermany
| | - Somnath Mukhopadhyay
- Academic Department of PaediatricsBrighton and Sussex Medical School, Royal Alexandra Children's HospitalBrightonUK
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | - Munir Pirmohamed
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Daniel B. Hawcutt
- Department of Women's and Children's HealthUniversity of LiverpoolLiverpoolUK
- Alder Hey Children's HospitalLiverpoolUK
- NIHR Alder Hey Clinical Research FacilityAlder Hey Children's HospitalLiverpoolUK
| | - Erik Melén
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs’ Children’s HospitalSouth General HospitalStockholmSweden
| | - Colin N. Palmer
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | | | - Anke H. Maitland‐van der Zee
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Erika von Mutius
- Institute for Asthma and Allergy PreventionHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
- Dr von Hauner Children's HospitalLudwig‐Maximilians‐UniversitätMunichGermany
- Comprehensive Pneumology Center Munich (CPC‐M)Member of the German Center for Lung ResearchMunichGermany
| | - Juan C. Celedón
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Guy Brusselle
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Respiratory MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Fook Tim Chew
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Eugene Bleecker
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Deborah Meyers
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Esteban G. Burchard
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Maria Pino‐Yanes
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Instituto de Tecnologías Biomédicas (ITB)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| |
Collapse
|
6
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
7
|
Fishe JN, Labilloy G, Higley R, Casey D, Ginn A, Baskovich B, Blake KV. Single Nucleotide Polymorphisms (SNPs) in PRKG1 & SPATA13-AS1 are associated with bronchodilator response: a pilot study during acute asthma exacerbations in African American children. Pharmacogenet Genomics 2021; 31:146-154. [PMID: 33851947 PMCID: PMC8373649 DOI: 10.1097/fpc.0000000000000434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inhaled bronchodilators are the first-line treatment for asthma exacerbations, but individual bronchodilator response (BDR) varies by race and ethnicity. Studies have examined BDR's genetic underpinnings, but many did not include children or were not conducted during an asthma exacerbation. This pilot study tested single-nucleotide polymorphisms' (SNPs') association with pediatric African American BDR during an acute asthma exacerbation. METHODS This was a study of pediatric asthma patients in the age group 2-18 years treated in the emergency department for an asthma exacerbation. We measured BDR before and after inhaled bronchodilator treatments using both the Pediatric Asthma Severity Score (PASS) and asthma severity score. We collected genomic DNA and examined whether 21 candidate SNPs from a review of the literature were associated with BDR using crude odds ratios (OR) and adjusted analysis. RESULTS The final sample population was 53 children, with an average age of 7.2 years. The average initial PASS score (scale of ascending severity from 0 to 6) was 2.5. After adjusting for BMI, age category, gender and smoke exposure, rs912142 was associated with decreased odds of having low BDR (OR, 0.20; 95% confidence interval (CI), 0.02-0.92), and rs7081864 and rs7903366 were associated with decreased odds of having high BDR (OR, 0.097; 95% CI, 0.009-0.62). CONCLUSIONS We found three SNPs significantly associated with pediatric African American BDR that provide information regarding a child's potential response to emergency asthma exacerbation treatment. Once validated in larger studies, such information could guide pharmacogenomic evidence-based emergency asthma treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Jennifer N Fishe
- Department of Emergency Medicine, Division of Research, University of Florida College of Medicine - Jacksonville
- Center for Data Solutions, University of Florida College of Medicine - Jacksonville
| | - Guillaume Labilloy
- Center for Data Solutions, University of Florida College of Medicine - Jacksonville
| | - Rebecca Higley
- Department of Emergency Medicine, Division of Research, University of Florida College of Medicine - Jacksonville
| | - Deirdre Casey
- University of Florida Health Jacksonville, Jacksonville
| | - Amber Ginn
- Department of Pathology, University of Florida College of Medicine - Jacksonville
| | - Brett Baskovich
- Department of Pathology, University of Florida College of Medicine - Jacksonville
| | - Kathryn V Blake
- Nemours Center for Pharmacogenomics and Translational Research, Jacksonville, Florida, USA
| |
Collapse
|
8
|
Shaban SA, Brakhas SA, Ad'hiah AH. Interleukin-33 gene variants (rs928413, rs16924159 and rs7037276) and susceptibility to asthma among Iraqi adult patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Barber AT, Loughlin CE. Pediatric pulmonology 2019 year in review: Asthma. Pediatr Pulmonol 2021; 56:2449-2454. [PMID: 34081841 DOI: 10.1002/ppul.25507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/16/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew T Barber
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ceila E Loughlin
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Mathioudakis AG, Miligkos M, Boccabella C, Alimani GS, Custovic A, Deschildre A, Ducharme FM, Kalayci O, Murray C, Garcia AN, Phipatanakul W, Price D, Sheikh A, Agache IO, Bacharier L, Beloukas A, Bentley A, Bonini M, Castro-Rodriguez JA, De Carlo G, Craig T, Diamant Z, Feleszko W, Felton T, Gern JE, Grigg J, Hedlin G, Hossny EM, Ierodiakonou D, Jartti T, Kaplan A, Lemanske RF, Le Souëf PN, Mäkelä MJ, Mathioudakis GA, Matricardi P, Mitrogiorgou M, Morais-Almeida M, Nagaraju K, Papageorgiou E, Pité H, Pitrez PMC, Pohunek P, Roberts G, Tsiligianni I, Turner S, Vijverberg S, Winders TA, Wong GW, Xepapadaki P, Zar HJ, Papadopoulos NG. Management of asthma in childhood: study protocol of a systematic evidence update by the Paediatric Asthma in Real Life (PeARL) Think Tank. BMJ Open 2021; 11:e048338. [PMID: 34215609 PMCID: PMC8256789 DOI: 10.1136/bmjopen-2020-048338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Clinical recommendations for childhood asthma are often based on data extrapolated from studies conducted in adults, despite significant differences in mechanisms and response to treatments. The Paediatric Asthma in Real Life (PeARL) Think Tank aspires to develop recommendations based on the best available evidence from studies in children. An overview of systematic reviews (SRs) on paediatric asthma maintenance management and an SR of treatments for acute asthma attacks in children, requiring an emergency presentation with/without hospital admission will be conducted. METHODS AND ANALYSIS Standard methodology recommended by Cochrane will be followed. Maintenance pharmacotherapy of childhood asthma will be evaluated in an overview of SRs published after 2005 and including clinical trials or real-life studies. For evaluating pharmacotherapy of acute asthma attacks leading to an emergency presentation with/without hospital admission, we opted to conduct de novo synthesis in the absence of adequate up-to-date published SRs. For the SR of acute asthma pharmacotherapy, we will consider eligible SRs, clinical trials or real-life studies without time restrictions. Our evidence updates will be based on broad searches of Pubmed/Medline and the Cochrane Library. We will use A MeaSurement Tool to Assess systematic Reviews, V.2, Cochrane risk of bias 2 and REal Life EVidence AssessmeNt Tool to evaluate the methodological quality of SRs, controlled clinical trials and real-life studies, respectively.Next, we will further assess interventions for acute severe asthma attacks with positive clinical results in meta-analyses. We will include both controlled clinical trials and observational studies and will assess their quality using the previously mentioned tools. We will employ random effect models for conducting meta-analyses, and Grading of Recommendations Assessment, Development and Evaluation methodology to assess certainty in the body of evidence. ETHICS AND DISSEMINATION Ethics approval is not required for SRs. Our findings will be published in peer reviewed journals and will inform clinical recommendations being developed by the PeARL Think Tank. PROSPERO REGISTRATION NUMBERS CRD42020132990, CRD42020171624.
Collapse
Affiliation(s)
- Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Athens Breath Centre, Athens, Greece
| | - Michael Miligkos
- First Department of Pediatrics, "Aghia Sofia" Children's Hospital, University of Athens, Athens, Attica, Greece
| | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Milano, Lombardia, Italy
| | - Gioulinta S Alimani
- Athens Breath Centre, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Egaleo, Attica, Greece
| | - Adnan Custovic
- Department of Paediatrics, Imperial College London, London, UK
| | - A Deschildre
- Unité de Pneumologie et Allergologie Pédiatriques, Hôpital Jeanne de Flandre, CHU Lille, Lille, Hauts-de-France, France
| | | | - Omer Kalayci
- Pediatric Allergy and Asthma Unit, Hacettepe Universitesi, Ankara, Turkey
| | - Clare Murray
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Antonio Nieto Garcia
- Pulmonology and Allergy Unity, La Fe University and Polytechnic Hospital, Valencia, Comunidad Valenciana, Spain
| | - Wanda Phipatanakul
- Pediatric Allergy and Immunology, Children's Hospital Boston, Boston, Massachusetts, USA
| | - David Price
- Centre of Academic Primary Care, University of Aberdeen, Aberdeen, UK
- Observational and Pragmatic Research Institute, Singapore
| | - Aziz Sheikh
- Asthma UK Centre for Applied Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | | | - Leonard Bacharier
- Department of Allergy, Immunology, and Pulmonary Medicine, University of Washington, Seattle, Washington, USA
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, Egaleo, Attica, Greece
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Andrew Bentley
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Acute Intensive Care Unit, University Hospital of South Manchester NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Matteo Bonini
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Milano, Lombardia, Italy
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | | | - Giuseppe De Carlo
- Allergy and Airway Diseases Patient's Associations, European Federation of Pharmaceutical Industries and Associations, Brussels, Belgium
| | - Timothy Craig
- Allergy, Asthma and Immunology, Penn State University, Hershey, Pennsylvania, USA
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital Lund Hematological Clinic, Lund, Skåne, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center of Groningen and QPS-NL, Groningen, Netherlands
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Warszawa, Poland
| | - Tim Felton
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - James E Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Gunilla Hedlin
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Stockholm, Sweden
| | - Elham M Hossny
- Pediatric Allergy and Immunology Unit, Ain Shams University, Cairo, Egypt
| | - Despo Ierodiakonou
- Department of Social Medicine, Faculty of Medicine, University of Crete, Rethimno, Greece
| | - Tuomas Jartti
- Department of Paediatrics, University of Turku, Turku, Finland
| | - Alan Kaplan
- Family Physician, Airways Group of Canada, University of Toronto, Toronto, Ontario, Canada
| | - Robert F Lemanske
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter N Le Souëf
- School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - Mika J Mäkelä
- Department of Allergy, University of Helsinki, Helsinki, Uusimaa, Finland
| | | | - Paolo Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - University Medicine, Berlin, Germany
| | - Marina Mitrogiorgou
- Third Department of Paediatrics, National and Kapodistrian University of Athens School of Health Sciences, Athens, Greece
| | | | | | - Effie Papageorgiou
- Department of Biomedical Sciences, University of West Attica, Egaleo, Attica, Greece
| | - Helena Pité
- Allergy Center, Hospital CUF Descobertas, Lisboa, Portugal
- Allergy Center, CUF Infante Santo Hospital, Lisbon, Portugal
- Chronic Diseases Research Center (CEDOC), NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo M C Pitrez
- Laboratory of Respiratory Physiology, Infant Center, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Petr Pohunek
- Paediatric Department, Motol University Hospital, Praha, Czech Republic
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport Isle of Wight, UK
- Faculty of Medicine, Clinical and Experimental Sciences and Human Development in Health Academic Units, University of Southampton, Southampton, UK
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ioanna Tsiligianni
- Department of Social Medicine, Faculty of Medicine, University of Crete, Rethimno, Greece
| | - Stephen Turner
- Department of Child Health, University of Aberdeen, Aberdeen, Aberdeen, UK
| | - Susanne Vijverberg
- Department of Respiratory Medicine and Department of Pediatric Pulmonology, University of Amsterdam, Amsterdam, Netherlands
| | - Tonya A Winders
- Allergy & Asthma, Global Patient Platform, Virginia, Virginia, USA
| | - Gary Wk Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Attica, Greece
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, Western Cape, South Africa
- Unit on Child and Adolescent Health, Medical Reaserch Council, Cape Town, South Africa
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Attica, Greece
| |
Collapse
|
11
|
Wang T, Sun W, Wu H, Cheng Y, Li Y, Meng F, Ni C. Respiratory traits and coal workers' pneumoconiosis: Mendelian randomisation and association analysis. Occup Environ Med 2020; 78:137-141. [PMID: 33097673 DOI: 10.1136/oemed-2020-106610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Susceptibility loci of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease were also significantly associated with the predisposition of coal worker's pneumoconiosis (CWP) in recent studies. However, only a few genes and loci were targeted in previous studies. METHODS To systematically evaluate the genetic associations between CWP and other respiratory traits, we reviewed the reported genome-wide association study loci of five respiratory traits and then conducted a Mendelian randomisation study and a two-stage genetic association study. RESULTS Interestingly, we found that for each SD unit, higher lung function was associated with a 66% lower risk of CWP (OR=0.34, 95% CI: 0.15 to 0.77, p=0.010) using conventional Mendelian randomisation analysis (inverse variance weighted method). Moreover, we found susceptibility loci of interstitial lung disease (rs2609255, OR=1.29, p=1.61×10-4) and lung function (rs4651005, OR=1.39, p=1.62×10-3; rs985256, OR=0.73, p=8.24×10-4 and rs6539952, OR=1.28, p=4.32×10-4) were also significantly associated with the risk of CWP. Functional annotation showed these variants were significantly associated with the expression of FAM13A (rs2609255, p=7.4 ×10-4), ANGPTL1 (rs4651005, p=5.4 ×10-7), SPATS2L (rs985256, p=1.1 ×10-5) and RP11-463O9.9 (rs6539952, p=7.1 ×10-6) in normal lung tissues, which were related to autophagy pathway simultaneously according to enrichment analysis. CONCLUSIONS These results provided a deeper understanding of the genetic predisposition basis of CWP.
Collapse
Affiliation(s)
- Ting Wang
- Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenqing Sun
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyan Wu
- Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuxin Cheng
- Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanqing Meng
- Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Perez-Garcia J, Espuela-Ortiz A, Lorenzo-Diaz F, Pino-Yanes M. Pharmacogenetics of Pediatric Asthma: Current Perspectives. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:89-103. [PMID: 32256100 PMCID: PMC7090194 DOI: 10.2147/pgpm.s201276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic respiratory disease that affects 339 million people worldwide and has a considerable impact on the pediatric population. Asthma symptoms can be controlled by pharmacological treatment. However, some patients do not respond to therapy and continue suffering from symptoms, which impair the quality of life of patients and limit their daily activity. Genetic variation has been shown to have a role in treatment response. The aim of this review is to update the main findings described in pharmacogenetic studies of pediatric asthma published from January 1, 2018 to December 31, 2019. During this period, the response to short-acting beta-agonists and inhaled corticosteroids in childhood asthma has been evaluated by eleven candidate-gene studies, one meta-analysis of a candidate gene, and six pharmacogenomic studies. The findings have allowed validating the association of genes previously related to asthma treatment response (ADRB2, GSDMB, FCER2, VEGFA, SPAT2SL, ASB3, and COL2A1), and identifying novel associations (PRKG1, DNAH5, IL1RL1, CRISPLD2, MMP9, APOBEC3B-APOBEC3C, EDDM3B, and BBS9). However, some results are not consistent across studies, highlighting the need to conduct larger studies in diverse populations with more homogeneous definitions of treatment response. Once stronger evidence was established, genetic variants will have the potential to be applied in clinical practice as biomarkers of treatment response enhancing asthma management and improving the quality of life of asthma patients.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
13
|
Tang M, Zimmerman KO, Lang JE. Severe childhood asthma exacerbations: Is treatment response variability in the genes? Pediatr Pulmonol 2019; 54:680-682. [PMID: 30868766 PMCID: PMC9460636 DOI: 10.1002/ppul.24309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/12/2022]
Abstract
Worldwide, asthma is one of the most common causes of medical emergency in children. Failed acute management events comprise a large part of the annual healthcare costs of asthma. These severe exacerbations requiring hospitalization likely also contribute to permanent remodeling and impaired lung function in later life. Various studies have uncovered clinical, environmental, and genetic risk factors for severe asthma and exacerbations that cannot be acutely managed and require hospitalization. Tse and colleagues extend their previous work by adding important new insights into the determinants of failed ED management of pediatric asthma. Using a candidate gene approach and stepwise regression, they identified three SNPs in two candidate genes: IL33 , rs7037276, rs1342326 and SPATS2L , rs295137, which when aggregated together significantly increased the odds for ED management failure, with each risk allele increasing failure odds by 83% (95% CI, 36–145%). When these genes markers were combined with validated clinical predictors of acute asthma management failure (viral infection, poor baseline pediatric respiratory assessment measure score, oxygen saturation <92%, fever >38.3°C, and presence of symptoms between episodes) the resulting ability to predict acute management failure was significantly improved (ROC curve=0.82). As discussed in this editorial and the discussion by Tse et al, these novel genetic markers provide new avenues of research for management of acute exacerbations. As the syndrome of asthma continues to be better characterized into multiple endo-phenotypes, we are likely to find that personalized treatment is necessary not only for control of asthma but also for acute rescue of exacerbations.
Collapse
Affiliation(s)
- Monica Tang
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Kanecia O Zimmerman
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Jason E Lang
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|