1
|
Wang C, Zhang X, Mao H, Xian Y, Rao Y. Development of a Genetically Encoded Sensor for Arginine. ACS Sens 2025; 10:1260-1269. [PMID: 39837760 DOI: 10.1021/acssensors.4c03174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The amino acid l-arginine (Arg) plays important roles in multiple metabolic and physiological processes, and changes in its concentration have been implicated in pathological processes. While it is important to measure Arg levels in biological systems directly and in real-time, existing Arg sensors respond to l-ornithine or l-lysine. Here we report ArgS1, a new Arg sensor. It showed a concentration-dependent increase in the ratio Ex488/405 for Arg with an apparent affinity of ∼64 μM and with a dynamic range (ΔR/R0) of 3. ArgS1 responds to Arg in both the cytoplasm and the subcellular organelles. ArgS1 monitored Arg levels in MDA-MB-231 cells, a breast cancer cell line deficient in a key enzyme for Arg synthesis (arginino-succinate synthetase1, ASS1) and amenable to Arg depletion therapy. We found that Arg levels in MDA-MB-231 cells decreased after depletion of extracellular Arg with a concomitant decline in cell viability. When ASS1 was overexpressed in the cells, Arg levels increased and cell viability was also enhanced. Thus, ArgS1 is an effective tool for real-time monitoring of Arg in human cells over a dynamic range of physiological and pathological relevance.
Collapse
Affiliation(s)
- Chun Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Xiaoxue Zhang
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Haoyu Mao
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Laboratory of Neurochemical Biology, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences and Peking University, Beijing 100871, China
| | - Yi Xian
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Laboratory of Neurochemical Biology, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences and Peking University, Beijing 100871, China
| | - Yi Rao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Changping Laboratory, Chinese Institute of Brain Research, Beijing, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
- Laboratory of Neurochemical Biology, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences and Peking University, Beijing 100871, China
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing), Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Li R, Li Y, Jiang K, Zhang L, Li T, Zhao A, Zhang Z, Xia Y, Ge K, Chen Y, Wang C, Tang W, Liu S, Lin X, Song Y, Mei J, Xiao C, Wang A, Zou Y, Li X, Chen X, Ju Z, Jia W, Loscalzo J, Sun Y, Fang W, Yang Y, Zhao Y. Lighting up arginine metabolism reveals its functional diversity in physiology and pathology. Cell Metab 2025; 37:291-304.e9. [PMID: 39413790 DOI: 10.1016/j.cmet.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Arginine is one of the most metabolically versatile amino acids and plays pivotal roles in diverse biological and pathological processes; however, sensitive tracking of arginine dynamics in situ remains technically challenging. Here, we engineer high-performance fluorescent biosensors, denoted sensitive to arginine (STAR), to illuminate arginine metabolism in cells, mice, and clinical samples. Utilizing STAR, we demonstrate the effects of different amino acids in regulating intra- and extracellular arginine levels. STAR enabled live-cell monitoring of arginine fluctuations during macrophage activation, phagocytosis, efferocytosis, and senescence and revealed cellular senescence depending on arginine availability. Moreover, a simple and fast assay based on STAR revealed that serum arginine levels tended to increase with age, and the elevated serum arginine level is a potential indicator for discriminating the progression and severity of vitiligo. Collectively, our study provides important insights into the metabolic and functional roles of arginine, as well as its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Rui Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Jiang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lijuan Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yale Xia
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yaqiong Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chengnuo Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weitao Tang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxi Lin
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yuqin Song
- Suzhou Ruijin Vitiligo Medical Research Institute, Suzhou 215100, China
| | - Jie Mei
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Xiao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Sun D, Qi H, Dou G, Mao S, Lu F, Tian K, Qin HM. Ancestral sequence reconstruction of a robust β-1,4-xylanase and efficient expression in Bacillus subtilis. Int J Biol Macromol 2024; 282:137188. [PMID: 39489259 DOI: 10.1016/j.ijbiomac.2024.137188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Xylanases are a class of glycoside hydrolases commonly used in the food, papermaking, and textile industries. However, most xylanases are rapidly inactivated under harsh industrial conditions. Here, a unique and robust GH11 xylanase, AncXyn18, was designed using an ancestral sequence reconstruction strategy, sequence analysis, structure prediction, and experimental verification. It displayed desirable robustness with high alkali resistance and thermostability, retaining >50 % of the initial activity after incubation at pH 10.0 or 70 °C for 10 h. Furthermore, the engineered strain Bs-AncXyn18-Du12 based on the dual promoter PsigW-P43 increased the enzyme activity of AncXyn18 7.5-fold, reaching 58.2 U/mL. This work offers a theoretical basis for the improvement of xylanases, which will benefit the enzymatic bioconversion of xylan-containing agricultural waste into high-value oligosaccharide products and promote green industrial development.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Hongbin Qi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Guangpeng Dou
- Shandong Bailong Chuangyuan Bio-tech Co., Ltd, Dezhou 251200, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Kangming Tian
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| |
Collapse
|
4
|
Wang Z, Shen Y, Cao L, Li H, Li H, Song L, Ma X, Dong C. Enhancing the Catalytic Activity of Geranylgeranyl Diphosphate Synthase through Ancestral Sequence Reconstruction and Semirational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19187-19196. [PMID: 39137390 DOI: 10.1021/acs.jafc.4c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Geranylgeranyl diphosphate synthase (GGPPS) is the crucial bottleneck in carotenoid biosynthesis. However, low activity limits the broad application of GGPPS. In this study, OsGGPPS1 in rice was engineered based on ancestral sequence reconstruction (ASR) and semirational design to improve the catalytic performances of existing GGPPS. The better mutant of A22R/A26P with improved enzyme activity was generated based on ASR. Additionally, the improved enzyme activity of mutants as V162A/M218S/F227Y was designed using a semirational design. The combinatorial assembly of the d-OsGGPPS1 mutant (A22R/A26P/V162A/M218S/F227Y) exhibited higher conversion of IPP and each cosubstrate of DMAPP for 9.8-fold in GPP production, GPP for 6.4-fold in FPP production, and FPP for 1.4-fold in GGPP production relative to wild-type OsGGPPS1 at 25 °C, which showed higher conversion than wild-type OsGGPPS1 at temperatures as high as 50 °C. The successful design of OsGGPPS1 was representative of protein engineering, which will shed new light on GGPPS engineering and active plant pigment resource utilization.
Collapse
Affiliation(s)
- Zhiwen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yunpeng Shen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Longyun Cao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Hao Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Linjie Song
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xintian Ma
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Jones BS, Ross CM, Foley G, Pozhydaieva N, Sharratt JW, Kress N, Seibt LS, Thomson RES, Gumulya Y, Hayes MA, Gillam EMJ, Flitsch SL. Engineering Biocatalysts for the C-H Activation of Fatty Acids by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202314869. [PMID: 38163289 DOI: 10.1002/anie.202314869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases. We resurrected 11 catalytically active CYP116B ancestors, each with a unique regioselectivity fingerprint that varied from subterminal in the older ancestors to mid-chain in the lineage leading to the extant, P450-TT. In lineages leading to extant enzymes in thermophiles, thermostability increased from ancestral to extant forms, as expected if thermophily had arisen de novo. Our studies show that ASR can be applied to multidomain enzymes to develop active, self-sufficient monooxygenases as regioselective biocatalysts for fatty acid hydroxylation.
Collapse
Affiliation(s)
- Bethan S Jones
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Connie M Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Nadiia Pozhydaieva
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Joseph W Sharratt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Nico Kress
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Lisa S Seibt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Sabine L Flitsch
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
6
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
7
|
Clifton BE, Kozome D, Laurino P. Efficient Exploration of Sequence Space by Sequence-Guided Protein Engineering and Design. Biochemistry 2023; 62:210-220. [PMID: 35245020 DOI: 10.1021/acs.biochem.1c00757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rapid growth of sequence databases over the past two decades means that protein engineers faced with optimizing a protein for any given task will often have immediate access to a vast number of related protein sequences. These sequences encode information about the evolutionary history of the protein and the underlying sequence requirements to produce folded, stable, and functional protein variants. Methods that can take advantage of this information are an increasingly important part of the protein engineering tool kit. In this Perspective, we discuss the utility of sequence data in protein engineering and design, focusing on recent advances in three main areas: the use of ancestral sequence reconstruction as an engineering tool to generate thermostable and multifunctional proteins, the use of sequence data to guide engineering of multipoint mutants by structure-based computational protein design, and the use of unlabeled sequence data for unsupervised and semisupervised machine learning, allowing the generation of diverse and functional protein sequences in unexplored regions of sequence space. Altogether, these methods enable the rapid exploration of sequence space within regions enriched with functional proteins and therefore have great potential for accelerating the engineering of stable, functional, and diverse proteins for industrial and biomedical applications.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Dan Kozome
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Thomson RES, Carrera-Pacheco SE, Gillam EMJ. Engineering functional thermostable proteins using ancestral sequence reconstruction. J Biol Chem 2022; 298:102435. [PMID: 36041629 PMCID: PMC9525910 DOI: 10.1016/j.jbc.2022.102435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Natural proteins are often only slightly more stable in the native state than the denatured state, and an increase in environmental temperature can easily shift the balance toward unfolding. Therefore, the engineering of proteins to improve protein stability is an area of intensive research. Thermostable proteins are required to withstand industrial process conditions, for increased shelf-life of protein therapeutics, for developing robust 'biobricks' for synthetic biology applications, and for research purposes (e.g., structure determination). In addition, thermostability buffers the often destabilizing effects of mutations introduced to improve other properties. Rational design approaches to engineering thermostability require structural information, but even with advanced computational methods, it is challenging to predict or parameterize all the relevant structural factors with sufficient precision to anticipate the results of a given mutation. Directed evolution is an alternative when structures are unavailable but requires extensive screening of mutant libraries. Recently, however, bioinspired approaches based on phylogenetic analyses have shown great promise. Leveraging the rapid expansion in sequence data and bioinformatic tools, ancestral sequence reconstruction can generate highly stable folds for novel applications in industrial chemistry, medicine, and synthetic biology. This review provides an overview of the factors important for successful inference of thermostable proteins by ancestral sequence reconstruction and what it can reveal about the determinants of stability in proteins.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Burgstaller S, Wagner TR, Bischof H, Bueckle S, Padamsey A, Frecot D, Kaiser PD, Skrabak D, Malli R, Lukowski R, Rothbauer U. Monitoring extracellular ion and metabolite dynamics with recombinant nanobody-fused biosensors. iScience 2022; 25:104907. [PMID: 36046190 PMCID: PMC9421384 DOI: 10.1016/j.isci.2022.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Ion and analyte changes in the tumor microenvironment (TME) alter the metabolic activity of cancer cells, promote tumor cell growth, and impair anti-tumor immunity. Consequently, accurate determination and visualization of extracellular changes of analytes in real time is desired. In this study, we genetically combined FRET-based biosensors with nanobodies (Nbs) to specifically visualize and monitor extracellular changes in K+, pH, and glucose on cell surfaces. We demonstrated that these Nb-fused biosensors quantitatively visualized K+ alterations on cancer and non-cancer cell lines and primary neurons. By implementing a HER2-specific Nb, we generated functional K+ and pH sensors, which specifically stained HER2-positive breast cancer cells. Based on the successful development of several Nb-fused biosensor combinations, we anticipate that this approach can be readily extended to other biosensors and will open new opportunities for the study of extracellular analytes in advanced experimental settings. Generation of recombinant nanobody-fused FRET biosensors Nb-fused biosensors specifically bind targets on the outer surface of various cells Cellular bound Nb-biosensors visualize extracellular analyte changes in real time
Collapse
Affiliation(s)
- Sandra Burgstaller
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Sarah Bueckle
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Aman Padamsey
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Desiree Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| |
Collapse
|
10
|
Jackson C, Anderson A, Alexandrov K. The present and the future of protein biosensor engineering. Curr Opin Struct Biol 2022; 75:102424. [PMID: 35870398 DOI: 10.1016/j.sbi.2022.102424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches. We discuss the paucity of the natural receptors that undergo conformational changes sufficiently large to control the activity of allosteric reporter domains. This problem can be overcome by constructing artificial versions of such receptors. The design path to such receptors involves the construction of Chemically Induced Dimerisation systems (CIDs) that can be configured to operate single and two-component biosensors.
Collapse
Affiliation(s)
- Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia; Australian Research Council Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Alisha Anderson
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Queensland University of Technology, Brisbane, QLD, 4001, Australia; Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia; Australian Research Council Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
11
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
12
|
Santhakumar V, Manuel Mascarenhas N. The role of C-terminal helix in the conformational transition of an arginine binding protein. J Struct Biol X 2022; 6:100071. [PMID: 36035778 PMCID: PMC9402392 DOI: 10.1016/j.yjsbx.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Probe the role of C-ter. helix (CTH) in conformational transition of TmArgBP. Presence of CTH almost doubles the barrier to access the closed-state. In the absence of CTH, the protein can fluctuate between the two conformations. CTH not only constraints the open-state conformation but also guides in accessing it.
The thermotoga maritima arginine binding protein (TmArgBP) is a periplasmic binding protein that has a short helix at the C-terminal end (CTH), which is swapped between the two chains. We apply a coarse-grained structure-based model (SBM) and all-atom MD simulation on this protein to understand the mechanism and the role of CTH in the conformational transition. When the results of SBM simulations of TmArgBP in the presence and absence of CTH are compared, we find that CTH is strategically located at the back of the binding pocket restraining the open-state conformation thereby disengaging access to the closed-state. We also ran all-atom MD simulations of open-state TmArgBP with and without CTH and discovered that in the absence of CTH the protein could reach the closed-state within 250 ns, while in its presence, the protein remained predominantly in its open-state conformation. In the simulation started from unliganded closed-state conformation without CTH, the protein exhibited multiple transitions between the two states, suggesting CTH as an essential structural element to stabilize the open-state conformation. In another simulation that began with an unliganded closed-state conformation with CTH, the protein was able to access the open-state. In this simulation the CTH was observed to reorient itself to interact with the protein emphasizing its role in assisting the conformational change. Based on our findings, we believe that CTH not only acts as a structural element that constraints the protein in its open-state but it may also guide the protein back to its open-state conformation upon ligand unbinding.
Collapse
|
13
|
Whitefield C, Hong N, Mitchell JA, Jackson CJ. Computational design and experimental characterisation of a stable human heparanase variant. RSC Chem Biol 2022; 3:341-349. [PMID: 35382258 PMCID: PMC8905545 DOI: 10.1039/d1cb00239b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Heparanase is the only human enzyme known to hydrolyse heparin sulfate and is involved in many important physiological processes. However, it is also unregulated in many disease states, such as cancer, diabetes and Covid-19. It is thus an important drug target, yet the heterologous production of heparanase is challenging and only possible in mammalian or insect expression systems, which limits the ability of many laboratories to study it. Here we describe the computational redesign of heparanase to allow high yield expression in Escherchia coli. This mutated form of heparanase exhibits essentially identical kinetics, inhibition, structure and protein dynamics to the wild type protein, despite the presence of 26 mutations. This variant will facilitate wider study of this important enzyme and contributes to a growing body of literature that shows evolutionarily conserved and functionally neutral mutations can have significant effects on protein folding and expression. A mutant heparanase that exhibits wild type structure and activity but can be heterologously produced in bacterial protein expression systems.![]()
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nansook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Gamiz-Arco G, Risso VA, Gaucher EA, Gavira JA, Naganathan AN, Ibarra-Molero B, Sanchez-Ruiz JM. Combining Ancestral Reconstruction with Folding-Landscape Simulations to Engineer Heterologous Protein Expression. J Mol Biol 2021; 433:167321. [PMID: 34687715 DOI: 10.1016/j.jmb.2021.167321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
Obligate symbionts typically exhibit high evolutionary rates. Consequently, their proteins may differ considerably from their modern and ancestral homologs in terms of both sequence and properties, thus providing excellent models to study protein evolution. Also, obligate symbionts are challenging to culture in the lab and proteins from uncultured organisms must be produced in heterologous hosts using recombinant DNA technology. Obligate symbionts thus replicate a fundamental scenario of metagenomics studies aimed at the functional characterization and biotechnological exploitation of proteins from the bacteria in soil. Here, we use the thioredoxin from Candidatus Photodesmus katoptron, an uncultured symbiont of flashlight fish, to explore evolutionary and engineering aspects of protein folding in heterologous hosts. The symbiont protein is a standard thioredoxin in terms of 3D-structure, stability and redox activity. However, its folding outside the original host is severely impaired, as shown by a very slow refolding in vitro and an inefficient expression in E. coli that leads mostly to insoluble protein. By contrast, resurrected Precambrian thioredoxins express efficiently in E. coli, plausibly reflecting an ancient adaptation to unassisted folding. We have used a statistical-mechanical model of the folding landscape to guide back-to-ancestor engineering of the symbiont protein. Remarkably, we find that the efficiency of heterologous expression correlates with the in vitro (i.e., unassisted) folding rate and that the ancestral expression efficiency can be achieved with only 1-2 back-to-ancestor replacements. These results demonstrate a minimal-perturbation, sequence-engineering approach to rescue inefficient heterologous expression which may potentially be useful in metagenomics efforts targeting recent adaptations.
Collapse
Affiliation(s)
- Gloria Gamiz-Arco
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jose A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain. https://twitter.com/Gavirius
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain.
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
15
|
Burgstaller S, Bischof H, Rauter T, Schmidt T, Schindl R, Patz S, Groschup B, Filser S, van den Boom L, Sasse P, Lukowski R, Plesnila N, Graier WF, Malli R. Immobilization of Recombinant Fluorescent Biosensors Permits Imaging of Extracellular Ion Signals. ACS Sens 2021; 6:3994-4000. [PMID: 34752056 PMCID: PMC8630794 DOI: 10.1021/acssensors.1c01369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Given the importance
of ion gradients and fluxes in biology, monitoring
ions locally at the exterior of the plasma membrane of intact cells
in a noninvasive manner is highly desirable but challenging. Classical
targeting of genetically encoded biosensors at the exterior of cell
surfaces would be a suitable approach; however, it often leads to
intracellular accumulation of the tools in vesicular structures and
adverse modifications, possibly impairing sensor functionality. To
tackle these issues, we generated recombinant fluorescent ion biosensors
fused to traptavidin (TAv) specifically coupled to a biotinylated
AviTag expressed on the outer cell surface of cells. We show that
purified chimeras of TAv and pH-Lemon or GEPII 1.0, Förster
resonance energy transfer-based pH and K+ biosensors, can
be immobilized directly and specifically on biotinylated surfaces
including glass platelets and intact cells, thereby remaining fully
functional for imaging of ion dynamics. The immobilization of recombinant
TAv–GEPII 1.0 on the extracellular cell surface of primary
cortical rat neurons allowed imaging of excitotoxic glutamate-induced
K+ efflux in vitro. We also performed micropatterning of
purified TAv biosensors using a microperfusion system to generate
spatially separated TAv–pH-Lemon and TAv–GEPII 1.0 spots
for simultaneous pH and K+ measurements on cell surfaces.
Our results suggest that the approach can be greatly expanded by immobilizing
various biosensors on extracellular surfaces to quantitatively visualize
microenvironmental transport and signaling processes in different
cell culture models and other experimental settings.
Collapse
Affiliation(s)
- Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen 72770, Germany
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Thomas Rauter
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
| | - Silke Patz
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz 8036, Austria
| | - Bernhard Groschup
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich 81377, Germany
| | - Severin Filser
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich 81377, Germany
| | - Lucas van den Boom
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, Eberhard Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich 81377, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, Munich 81377, Germany
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
- BioTechMed Graz, Mozartgasse 12/II, Graz 8010, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz 8010, Austria
- BioTechMed Graz, Mozartgasse 12/II, Graz 8010, Austria
| |
Collapse
|
16
|
Vongsouthi V, Whitfield JH, Unichenko P, Mitchell JA, Breithausen B, Khersonsky O, Kremers L, Janovjak H, Monai H, Hirase H, Fleishman SJ, Henneberger C, Jackson CJ. A Rationally and Computationally Designed Fluorescent Biosensor for d-Serine. ACS Sens 2021; 6:4193-4205. [PMID: 34783546 DOI: 10.1021/acssensors.1c01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Solute-binding proteins (SBPs) have evolved to balance the demands of ligand affinity, thermostability, and conformational change to accomplish diverse functions in small molecule transport, sensing, and chemotaxis. Although the ligand-induced conformational changes that occur in SBPs make them useful components in biosensors, they are challenging targets for protein engineering and design. Here, we have engineered a d-alanine-specific SBP into a fluorescence biosensor with specificity for the signaling molecule d-serine (D-serFS). This was achieved through binding site and remote mutations that improved affinity (KD = 6.7 ± 0.5 μM), specificity (40-fold increase vs glycine), thermostability (Tm = 79 °C), and dynamic range (∼14%). This sensor allowed measurement of physiologically relevant changes in d-serine concentration using two-photon excitation fluorescence microscopy in rat brain hippocampal slices. This work illustrates the functional trade-offs between protein dynamics, ligand affinity, and thermostability and how these must be balanced to achieve desirable activities in the engineering of complex, dynamic proteins.
Collapse
Affiliation(s)
- Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra 2601, Australia
| | - Jason H. Whitfield
- Research School of Chemistry, Australian National University, Canberra 2601, Australia
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra 2601, Australia
| | - Björn Breithausen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leon Kremers
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne 3800, Australia
| | - Hiromu Monai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn 53127, Germany
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- German Center for Degenerative Diseases (DZNE), Bonn 53127, Germany
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra 2601, Australia
| |
Collapse
|
17
|
Zeng B, Zhou Y, Yi Z, Zhou R, Jin W, Zhang G. Highly thermostable and promiscuous β-1,3-xylanasen designed by optimized ancestral sequence reconstruction. BIORESOURCE TECHNOLOGY 2021; 340:125732. [PMID: 34426240 DOI: 10.1016/j.biortech.2021.125732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The ancestor of β-1,3-xylanases (AncXyl09) were reconstructed by the optimized ancestral sequences reconstruction strategy to solve the poor catalytic performances of existing β-1,3-xylanases. The results showed that the half-life at 50 °C was 65.08 h, indicating good thermostability. The large number of hydrogen bonds and the disulfide bonds were the major attributes related with the thermal stability of Anxyl09. Interestingly, AncXyl09 could hydrolyze lichen besides the original substrate of β-1, 3-xylan, which is the first reported β-1,3-xylanase with substrate promiscuity. Moreover, the hydrolytic products are mainly disaccharides, the content of β-1,3-xylobiose and lichoridiose more than 70% as determined by high performance liquid chromatography (HPLC), which could significantly facilitate the separation and purification of oligosaccharides. The successful design of AncXyl09 was the representative of the semi-rationally engineered β-1, 3-xylanase, which will shield a new light on the β-1,3-xylanase engineering, active oligosaccharide preparation and marine algae resource utilization.
Collapse
Affiliation(s)
- Bo Zeng
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - YanHong Zhou
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - ZhiWei Yi
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian Province, PR China
| | - Rui Zhou
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - WenHui Jin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian Province, PR China
| | - GuangYa Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| |
Collapse
|
18
|
Spence MA, Kaczmarski JA, Saunders JW, Jackson CJ. Ancestral sequence reconstruction for protein engineers. Curr Opin Struct Biol 2021; 69:131-141. [PMID: 34023793 DOI: 10.1016/j.sbi.2021.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
In addition to its value in the study of molecular evolution, ancestral sequence reconstruction (ASR) has emerged as a useful methodology for engineering proteins with enhanced properties. Proteins generated by ASR often exhibit unique or improved activity, stability, and/or promiscuity, all of which are properties that are valued by protein engineers. Comparison between extant proteins and evolutionary intermediates generated by ASR also allows protein engineers to identify substitutions that have contributed to functional innovation or diversification within protein families. As ASR becomes more widely adopted as a protein engineering approach, it is important to understand the applications, limitations, and recent developments of this technique. This review highlights recent exemplifications of ASR, as well as technical aspects of the reconstruction process that are relevant to protein engineering.
Collapse
Affiliation(s)
- Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jake W Saunders
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
19
|
Kausar H, Ambrin G, Okla MK, Alamri SA, Soufan WH, Ibrahim EI, Abdel-Maksoud MA, Ahmad A. FRET-Based Genetically Encoded Nanosensor for Real-Time Monitoring of the Flux of α-Tocopherol in Living Cells. ACS OMEGA 2021; 6:9020-9027. [PMID: 33842772 PMCID: PMC8028167 DOI: 10.1021/acsomega.1c00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Vitamin E plays an exemplary role in living organisms. α-Tocopherol is the most superior and active form of naturally occurring vitamin E that meets the requirements of human beings as it possesses the α-tocopherol transfer protein (α-TTP). α-Tocopherol deficiency can lead to severe anemia, certain cancers, several neurodegenerative and cardiovascular diseases, and most importantly male infertility. As a result of the depletion of its natural sources, researchers have tried to employ metabolic engineering to enhance α-tocopherol production to meet the human consumption demand. However, the metabolic engineering approach relies on the metabolic flux of a metabolite in its biosynthetic pathway. Analysis of the metabolic flux of a metabolite needs a method that can monitor the α-tocopherol level in living cells. This study was undertaken to construct a FRET (fluorescence resonance energy transfer)-based nanosensor for monitoring the α-tocopherol flux in prokaryotic and eukaryotic living cells. The human α-TTP was sandwiched between a pair of FRET fluorophores to construct the nanosensor, which was denoted as FLIP-α (the fluorescence indicator for α-tocopherol). FLIP-α showed excellence in monitoring the α-tocopherol flux with high specificity. The sensor was examined for its pH stability for physiological applications, where it shows no pH hindrance to its activity. The calculated affinity of this nanosensor was 100 μM. It monitored the real-time flux of α-tocopherol in bacterial and yeast cells, proving its biocompatibility in monitoring the α-tocopherol dynamics in living cells. Being noninvasive, FLIP-α provides high temporal and spatial resolutions, which holds an indispensable significance in bioimaging metabolic pathways that are highly compartmentalized.
Collapse
Affiliation(s)
- Habiba Kausar
- Department
of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Ghazala Ambrin
- Department
of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad K. Okla
- Department
of Botany, College of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Saud A. Alamri
- Department
of Botany, College of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Walid H. Soufan
- Department
of Plant Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom
of Saudi Arabia
| | - Eid I. Ibrahim
- Department
of Plant Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom
of Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Department
of Zoology, Faculty of Science, King Saud
University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Altaf Ahmad
- Department
of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
20
|
Schriever K, Saenz-Mendez P, Rudraraju RS, Hendrikse NM, Hudson EP, Biundo A, Schnell R, Syrén PO. Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. J Am Chem Soc 2021; 143:3794-3807. [PMID: 33496585 PMCID: PMC8023661 DOI: 10.1021/jacs.0c10214] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Structural information is crucial for understanding catalytic mechanisms and to guide enzyme engineering efforts of biocatalysts, such as terpene cyclases. However, low sequence similarity can impede homology modeling, and inherent protein instability presents challenges for structural studies. We hypothesized that X-ray crystallography of engineered thermostable ancestral enzymes can enable access to reliable homology models of extant biocatalysts. We have applied this concept in concert with molecular modeling and enzymatic assays to understand the structure activity relationship of spiroviolene synthase, a class I terpene cyclase, aiming to engineer its specificity. Engineering a surface patch in the reconstructed ancestor afforded a template structure for generation of a high-confidence homology model of the extant enzyme. On the basis of structural considerations, we designed and crystallized ancestral variants with single residue exchanges that exhibited tailored substrate specificity and preserved thermostability. We show how the two single amino acid alterations identified in the ancestral scaffold can be transferred to the extant enzyme, conferring a specificity switch that impacts the extant enzyme's specificity for formation of the diterpene spiroviolene over formation of sesquiterpenes hedycaryol and farnesol by up to 25-fold. This study emphasizes the value of ancestral sequence reconstruction combined with enzyme engineering as a versatile tool in chemical biology.
Collapse
Affiliation(s)
- Karen Schriever
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Patricia Saenz-Mendez
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | | | - Natalie M. Hendrikse
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Swedish
Orphan Biovitrum AB, 112
76 Stockholm, Sweden
| | - Elton P. Hudson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Protein Science, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 165 Stockholm, Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, 114 28 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
- Wallenberg
Wood Science Center, Teknikringen 56−58, 100 44 Stockholm, Sweden
| |
Collapse
|
21
|
Enzyme-based amperometric biosensors for malic acid - A review. Anal Chim Acta 2021; 1156:338218. [PMID: 33781460 DOI: 10.1016/j.aca.2021.338218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Malic acid is a key flavour component of many fruits and vegetables. There is significant interest in technologies for monitoring its concentration, particularly in winemaking. In this review we systematically and comprehensively chart progress in the development of enzyme-based amperometric biosensors for malic acid. We summarise the components and analytical parameters of malic acid sensors that have been reported over the past four decades, discussing their merits and pitfalls in terms of accuracy, sensitivity, linear range, response time and stability. We discuss how advances in electrode materials, electron mediators and the use of coupled enzymes have improved sensitivity and minimised interference, but also uncover a trade-off between sensitivity and linear range. A particular focus of our review is the three types of malate oxidoreductase enzyme that have been used in malic acid biosensors. We describe their different properties and conclude that identifying and/or engineering superior alternatives will be a key future direction for improving the commercial utility of malic acid biosensors.
Collapse
|
22
|
Henneberger C, Bard L, Panatier A, Reynolds JP, Kopach O, Medvedev NI, Minge D, Herde MK, Anders S, Kraev I, Heller JP, Rama S, Zheng K, Jensen TP, Sanchez-Romero I, Jackson CJ, Janovjak H, Ottersen OP, Nagelhus EA, Oliet SHR, Stewart MG, Nägerl UV, Rusakov DA. LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron 2020; 108:919-936.e11. [PMID: 32976770 PMCID: PMC7736499 DOI: 10.1016/j.neuron.2020.08.030] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/14/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.
Collapse
Affiliation(s)
- Christian Henneberger
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.
| | - Lucie Bard
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - James P Reynolds
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Michel K Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Igor Kraev
- Life Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Janosch P Heller
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sylvain Rama
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kaiyu Zheng
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Harald Janovjak
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; EMBL Australia, Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia
| | - Ole Petter Ottersen
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Stephane H R Oliet
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | | | - U Valentin Nägerl
- Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
23
|
Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, Goldfarb D, Otting G, Jackson CJ. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. Nat Commun 2020; 11:5945. [PMID: 33230119 PMCID: PMC7683729 DOI: 10.1038/s41467-020-19695-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Several enzymes are known to have evolved from non-catalytic proteins such as solute-binding proteins (SBPs). Although attention has been focused on how a binding site can evolve to become catalytic, an equally important question is: how do the structural dynamics of a binding protein change as it becomes an efficient enzyme? Here we performed a variety of experiments, including propargyl-DO3A-Gd(III) tagging and double electron-electron resonance (DEER) to study the rigid body protein dynamics of reconstructed evolutionary intermediates to determine how the conformational sampling of a protein changes along an evolutionary trajectory linking an arginine SBP to a cyclohexadienyl dehydratase (CDT). We observed that primitive dehydratases predominantly populate catalytically unproductive conformations that are vestiges of their ancestral SBP function. Non-productive conformational states, including a wide-open state, are frozen out of the conformational landscape via remote mutations, eventually leading to extant CDT that exclusively samples catalytically relevant compact states. These results show that remote mutations can reshape the global conformational landscape of an enzyme as a mechanism for increasing catalytic activity.
Collapse
Affiliation(s)
- Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mithun C Mahawaththa
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ben E Clifton
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia.,Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0412, Japan
| | - Luke A Adams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Gottfried Otting
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia. .,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia. .,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.
| |
Collapse
|
24
|
Smaldone G, Ruggiero A, Balasco N, Vitagliano L. Development of a Protein Scaffold for Arginine Sensing Generated through the Dissection of the Arginine-Binding Protein from Thermotoga maritima. Int J Mol Sci 2020; 21:ijms21207503. [PMID: 33053818 PMCID: PMC7589609 DOI: 10.3390/ijms21207503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Arginine is one of the most important nutrients of living organisms as it plays a major role in important biological pathways. However, the accumulation of arginine as consequence of metabolic defects causes hyperargininemia, an autosomal recessive disorder. Therefore, the efficient detection of the arginine is a field of relevant biomedical/biotechnological interest. Here, we developed protein variants suitable for arginine sensing by mutating and dissecting the multimeric and multidomain structure of Thermotoga maritima arginine-binding protein (TmArgBP). Indeed, previous studies have shown that TmArgBP domain-swapped structure can be manipulated to generate simplified monomeric and single domain scaffolds. On both these stable scaffolds, to measure tryptophan fluorescence variations associated with the arginine binding, a Phe residue of the ligand binding pocket was mutated to Trp. Upon arginine binding, both mutants displayed a clear variation of the Trp fluorescence. Notably, the single domain scaffold variant exhibited a good affinity (~3 µM) for the ligand. Moreover, the arginine binding to this variant could be easily reverted under very mild conditions. Atomic-level data on the recognition process between the scaffold and the arginine were obtained through the determination of the crystal structure of the adduct. Collectively, present data indicate that TmArgBP scaffolds represent promising candidates for developing arginine biosensors.
Collapse
Affiliation(s)
- Giovanni Smaldone
- IRCCS SDN, Via Emanuele Gianturco, 113 80143 Naples, Italy
- Correspondence: (G.S.); (A.R.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
- Correspondence: (G.S.); (A.R.)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16. I-80134 Naples, Italy; (N.B.); (L.V.)
| |
Collapse
|
25
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol 2020; 86:e00778-20. [PMID: 32414792 PMCID: PMC7357490 DOI: 10.1128/aem.00778-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a β-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the β-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Bernardo J Gomez-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Rueda
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| |
Collapse
|
27
|
Kausar H, Ambrin G, Okla MK, Soufan W, Al-Ghamdi AA, Ahmad A. Metabolic Flux Analysis of Catechin Biosynthesis Pathways Using Nanosensor. Antioxidants (Basel) 2020; 9:antiox9040288. [PMID: 32244268 PMCID: PMC7222200 DOI: 10.3390/antiox9040288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
(+)-Catechin is an important antioxidant of green tea (Camelia sinensis (L.) O. Kuntze). Catechin is known for its positive role in anticancerous activity, extracellular matrix degradation, cell death regulation, diabetes, and other related disorders. As a result of enormous interest in and great demand for catechin, its biosynthesis using metabolic engineering has become the subject of concentrated research with the aim of enhancing (+)-catechin production. Metabolic flux is an essential concept in the practice of metabolic engineering as it helps in the identification of the regulatory element of a biosynthetic pathway. In the present study, an attempt was made to analyze the metabolic flux of the (+)-catechin biosynthesis pathway in order to decipher the regulatory element of this pathway. Firstly, a genetically encoded fluorescence resonance energy transfer (FRET)-based nanosensor (FLIP-Cat, fluorescence indicator protein for (+)-catechin) was developed for real-time monitoring of (+)-catechin flux. In vitro characterization of the purified protein of the nanosensor showed that the nanosensor was pH stable and (+)-catechin specific. Its calculated Kd was 139 µM. The nanosensor also performed real-time monitoring of (+)-catechin in bacterial cells. In the second step of this study, an entire (+)-catechin biosynthesis pathway was constructed and expressed in E. coli in two sets of plasmid constructs: pET26b-PT7-rbs-PAL-PT7-rbs-4CL-PT7-rbs-CHS-PT7-rbs-CHI and pET26b-T7-rbs-F3H-PT7-rbs- DFR-PT7-rbs-LCR. The E. coli harboring the FLIP-Cat was transformed with these plasmid constructs. The metabolic flux analysis of (+)-catechin was carried out using the FLIP-Cat. The FLIP-Cat successfully monitored the flux of catechin after adding tyrosine, 4-coumaric acid, 4-coumaroyl CoA, naringenin chalcone, naringenin, dihydroquercetin, and leucocyanidin, individually, with the bacterial cells expressing the nanosensor as well as the genes of the (+)-catechin biosynthesis pathway. Dihydroflavonol reductase (DFR) was identified as the main regulatory element of the (+)-catechin biosynthesis pathway. Information about this regulatory element of the (+)-catechin biosynthesis pathway can be used for manipulating the (+)-catechin biosynthesis pathway using a metabolic engineering approach to enhance production of (+)-catechin.
Collapse
Affiliation(s)
- Habiba Kausar
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (H.K.); (G.A.)
| | - Ghazala Ambrin
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (H.K.); (G.A.)
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.A.-G.)
| | - Walid Soufan
- Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Abdullah A. Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.A.-G.)
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (H.K.); (G.A.)
- Correspondence: ; Tel.: +91-817-8045-031
| |
Collapse
|
28
|
Li D, Damry AM, Petrie JR, Vanhercke T, Singh SP, Jackson CJ. Consensus Mutagenesis and Ancestral Reconstruction Provide Insight into the Substrate Specificity and Evolution of the Front-End Δ6-Desaturase Family. Biochemistry 2020; 59:1398-1409. [DOI: 10.1021/acs.biochem.0c00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongdi Li
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Adam M. Damry
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - James R. Petrie
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Thomas Vanhercke
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Surinder P. Singh
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, 19 Eastern Road, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
29
|
Geffeney SL, Hanifin CT. Synthesizing and Expressing Native Ion Channels. Methods Mol Biol 2020; 2068:283-290. [PMID: 31576535 DOI: 10.1007/978-1-4939-9845-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthesizing and expressing ion channels in heterologous systems enable the characterization of the functional properties of these proteins. The cDNA that encodes ion channels can be amplified directly from mRNA or synthesized de novo in its entirety before cloning into an appropriate expression vector. Gibson assembly is a powerful tool that allows rapid cloning and integration of protein-coding cDNA into a variety of expression vectors. Here we describe a method in which the cDNA encoding a native snake ion channel (NaV 1.4) is synthesized in four equal-sized pieces (or blocks), and then assembled and ligated into an expression vector. Once in an appropriate expression vector, the assembled cDNA can be used for synthesis of mRNA, and the mRNA injected and expressed in Xenopus oocytes. This method has significant advantages over traditional rtPCR and ligation-based cloning including speed, cost, ease of codon optimization, and inclusion of silent restriction sites for Gibson-based mutagenesis.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Biology, Utah State University-Uintah Basin, Vernal, UT, USA.
| | - Charles T Hanifin
- Department of Biology, Utah State University-Uintah Basin, Vernal, UT, USA.
| |
Collapse
|
30
|
Singh S, Sharma MP, Alqarawi AA, Hashem A, Abd_Allah EF, Ahmad A. Real-Time Optical Detection of Isoleucine in Living Cells through a Genetically-Encoded Nanosensor. SENSORS 2019; 20:s20010146. [PMID: 31881651 PMCID: PMC6983066 DOI: 10.3390/s20010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 01/19/2023]
Abstract
Isoleucine is one of the branched chain amino acids that plays a major role in the energy metabolism of human beings and animals. However, detailed investigation of specific receptors for isoleucine has not been carried out because of the non-availability of a tool that can monitor the metabolic flux of this amino acid in live cells. This study presents a novel genetically-encoded nanosensor for real-time monitoring of isoleucine in living cells. This nanosensor was developed by sandwiching a periplasmic binding protein (LivJ) of E. coli between a fluorescent protein pair, ECFP (Enhanced Cyan Fluorescent Protein), and Venus. The sensor, named GEII (Genetically Encoded Isoleucine Indicator), was pH stable, isoleucine-specific, and had a binding affinity (Kd) of 63 ± 6 μM. The GEII successfully performed real-time monitoring of isoleucine in bacterial and yeast cells, thereby, establishing its bio-compatibility in monitoring isoleucine in living cells. As a further enhancement, in silico random mutagenesis was carried out to identify a set of viable mutations, which were subsequently experimentally verified to create a library of affinity mutants with a significantly expanded operating range (96 nM–1493 μM). In addition to its applicability in understanding the underlying functions of receptors of isoleucine in metabolic regulation, the GEII can also be used for metabolic engineering of bacteria for enhanced production of isoleucine in animal feed industries.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; (S.S.); (M.P.S.)
| | - Maheshwar Prasad Sharma
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; (S.S.); (M.P.S.)
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, plant pathology Research Institute, ARC, Gaza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.)
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
- Correspondence:
| |
Collapse
|
31
|
Singh S, Sharma MP, Ahmad A. Construction and characterization of protein-based cysteine nanosensor for the real time measurement of cysteine level in living cells. Int J Biol Macromol 2019; 143:273-284. [PMID: 31830444 DOI: 10.1016/j.ijbiomac.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022]
Abstract
Cysteine plays a critical role in maintaining normal human metabolism, redox homeostasis, and immune regulation. Despite its functional versatility, cysteine metabolism in the human body is not well understood because of the lack of a robust tool for real-time measurement of cysteine at the cellular and sub-cellular level. In the present study, a genetically encoded nanosensor was developed using Cj0982 protein of Campylobacter jejuni, Enhanced Cyan Fluorescent Protein (ECFP) and Venus. The Cj0982 was sandwiched between ECFP and Venus for the construction of the nanosensor, named as Cys-FS (Cysteine-Fluorescent-Sensor). The Cys-FS is pH stable, specific to cysteine and has an affinity of 1.2 × 10-5 M. A range of affinity mutants were also developed with a cumulative cysteine detection range from 800 nM to 3.5 mM. The Cys-FS nanosensor was expressed in bacterial, yeast and mammalian cells, and the dynamics of cysteine level was measured in living cells using the confocal microscopy. The results showed that the Cys-FS nanosensor successfully monitored the dynamics of cysteine in both prokaryotic and eukaryotic systems without disrupting the cell. Thus, this study presents a novel nanosensor that can measure cysteine in living cells. This nanosensor is minimally invasive and non-toxic.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110019, India
| | - M P Sharma
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110019, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
32
|
Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol 2019; 2:429. [PMID: 31799431 PMCID: PMC6874671 DOI: 10.1038/s42003-019-0677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) - a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Collapse
Affiliation(s)
- Adam Thomas
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Rhys Cutlan
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - William Finnigan
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Mark van der Giezen
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
- Centre for Organelle Research, University of Stavanger, Richard Johnsens gate 4, Stavanger, 4021 Norway
| | - Nicholas Harmer
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
33
|
Live cell imaging of signaling and metabolic activities. Pharmacol Ther 2019; 202:98-119. [DOI: 10.1016/j.pharmthera.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
34
|
Abstract
Amino acids perform a variety of functions in cells and organisms, particularly in the synthesis of proteins, as energy metabolites, neurotransmitters, and precursors for many other molecules. Amino acid transport plays a key role in all these functions. Inhibition of amino acid transport is pursued as a therapeutic strategy in several areas, such as diabetes and related metabolic disorders, neurological disorders, cancer, and stem cell biology. The role of amino acid transporters in these disorders and processes is well established, but the implementation of amino acid transporters as drug targets is still in its infancy. This is at least in part due to the underdeveloped pharmacology of this group of membrane proteins. Recent advances in structural biology, membrane protein expression, and inhibitor screening methodology will see an increased number of improved and selective inhibitors of amino acid transporters that can serve as tool compounds for further studies.
Collapse
Affiliation(s)
- Stefan Bröer
- 1 Research School of Biology, College of Science, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
35
|
Vergara R, Romero‐Romero S, Velázquez‐López I, Espinoza‐Pérez G, Rodríguez‐Hernández A, Pulido NO, Sosa‐Peinado A, Rodríguez‐Romero A, Fernández‐Velasco DA. The interplay of protein–ligand and water‐mediated interactions shape affinity and selectivity in the LAO binding protein. FEBS J 2019; 287:763-782. [DOI: 10.1111/febs.15019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Renan Vergara
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Sergio Romero‐Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Isabel Velázquez‐López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Georgina Espinoza‐Pérez
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Annia Rodríguez‐Hernández
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Nancy O. Pulido
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Alejandro Sosa‐Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| | - Adela Rodríguez‐Romero
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química Universidad Nacional Autónoma de México Ciudad de México México
| | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
36
|
Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors. Curr Opin Struct Biol 2019; 57:31-38. [DOI: 10.1016/j.sbi.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 11/21/2022]
|
37
|
Protein engineering: the potential of remote mutations. Biochem Soc Trans 2019; 47:701-711. [PMID: 30902926 DOI: 10.1042/bst20180614] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
Engineered proteins, especially enzymes, are now commonly used in many industries owing to their catalytic power, specific binding of ligands, and properties as materials and food additives. As the number of potential uses for engineered proteins has increased, the interest in engineering or designing proteins to have greater stability, activity and specificity has increased in turn. With any rational engineering or design pursuit, the success of these endeavours relies on our fundamental understanding of the systems themselves; in the case of proteins, their structure-dynamics-function relationships. Proteins are most commonly rationally engineered by targeting the residues that we understand to be functionally important, such as enzyme active sites or ligand-binding sites. This means that the majority of the protein, i.e. regions remote from the active- or ligand-binding site, is often ignored. However, there is a growing body of literature that reports on, and rationalises, the successful engineering of proteins at remote sites. This minireview will discuss the current state of the art in protein engineering, with a particular focus on engineering regions that are remote from active- or ligand-binding sites. As the use of protein technologies expands, exploiting the potential improvements made possible through modifying remote regions will become vital if we are to realise the full potential of protein engineering and design.
Collapse
|
38
|
Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our ability to investigate the brain is limited by available technologies that can record biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics now enable optical recording and perturbation of central physiological processes within the intact brains of model organisms. By monitoring key signaling molecules noninvasively, we can better appreciate how information is processed and integrated within intact circuits. In this review, we describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select neurotransmitters, focusing on their molecular design, properties, and current limitations. We also highlight impressive applications of these sensors in neuroscience research. We adopt the view that advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for engineering optogenetic indicators.
Collapse
|
39
|
High-Throughput Reconstruction of Ancestral Protein Sequence, Structure, and Molecular Function. Methods Mol Biol 2019; 1851:135-170. [PMID: 30298396 DOI: 10.1007/978-1-4939-8736-8_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ancestral protein sequence reconstruction is a powerful technique for explicitly testing hypotheses about the evolution of molecular function, allowing researchers to meticulously dissect how historical changes in protein sequence impacted functional repertoire by altering the protein's 3D structure. These techniques have provided concrete, experimentally validated insights into ancient evolutionary processes and help illuminate the complex relationship between protein sequence, structure, and function. Inferring the protein family phylogenies on which ancestral sequence reconstruction depends and reconstructing the sequences, themselves, are amenable to high-throughput computational analysis. However, determining the structures of ancestral-reconstructed proteins and characterizing their functions typically rely on time-consuming and expensive laboratory analyses, limiting most current studies to examining a relatively small number of specific hypotheses. For this reason, we have little detailed, unbiased information about how molecular function evolves across large protein family phylogenies. Here we describe a generalized protocol that integrates ancestral sequence reconstruction with structural homology modeling and structure-based molecular affinity prediction to characterize historical changes in protein function across families with thousands of individual sequences. We highlight key steps in the analysis protocol requiring particularly careful attention to avoid introducing potential errors as well as steps for which computationally efficient subroutines can be substituted for more intensive approaches, allowing researchers to scale the analysis up or down, depending on available resources and requirements for reproducibility and scientific rigor. In our view, this approach provides a compelling compliment to more laboratory-intensive procedures, generating important contextual information that can help guide detailed experiments.
Collapse
|
40
|
Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat Chem Biol 2018; 14:861-869. [DOI: 10.1038/s41589-018-0108-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
|
41
|
Smaldone G, Balasco N, Vigorita M, Ruggiero A, Cozzolino S, Berisio R, Del Vecchio P, Graziano G, Vitagliano L. Domain communication in Thermotoga maritima Arginine Binding Protein unraveled through protein dissection. Int J Biol Macromol 2018; 119:758-769. [PMID: 30059738 DOI: 10.1016/j.ijbiomac.2018.07.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Substrate binding proteins represent a large protein family that plays fundamental roles in selective transportation of metabolites across membrane. The function of these proteins relies on the relative motions of their two domains. Insights into domain communication in this class of proteins have been here collected using Thermotoga maritima Arginine Binding Protein (TmArgBP) as model system. TmArgBP was dissected into two domains (D1 and D2) that were exhaustively characterized using a repertoire of different experimental and computational techniques. Indeed, stability, crystalline structure, ability to recognize the arginine substrate, and dynamics of the two individual domains have been here studied. Present data demonstrate that, although in the parent protein both D1 and D2 cooperate for the arginine anchoring; only D1 is intrinsically able to bind the substrate. The implications of this finding on the mechanism of arginine binding and release by TmArgBP have been discussed. Interestingly, both D1 and D2 retain the remarkable thermal/chemical stability of the parent protein. The analysis of the structural and dynamic properties of TmArgBP and of the individual domains highlights possible routes of domain communication. Finally, this study generated two interesting molecular tools, the two stable isolated domains that could be used in future investigations.
Collapse
Affiliation(s)
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Marilisa Vigorita
- Department of Sciences and Technologies, Università del Sannio, via Port'arsa 11, 82100 Benevento, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Serena Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Giuseppe Graziano
- Department of Sciences and Technologies, Università del Sannio, via Port'arsa 11, 82100 Benevento, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
42
|
Domain swapping dissection in Thermotoga maritima arginine binding protein: How structural flexibility may compensate destabilization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:952-962. [PMID: 29860047 DOI: 10.1016/j.bbapap.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
Abstract
Thermotoga maritima Arginine Binding Protein (TmArgBP) is a valuable candidate for arginine biosensing in diagnostics. This protein is endowed with unusual structural properties that include an extraordinary thermal/chemical stability, a domain swapped structure that undergoes large tertiary and quaternary structural transition, and the ability to form non-canonical oligomeric species. As the intrinsic stability of TmArgBP allows for extensive protein manipulations, we here dissected its structure in two parts: its main body deprived of the swapping fragment (TmArgBP20-233) and the C-terminal peptide corresponding to the helical swapping element. Both elements have been characterized independently or in combination using a repertoire of biophysical/structural techniques. Present investigations clearly indicate that TmArgBP20-233 represents a better scaffold for arginine sensing compared to the wild-type protein. Moreover, our data demonstrate that the ligand-free and the ligand-bound forms respond very differently to this helix deletion. This drastic perturbation has an important impact on the ligand-bound form of TmArgBP20-233 stability whereas it barely affects its ligand-free state. The crystallographic structures of these forms provide a rationale to this puzzling observation. Indeed, the arginine-bound state is very rigid and virtually unchanged upon protein truncation. On the other hand, the flexible ligand-free TmArgBP20-233 is able to adopt a novel state as a consequence of the helix deletion. Therefore, the flexibility of the ligand-free form endows this state with a remarkable robustness upon severe perturbations. In this scenario, TmArgBP dissection highlights an intriguing connection between destabilizing/stabilizing effects and the overall flexibility that could operate also in other proteins.
Collapse
|
43
|
Risso VA, Sanchez-Ruiz JM, Ozkan SB. Biotechnological and protein-engineering implications of ancestral protein resurrection. Curr Opin Struct Biol 2018; 51:106-115. [PMID: 29660672 DOI: 10.1016/j.sbi.2018.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Approximations to the sequences of ancestral proteins can be derived from the sequences of their modern descendants. Proteins encoded by such reconstructed sequences can be prepared in the laboratory and subjected to experimental scrutiny. These 'resurrected' ancestral proteins often display remarkable properties, reflecting ancestral adaptations to intra-cellular and extra-cellular environments that differed from the environments hosting modern/extant proteins. Recent experimental and computational work has specifically discussed high stability, substrate and catalytic promiscuity, conformational flexibility/diversity and altered patterns of interaction with other sub-cellular components. In this review, we discuss these remarkable properties as well as recent attempts to explore their biotechnological and protein-engineering potential.
Collapse
Affiliation(s)
- Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain.
| | - S Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85281, United States.
| |
Collapse
|
44
|
Banda-Vázquez J, Shanmugaratnam S, Rodríguez-Sotres R, Torres-Larios A, Höcker B, Sosa-Peinado A. Redesign of LAOBP to bind novel l-amino acid ligands. Protein Sci 2018. [PMID: 29524280 DOI: 10.1002/pro.3403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Computational protein design is still a challenge for advancing structure-function relationships. While recent advances in this field are promising, more information for genuine predictions is needed. Here, we discuss different approaches applied to install novel glutamine (Gln) binding into the Lysine/Arginine/Ornithine binding protein (LAOBP) from Salmonella typhimurium. We studied the ligand binding behavior of two mutants: a binding pocket grafting design based on a structural superposition of LAOBP to the Gln binding protein QBP from Escherichia coli and a design based on statistical coupled positions. The latter showed the ability to bind Gln even though the protein was not very stable. Comparison of both approaches highlighted a nonconservative shared point mutation between LAOBP_graft and LAOBP_sca. This context dependent L117K mutation in LAOBP turned out to be sufficient for introducing Gln binding, as confirmed by different experimental techniques. Moreover, the crystal structure of LAOBP_L117K in complex with its ligand is reported.
Collapse
Affiliation(s)
| | - Sooruban Shanmugaratnam
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Universität Bayreuth, Bayreuth, Germany
| | | | | | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Universität Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
45
|
Wilson RH, Martin-Avila E, Conlan C, Whitney SM. An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO 2-fixation kinetics. J Biol Chem 2018; 293:18-27. [PMID: 28986448 PMCID: PMC5766918 DOI: 10.1074/jbc.m117.810861] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Indexed: 01/03/2023] Open
Abstract
An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO2 fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion Escherichia coli metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like Te-Rubisco from the cyanobacterium Thermosynechococcus elongatus BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the Te-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for Synechocccus PCC6301 Rubisco, the specialized folding and assembly requirements of Te-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO2-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert H Wilson
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Elena Martin-Avila
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Carly Conlan
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia.
| |
Collapse
|
46
|
Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering. Biochem J 2017; 474:1-19. [PMID: 28008088 DOI: 10.1042/bcj20160507] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
A central goal in molecular evolution is to understand the ways in which genes and proteins evolve in response to changing environments. In the absence of intact DNA from fossils, ancestral sequence reconstruction (ASR) can be used to infer the evolutionary precursors of extant proteins. To date, ancestral proteins belonging to eubacteria, archaea, yeast and vertebrates have been inferred that have been hypothesized to date from between several million to over 3 billion years ago. ASR has yielded insights into the early history of life on Earth and the evolution of proteins and macromolecular complexes. Recently, however, ASR has developed from a tool for testing hypotheses about protein evolution to a useful means for designing novel proteins. The strength of this approach lies in the ability to infer ancestral sequences encoding proteins that have desirable properties compared with contemporary forms, particularly thermostability and broad substrate range, making them good starting points for laboratory evolution. Developments in technologies for DNA sequencing and synthesis and computational phylogenetic analysis have led to an escalation in the number of ancient proteins resurrected in the last decade and greatly facilitated the use of ASR in the burgeoning field of synthetic biology. However, the primary challenge of ASR remains in accurately inferring ancestral states, despite the uncertainty arising from evolutionary models, incomplete sequences and limited phylogenetic trees. This review will focus, firstly, on the use of ASR to uncover links between sequence and phenotype and, secondly, on the practical application of ASR in protein engineering.
Collapse
|
47
|
Dias R, Manny A, Kolaczkowski O, Kolaczkowski B. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins. Mol Biol Evol 2017; 34:1429-1444. [PMID: 28333205 PMCID: PMC5435087 DOI: 10.1093/molbev/msx090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications.
Collapse
Affiliation(s)
- Raquel Dias
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | - Austin Manny
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Oralia Kolaczkowski
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Bryan Kolaczkowski
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
48
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
49
|
Cheng Q, Shah N, Bröer A, Fairweather S, Jiang Y, Schmoll D, Corry B, Bröer S. Identification of novel inhibitors of the amino acid transporter B 0 AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Br J Pharmacol 2017; 174:468-482. [PMID: 28176326 DOI: 10.1111/bph.13711] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The neutral amino acid transporter B0 AT1 (SLC6A19) has recently been identified as a possible target to treat type 2 diabetes and related disorders. B0 AT1 mediates the Na+ -dependent uptake of all neutral amino acids. For surface expression and catalytic activity, B0 AT1 requires coexpression of collectrin (TMEM27). In this study, we established tools to identify and evaluate novel inhibitors of B0 AT1. EXPERIMENTAL APPROACH A CHO-based cell line was generated, stably expressing collectrin and B0 AT1. Using this cell line, a high-throughput screening assay was developed, which uses a fluorescent dye to detect depolarisation of the cell membrane during amino acid uptake via B0 AT1. In parallel to these functional assays, we ran a computational compound screen using AutoDock4 and a homology model of B0 AT1 based on the high-resolution structure of the highly homologous Drosophila dopamine transporter. KEY RESULTS We characterized a series of novel inhibitors of the B0 AT1 transporter. Benztropine was identified as a competitive inhibitor of the transporter showing an IC50 of 44 ± 9 μM. The compound was selective with regard to related transporters and blocked neutral amino acid uptake in inverted sections of mouse intestine. CONCLUSION AND IMPLICATIONS The tools established in this study can be widely used to identify new transport inhibitors. Using these tools, we were able to identify compounds that can be used to study epithelial transport, to induce protein restriction, or be developed further through medicinal chemistry.
Collapse
Affiliation(s)
- Qi Cheng
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Nishank Shah
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stephen Fairweather
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yang Jiang
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Dieter Schmoll
- Industriepark Hoechst, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Ben Corry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
50
|
Abstract
Synthetic protein switches with tailored response functions are finding increasing applications as tools in basic research and biotechnology. With a number of successful design strategies emerging, the construction of synthetic protein switches still frequently necessitates an integrated approach that combines detailed biochemical and biophysical characterization in combination with high-throughput screening to construct tailored synthetic protein switches. This is increasingly complemented by computational strategies that aim to reduce the need for costly empirical optimization and thus facilitate the protein design process. Successful computational design approaches range from analyzing phylogenetic data to infer useful structural, biophysical, and biochemical information to modeling the structure and function of proteins ab initio. The following chapter provides an overview over the theoretical considerations and experimental approaches that have been successful applied in the construction of synthetic protein switches.
Collapse
Affiliation(s)
- Viktor Stein
- Fachbereich Biologie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|