1
|
Gupta N, Chatterjee S. Integrated Capture and Electrocatalytic Conversion of CO 2: A Molecular Electrocatalysts Perspective. Chem Asian J 2025:e202401611. [PMID: 40256821 DOI: 10.1002/asia.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
The ever-increasing concentration of atmospheric CO2, primarily driven by anthropogenic activities, has raised urgent environmental concerns, spurring the development of carbon capture and utilization (CCU) technologies. This review focuses on the integrated capture and electrochemical conversion of CO2 (ICECC), a promising approach that combines carbon capture with its direct electroreduction into value-added products. By eliminating energy-intensive steps such as CO2 release, compression, and transportation, ICECC offers a more energy-efficient and cost-effective alternative to conventional CCU methods. In this review, particular attention is given to molecular electrocatalysts, which offer high tunability and selectivity in electrochemical CO2 reduction reaction (eCO2RR). The role of capturing agents, including both external and dual-functional molecular systems, is critically examined to understand their influence on CO2 binding and catalytic efficiency. Whereas ICECC has significant potential, research in this area remains underexplored compared to conventional CO2 reduction methods. The review discusses the mechanistic insights into ICECC processes, highlighting key challenges and potential future research directions for improving catalyst design, enhancing capture efficiency, and scaling up ICECC technologies. These developments can make ICECC a critical component in achieving carbon neutrality and addressing climate change.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, Sancaole, Goa, 403726, India
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Zuarinagar, Sancaole, Goa, 403726, India
| |
Collapse
|
2
|
Duffus BR, Elvers BJ, Teutloff C, Schulzke C, Leimkühler S. In vitro sulfuration of Rhodobacter capsulatus formate dehydrogenase. J Biol Chem 2025:108511. [PMID: 40246024 DOI: 10.1016/j.jbc.2025.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Metal-dependent formate dehydrogenases (FDHs) are of considerable interest as a bioinspired metalloenzyme target to efficiently reduce the greenhouse gas CO2 into the portable energy carrier formate under physiological conditions. These enzymes were shown to harbor an active site sulfido ligand that is essential for the formate oxidation and CO2 reduction activity and contributes to the oxygen sensitivity of the enzyme, since the ligand is rapidly lost in the presence of O2. Inhibitors like azide or nitrate are routinely employed to protect the active site from oxidative damage. The demonstrated unitary in vitro sulfido ligand incorporation to the active site bis metal-binding pterin guanine dinucleotide (bis-MGD) cofactor in FDH from Rhodobacter capsulatus of this study also completely reactivates the enzyme. Reductive treatment with either sulfide or bisulfite, or with sodium dithionite under weakly acidic conditions in the strict absence of O2 resulted in comparable enzymatic activity to FDH purified after heterologous expression in Escherichia coli. Confirmation of the inserted sulfido ligand was afforded by EPR spectroscopy of a MoV intermediate species associated with MoS6 coordination. Specific insertion of a 33S sulfido ligand to the bis-MGD Mo evidenced the chemical insertion of the sulfido ligand and confirmed its role to serve in defining the electronic character of the sulfurated bis-MGD MoV-SH state. The relevance of these results, in relation to known in vitro sulfuration assays described for other molybdoenzymes, is discussed.
Collapse
Affiliation(s)
- Benjamin R Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany.
| | - Benedict J Elvers
- Institute of Biochemistry, Department of Bioinorganic Chemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Christian Teutloff
- Institute of Experimental Physics, EPR Spectroscopy of Biological Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carola Schulzke
- Institute of Biochemistry, Department of Bioinorganic Chemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Shao N, Zhou D, Schut GJ, Poole FL, Coffey SB, Donaghy AP, Putumbaka S, Thorgersen MP, Chen L, Rose J, Wang BC, Adams MWW. Storage of the vital metal tungsten in a dominant SCFA-producing human gut microbe Eubacterium limosum and implications for other gut microbes. mBio 2025; 16:e0260524. [PMID: 40126018 PMCID: PMC11980592 DOI: 10.1128/mbio.02605-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Enzymes containing tungsten rather than the ubiquitous and analogous element molybdenum are prevalent in the human gut microbiome, especifically in microbes that contribute to overall gut health. Eubacterium limosum is a dominant human gut organism whose production of beneficial short-chain fatty acids (SCFAs) from lactate involves tungstoenzymes. Here, we characterized E. limosum Tub, a tungsten storage protein. Tub has a sub-nanomolar affinity for tungstate and contains a single TOBE domain first characterized in a molybdate storage protein. Crystal structures revealed Tub assembles as a hexamer composed of a trimer of dimers, capable of binding eight tungstate oxyanions at two distinct binding sites located at inter-subunit interfaces. Tungstate-saturated Tub exhibited unusually high thermal and chemical stability. Glucose-grown E. limosum accumulates tungsten in Tub and has low levels of two tungstoenzymes, termed WOR1 and FDH, which oxidize aldehydes and formate, respectively. Lactate-grown cells contain high concentrations of these two tungstoenzymes where WOR1 and FDH are involved in converting lactate to SCFAs. Glucose-grown cells appear to accumulate tungstate in Tub in preparation for lactate availability in the human gut. Tub and other TOBE-containing proteins are widespread in the human gut microbiome, and gene co-occurrence analysis predicts that there are comparable numbers of TOBE-containing proteins involved in the storage of tungstate as there are that bind molybdate. The results with E. limosum represent an important step for understanding tungsten storage mechanisms for tungstoenzymes within human gut microbes in general.IMPORTANCETungsten metabolism was found to be prevalent in the human gut microbiome, which is involved in the detoxification of food and antimicrobial aldehydes, as well as in the production of beneficial SCFAs. In this study, we characterized a protein in the human gut microbe, Eubacterium limosum, that stores tungstate in preparation for its use in enzymes involved in SCFA generation. This revealed several families of tungstate binding proteins that are also involved in tungstate transport and tungstate-dependent regulation and are widely distributed in the human gut microbiome. Elucidating how tungsten is stored and transported in the human gut microbes contributes to our understanding of the human gut microbiome and its impact on human health.
Collapse
Affiliation(s)
- Nana Shao
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Sydney B. Coffey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Donaghy
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Saisuki Putumbaka
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael P. Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - John Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Das U, Das A, Das AK. Relativistic effect behind the molybdenum vs. tungsten selectivity in enzymes. Dalton Trans 2025. [PMID: 40183367 DOI: 10.1039/d5dt00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Molybdenum and tungsten, being congeners of the 6th group of d-block elements, are similar in many respects in terms of their properties. In fact, both participate in similar types of oxotransferase activity in their enzymes. Molybdenum is regarded as the heaviest essential trace metal in all forms of life; however, its next heavier congener, tungsten, as the heaviest metal, is found only in some prokaryotic organisms. Tungstoenzymes are generally selected by nature for carrying out low-potential redox activities under anaerobic conditions in prokaryotic organisms. This nature's molybdenum vs. tungsten selectivity for their biological functions under different working conditions (surrounding temperature and aerobic/anaerobic environment) is determined mainly by the relativistic effect, which is experienced to different extents by these two congeners. Understanding the mechanistic aspects of the relativistic effect-controlled enzymatic activities of tungstoenzymes is of immense biotechnological interest to develop eco-friendly and cost-effective methods for the commercial synthesis of acetaldehyde through the hydration of acetylene and commercial production of hydrogen (H2, a green fuel) by producing tungsten-incorporated nitrogenase (W-N2-ase) in CA6 (mutant strain) and to develop a biomimetic method to replace the hazardous Birch reduction in organic synthesis.
Collapse
Affiliation(s)
- Udita Das
- Department of Chemistry, Visva Bharati University, Santiniketan 731235, India.
| | - Ankita Das
- School of Chemical Sciences, Indian Association of Cultivation for the Science, Kolkata 700032, India.
| | - Asim K Das
- Department of Chemistry, Visva Bharati University, Santiniketan 731235, India.
| |
Collapse
|
5
|
Lepluart J, Kirk ML. Bond Valence Sum Parameters for Analyzing Pyranopterin Tungsten Enzyme Structures. Molecules 2025; 30:871. [PMID: 40005181 PMCID: PMC11858030 DOI: 10.3390/molecules30040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The determination of tungsten oxidation states and W-ligand bond lengths for pyranopterin tungsten enzymes can be negatively impacted by Fourier series termination effects and photodamage/photoreduction in the X-ray beam. As a result, a new set of bond valence sum (BVS) parameters have been derived from bond length data on W(+4) and W(+6) model compounds that were obtained from X-ray crystallography. These new W enzyme-specific BVS parameters have been used in the analysis of pyranopterin tungsten enzyme structural data. The results of this analysis indicate that there are potential issues with the enzyme crystal structures, including the number of ligating atoms to the tungsten atom, the W-ligand bond lengths, and the W oxidation state. We conclude that a BVS analysis of crystallographic and EXAFS structural data will help address these issues, and EXAFS should be more routinely employed in the determination of pyranopterin tungsten enzyme active site structures due to the increased accuracy of this technique for the determination of W-ligand bond distances.
Collapse
Affiliation(s)
- Jesse Lepluart
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA;
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA;
- The Center for High Technology Materials, The University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
6
|
Lemaire O, Wagner T. All-in-One CO 2 Capture and Transformation: Lessons from Formylmethanofuran Dehydrogenases. Acc Chem Res 2024; 57:3512-3523. [PMID: 39584476 PMCID: PMC11656701 DOI: 10.1021/acs.accounts.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Carbon-one-unit (C1) feedstocks are generally used in the chemical synthesis of organic molecules, such as solvents, drugs, polymers, and fuels. Contrary to the dangerous and polluting carbon monoxide mostly coming from fossil fuels, formate and formamide are attractive alternative feedstocks for chemical synthesis. As these are currently mainly obtained from the oil industry, novel synthetic routes have been developed based on the transformation of the greenhouse gas CO2. Such developments are motivated by the urgent need for carbon chemical recycling, leading to a sustainable future. The inert nature of CO2 represents a challenge for chemists to activate and specifically convert the molecule through an affordable and efficient process. The chemical transformation could be inspired by biological CO2 activation, in which highly specialized enzymes perform atmospheric CO2 fixation through relatively abundant metal catalysts. In this Account, we describe and discuss the potential of one of the most efficient biological CO2-converting systems: the formylmethanofuran dehydrogenase (abbreviated as FMD).FMDs are multienzymatic complexes found in archaea that capture CO2 as a formyl group branched on the amine moiety of the methanofuran (MFR) cofactor. This overall reaction leading to formyl-MFR production does not require ATP hydrolysis as compared to the CO2-fixing microbes relying on the reductive Wood-Ljungdahl pathway, highlighting a different operative mode that saves cellular energy. FMD reaction represents the entry point in hydrogenotrophic methanogenesis (H2 and CO2 dependent or formate dependent) and operates in reverse in other methanogenic pathways and microbial metabolisms. Therefore, FMD is a key enzyme in the planetary carbon cycle. After decades of investigations, recent studies have provided a description of the FMD structure, reaction mechanism, and potential for the electroreduction of CO2, to which our laboratory has been actively contributing. FMD is an "all-in-one" enzyme catalyzing a redox-active transformation coupled to a redox-neutral transformation at two very different metal cofactors where new C-H and C-N bonds are made. First, the principle of the overall reaction consisting of an exergonic CO2 reduction coupled with an endergonic formate condensation on MFR is resumed. Then, this Account exposes the molecular details of the active sites and provides an overview of each catalytic mechanism. It also describes the natural versatility of electron-delivery modules fueling CO2 reduction and extends it to the possibilities of using artificial systems such as electrodes. A perspective concludes on how the mechanistic of FMD could be applied to produce CO2-based chemical intermediates to synthesize organic molecules. Indeed, through its biochemical properties, the enzyme opens opportunities for CO2 electroreduction to generate molecules such as formate and formamide derivatives, which are all intermediates for synthesizing organic compounds. Transferring the chemical knowledge acquired from these biological systems would provide coherent models that can lead to further development in the field of synthetic biology and bio-inspired synthetic chemistry to perform large-scale CO2 conversion into building blocks for chemical synthesis.
Collapse
Affiliation(s)
- Olivier
N. Lemaire
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | | |
Collapse
|
7
|
Zhou YZ, Lai MC, You YT, Lai SJ, Wu SY, Hung CC, Ding JY, Shih CJ, Wu YC, Zhang WL, Chen SC. Methanochimaera problematica gen. nov., sp. nov., a novel methanoarchaeon isolated from cold seep sediment and reclassification of Methanomicrobium antiquum as Methanoeremita antiquus gen. nov., comb. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 39635772 DOI: 10.1099/ijsem.0.006593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
A hydrogenotrophic methanoarchaeon, designated strain FWC-SCC4T, was isolated from cold seep sediment of Four-Way Closure Ridge, offshore southwestern Taiwan. Strain FWC-SCC4Tutilizes H2/CO2 or formate, but not acetate, secondary alcohols, methylamines, methanol or ethanol for growth and methane production. Yeast extract is required for growth. The cell morphology is coccoid, with a diameter of 0.8-1.2 µm, and the cell envelope is composed of S-layer protein with Mr about 137.00 kDa. Cells possess multiple flagella and usually occur singly. Strain FWC-SCC4T grows at a temperature range of 20-40 °C (optimum 37 °C) and a pH range of 5.4-7.2 (optimum 7.0). The NaCl range for growth is 0-0.86 M (optimum 0.09 M). The result of phylogenetic analysis of 16S rRNA gene sequences indicates that the most closely related species are Methanoplanus limicola M3T and Methanoplanus endosymbiosus MC1T, with similarities of 95.95 and 95.63%, respectively. The G+C content of the genomic DNA is 40.3 mol%. The overall genome-relatedness indexes (OGRIs) and concatenated ribosomal protein (RBP) phylogenic analysis indicate that strain FWC-SCC4T is a novel lineage of Methanomicrobiaceae. In addition to strain FWC-SCC4T, the differences between Methanomicrobium antiquum MobHT and Methanomicrobium mobile BPT demonstrated by comparative analysis of genomic G+C content and phylogenetic analysis with non-type strain genomes are enough to support the establishment of a novel genus. In conclusion, strain FWC-SCC4T (BCRC AR10058T= NBRC 114595T) is proposed as the type strain of Methanochimaera problematica gen. nov., sp. nov., and Methanoeremita antiquus gen. nov., comb. nov. is proposed as the new name for Methanomicrobium antiquum MobHT (=DSM 21220T= NBRC 104160T).
Collapse
Affiliation(s)
- Yang-Zhi Zhou
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Yi-Ting You
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan, ROC
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan, ROC
| | - Sue-Yao Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Chuan-Chuan Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Jiun-Yan Ding
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Yen-Chi Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Wei-Ling Zhang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Sheng-Chung Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, PR China
- Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, PR China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| |
Collapse
|
8
|
Liu W, Zhang K, Liu J, Wang Y, Zhang M, Cui H, Sun J, Zhang L. Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui. Nat Commun 2024; 15:9962. [PMID: 39551789 PMCID: PMC11570645 DOI: 10.1038/s41467-024-53946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Electrocatalytic carbon dioxide (CO2) reduction by CO2 reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO2 reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience. To achieve this purpose, a recombinant Escherichia coli TkHDCR overexpression system is established. The formate dehydrogenase is obtained via subunit truncation and rational design, which enables direct electron transfer (DET)-type bioelectrocatalysis with a near-zero overpotential. By applying a constant voltage of -500 mV (vs. SHE) to a mediated electrolytic cell, 22.8 ± 1.6 mM formate is synthesized in 16 h with an average production rate of 7.1 ± 0.5 μmol h-1cm-2, a Faradaic efficiency of 98.9% and a half-cell energy efficiency of 94.4%. This study provides an enzyme candidate for high efficient CO2 reduction and opens up a way to develop paradigm for CO2-based bio-manufacturing.
Collapse
Affiliation(s)
- Weisong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kuncheng Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiang Liu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanming Wang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Meng Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, 9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Huijuan Cui
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Junsong Sun
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
9
|
Niks D, Hakopian S, Canchola A, Lin YH, Hille R. Mechanism of Action of Formate Dehydrogenases. J Am Chem Soc 2024; 146:28601-28604. [PMID: 39382156 PMCID: PMC11503769 DOI: 10.1021/jacs.4c07376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
The molybdenum- and tungsten-containing formate dehydrogenases from a variety of microorganisms catalyze the reversible interconversion of formate and CO2; several, in fact, function as CO2 reductases in the reverse direction under physiological conditions. CO2 reduction catalyzed by these enzymes occurs under mild temperature and pressure rather than the elevated conditions required for current industrial processes. Given the contemporary importance of remediation of atmospheric CO2 to address global warming, there has been considerable interest in the application of these enzymes in bioreactors. Equally important, understanding the detailed means by which these biological catalysts convert CO2 to formate, a useful and easily transported feedstock chemical, might also inspire the development of a new generation of highly efficient, biomimetic synthetic catalysts. Here we have examined the ability of the FdsDABG formate dehydrogenase from Cupriavidus necator to catalyze the exchange of solvent oxygen into product CO2 during the course of formate oxidation under single-turnover conditions. Negligible incorporation of 18O is observed when the experiment is performed in H218O, indicating that bicarbonate cannot be the immediate product of the enzyme-catalyzed reaction, as previously concluded. These results, in conjunction with the observation that the reductive half-reaction exhibits mildly acid-catalyzed rather than base-catalyzed chemistry, are consistent with a reaction mechanism involving direct hydride transfer from formate to the enzyme's molybdenum center, directly yielding CO2. Our results are inconsistent with any mechanism in which the initial product formed on oxidation of formate is bicarbonate.
Collapse
Affiliation(s)
- Dimitri Niks
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Sheron Hakopian
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Alexa Canchola
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Russ Hille
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Payne D, Keller LM, Larson J, Bothner B, Colman DR, Boyd ES. Alternative sources of molybdenum for Methanococcus maripaludis and their implication for the evolution of molybdoenzymes. Commun Biol 2024; 7:1337. [PMID: 39414898 PMCID: PMC11484787 DOI: 10.1038/s42003-024-07049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable. This presents a paradox for how organisms obtain Mo to support molybdoenzymes in these environments. Here, we show that tetrathiomolybdate and molybdenite sustain the high Mo demand of a model anaerobic methanogen, Methanococcus maripaludis, grown via Mo-dependent formate dehydrogenase, formylmethanofuran dehydrogenase, and nitrogenase. Cells grown with tetrathiomolybdate and molybdenite have similar growth kinetics, Mo content, and transcript levels of proteins involved in Mo transport and cofactor biosynthesis when compared to those grown with molybdate, implying similar mechanisms of transport and cofactor biosynthesis. These results help to reconcile the paradox of how Mo is acquired in modern and ancient anaerobes and provide new insight into how molybdoenzymes could have evolved prior to Earth's oxygenation.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
11
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
12
|
Vilela-Alves G, Manuel RR, Viegas A, Carpentier P, Biaso F, Guigliarelli B, Pereira IAC, Romão MJ, Mota C. Substrate-dependent oxidative inactivation of a W-dependent formate dehydrogenase involving selenocysteine displacement. Chem Sci 2024; 15:13090-13101. [PMID: 39148770 PMCID: PMC11323313 DOI: 10.1039/d4sc02394c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Metal-dependent formate dehydrogenases are very promising targets for enzyme optimization and design of bio-inspired catalysts for CO2 reduction, towards innovative strategies for climate change mitigation. For effective application of these enzymes, the catalytic mechanism must be better understood, and the molecular determinants clarified. Despite numerous studies, several doubts persist, namely regarding the role played by the possible dissociation of the SeCys ligand from the Mo/W active site. Additionally, the oxygen sensitivity of these enzymes must also be understood as it poses an important obstacle for biotechnological applications. This work presents a combined biochemical, spectroscopic, and structural characterization of Desulfovibrio vulgaris FdhAB (DvFdhAB) when exposed to oxygen in the presence of a substrate (formate or CO2). This study reveals that O2 inactivation is promoted by the presence of either substrate and involves forming a different species in the active site, captured in the crystal structures, where the SeCys ligand is displaced from tungsten coordination and replaced by a dioxygen or peroxide molecule. This form was reproducibly obtained and supports the conclusion that, although W-DvFdhAB can catalyse the oxidation of formate in the presence of oxygen for some minutes, it gets irreversibly inactivated after prolonged O2 exposure in the presence of either substrate.
Collapse
Affiliation(s)
- Guilherme Vilela-Alves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Rita R Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Aldino Viegas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Philippe Carpentier
- European Synchrotron Radiation Facility Grenoble France
- Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM), Université Grenoble Alpes, CNRS, CEA Grenoble France
| | - Frédéric Biaso
- Aix Marseille Univ, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines Marseille 13402 France
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines Marseille 13402 France
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Maria João Romão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| |
Collapse
|
13
|
Hidese R, Ohira T, Sakakibara S, Suzuki T, Shigi N, Fujiwara S. Functional redundancy of ubiquitin-like sulfur-carrier proteins facilitates flexible, efficient sulfur utilization in the primordial archaeon Thermococcus kodakarensis. mBio 2024; 15:e0053424. [PMID: 38975783 PMCID: PMC11323500 DOI: 10.1128/mbio.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Ubiquitin-like proteins (Ubls) in eukaryotes and bacteria mediate sulfur transfer for the biosynthesis of sulfur-containing biomolecules and form conjugates with specific protein targets to regulate their functions. Here, we investigated the functions and physiological importance of Ubls in a hyperthermophilic archaeon by constructing a series of deletion mutants. We found that the Ubls (TK1065, TK1093, and TK2118) in Thermococcus kodakarensis are conjugated to their specific target proteins, and all three are involved in varying degrees in the biosynthesis of sulfur-containing biomolecules such as tungsten cofactor (Wco) and tRNA thiouridines. TK2118 (named UblB) is involved in the biosynthesis of Wco in a glyceraldehyde 3-phosphate:ferredoxin oxidoreductase, which is required for glycolytic growth, whereas TK1093 (named UblA) plays a key role in the efficient thiolation of tRNAs, which contributes to cellular thermotolerance. Intriguingly, in the presence of elemental sulfur (S0) in the culture medium, defective synthesis of these sulfur-containing molecules in Ubl mutants was restored, indicating that T. kodakarensis can use S0 as an alternative sulfur source without Ubls. Our analysis indicates that the Ubl-mediated sulfur-transfer system in T. kodakarensis is important for efficient sulfur assimilation, especially under low S0 conditions, which may allow this organism to survive in a low sulfur environment.IMPORTANCESulfur is a crucial element in living organisms, occurring in various sulfur-containing biomolecules including iron-sulfur clusters, vitamins, and RNA thionucleosides, as well as the amino acids cysteine and methionine. In archaea, the biosynthesis routes and sulfur donors of sulfur-containing biomolecules are largely unknown. Here, we explored the functions of Ubls in the deep-blanched hyperthermophilic archaeon, Thermococcus kodakarensis. We demonstrated functional redundancy of these proteins in the biosynthesis of tungsten cofactor and tRNA thiouridines and the significance of these sulfur-carrier functions, especially in low sulfur environments. We propose that acquisition of a Ubl sulfur-transfer system, in addition to an ancient inorganic sulfur assimilation pathway, enabled the primordial archaeon to advance into lower-sulfur environments and expand their habitable zone.
Collapse
Affiliation(s)
- Ryota Hidese
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satsuki Sakakibara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoki Shigi
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
14
|
Switala J, Donald L, Ivancich A. A remarkable peroxidase-like behavior of the catalase KatA from the pathogenic bacteria Helicobacter pylori: The oxidation reaction with formate as substrate and the stabilization of an [Fe(IV) = O Trp •] intermediate assessed by multifrequency EPR spectroscopy. J Inorg Biochem 2024; 257:112594. [PMID: 38749080 DOI: 10.1016/j.jinorgbio.2024.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.
Collapse
Affiliation(s)
- Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lynda Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anabella Ivancich
- Bioénergétique et Ingénierie des Protéines, UMR 7281 and IMM FR3479, CNRS, Aix-Marseille Univ., 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
15
|
Yang J, Mintmier B, Kc K, Metzger MC, Radhakrishnan M, McGarry J, Wilcoxen J, Basu P, Kirk ML. Active Site Characterization of a Campylobacter jejuni Nitrate Reductase Variant Provides Insight into the Enzyme Mechanism. Inorg Chem 2024; 63:13191-13196. [PMID: 38984973 DOI: 10.1021/acs.inorgchem.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Khadanand Kc
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Manohar Radhakrishnan
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Jennifer McGarry
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 N. Cramer St., Milwaukee, Wisconsin 53211, United States
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 N. Cramer St., Milwaukee, Wisconsin 53211, United States
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
16
|
Vilela-Alves G, Rebelo Manuel R, Pedrosa N, Cardoso Pereira IA, Romão MJ, Mota C. Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase. Acta Crystallogr F Struct Biol Commun 2024; 80:98-106. [PMID: 38699971 PMCID: PMC11134731 DOI: 10.1107/s2053230x24003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.
Collapse
Affiliation(s)
- Guilherme Vilela-Alves
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Rebelo Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Neide Pedrosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Inês A. Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria João Romão
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiano Mota
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Yao X, Jiang M, Dong Y, Wen J, Jiang H. Association between exposure to multiple metals and stress urinary incontinence in women: a mixture approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:149. [PMID: 38578493 DOI: 10.1007/s10653-024-01929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
There is limited evidence linking exposure to heavy metals, especially mixed metals, to stress urinary incontinence (SUI). This study aimed to explore the relationship between multiple metals exposure and SUI in women. The data were derived from the National Health and Nutrition Examination Survey (NHANES), 2007-2020. In the study, a total of 13 metals were analyzed in blood and urine. In addition, 5155 adult women were included, of whom 2123 (41.2%) suffered from SUI. The logistic regression model and restricted cubic spline (RCS) were conducted to assess the association of single metal exposure with SUI risk. The Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) were used to estimate the combined effect of multiple metals exposure on SUI. First, we observed that blood Pb, Hg and urinary Pb, Cd were positively related to SUI risk, whereas urinary W was inversely related by multivariate logistic regression (all p-FDR < 0.05). Additionally, a significant non-linear relationship between blood Hg and SUI risk was observed by RCS analysis. In the co-exposure models, WQS model showed that exposure to metal mixtures in blood [OR (95%CI) = 1.18 (1.06, 1.31)] and urine [OR (95%CI) = 1.18 (1.03, 1.34)] was positively associated with SUI risk, which was consistent with the results of BKMR model. A potential interaction was identified between Hg and Cd in urine. Hg and Cd were the main contributors to the combined effects. In summary, our study indicates that exposure to heavy metal mixtures may increase SUI risk in women.
Collapse
Affiliation(s)
- Xiaodie Yao
- Department of Obstetrics and Gynaecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, People's Republic of China
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei Jiang
- Department of Obstetrics and Gynaecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, People's Republic of China
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yunyun Dong
- Department of Obstetrics and Gynaecology, Lishui Maternal and Child Health Hospital of Nanjing, Lishui District, Nanjing, 211299, Jiangsu, People's Republic of China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Jiang
- Department of Obstetrics and Gynaecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Park J, Heo Y, Jeon BW, Jung M, Kim YH, Lee HH, Roh SH. Structure of recombinant formate dehydrogenase from Methylobacterium extorquens (MeFDH1). Sci Rep 2024; 14:3819. [PMID: 38360844 PMCID: PMC10869683 DOI: 10.1038/s41598-024-54205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Formate dehydrogenase (FDH) is critical for the conversion between formate and carbon dioxide. Despite its importance, the structural complexity of FDH and difficulties in the production of the enzyme have made elucidating its unique physicochemical properties challenging. Here, we purified recombinant Methylobacterium extorquens AM1 FDH (MeFDH1) and used cryo-electron microscopy to determine its structure. We resolved a heterodimeric MeFDH1 structure at a resolution of 2.8 Å, showing a noncanonical active site and a well-embedded Fe-S redox chain relay. In particular, the tungsten bis-molybdopterin guanine dinucleotide active site showed an open configuration with a flexible C-terminal cap domain, suggesting structural and dynamic heterogeneity in the enzyme.
Collapse
Affiliation(s)
- Junsun Park
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonyoung Heo
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Mingyu Jung
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Soung-Hun Roh
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Oliveira AR, Mota C, Vilela-Alves G, Manuel RR, Pedrosa N, Fourmond V, Klymanska K, Léger C, Guigliarelli B, Romão MJ, Cardoso Pereira IA. An allosteric redox switch involved in oxygen protection in a CO 2 reductase. Nat Chem Biol 2024; 20:111-119. [PMID: 37985883 DOI: 10.1038/s41589-023-01484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Metal-dependent formate dehydrogenases reduce CO2 with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O2 exposure.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Guilherme Vilela-Alves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rita Rebelo Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Neide Pedrosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vincent Fourmond
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Kateryna Klymanska
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Christophe Léger
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Bruno Guigliarelli
- Laboratory of Bioenergetics and Protein Engineering, Aix Marseille University, CNRS, BIP, Marseille, France
| | - Maria João Romão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Inês A Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
20
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
21
|
Harmer JR, Hakopian S, Niks D, Hille R, Bernhardt PV. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from Cupriavidus necator. J Am Chem Soc 2023; 145:25850-25863. [PMID: 37967365 DOI: 10.1021/jacs.3c10199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.
Collapse
Affiliation(s)
- Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
22
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
23
|
Kalimuthu P, Hakopian S, Niks D, Hille R, Bernhardt PV. The Reversible Electrochemical Interconversion of Formate and CO 2 by Formate Dehydrogenase from Cupriavidus necator. J Phys Chem B 2023; 127:8382-8392. [PMID: 37728992 DOI: 10.1021/acs.jpcb.3c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
24
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
25
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
26
|
Metatranscriptomic insights into the microbial electrosynthesis of acetate by Fe 2+/Ni 2+ addition. World J Microbiol Biotechnol 2023; 39:109. [PMID: 36879133 DOI: 10.1007/s11274-023-03554-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
As important components of enzymes and coenzymes involved in energy transfer and Wood-Ljungdahl (WL) pathways, Fe2+ and Ni2+ supplementation may promote the acetate synthesis through CO2 reduction by the microbial electrosynthesis (MES). However, the effect of Fe2+ and Ni2+ addition on acetate production in MES and corresponding microbial mechanisms have not been fully studied. Therefore, this study investigated the effect of Fe2+ and Ni2+ addition on acetate production in MES, and explored the underlying microbial mechanism from the metatranscriptomic perspective. Both Fe2+ and Ni2+ addition enhanced acetate production of the MES, which was 76.9% and 110.9% higher than that of control, respectively. Little effect on phylum level and small changes in genus-level microbial composition was caused by Fe2+ and Ni2+ addition. Gene expression of 'Energy metabolism', especially in 'Carbon fixation pathways in prokaryotes' was up-regulated by Fe2+ and Ni2+ addition. Hydrogenase was found as an important energy transfer mediator for CO2 reduction and acetate synthesis. Fe2+ addition and Ni2+ addition respectively enhanced the expression of methyl branch and carboxyl branch of the WL pathway, and thus promoted acetate production. The study provided a metatranscriptomic insight into the effect of Fe2+ and Ni2+ on acetate production by CO2 reduction in MES.
Collapse
|
27
|
Aithal A, Dagar S, Rajamani S. Metals in Prebiotic Catalysis: A Possible Evolutionary Pathway for the Emergence of Metalloproteins. ACS OMEGA 2023; 8:5197-5208. [PMID: 36816708 PMCID: PMC9933472 DOI: 10.1021/acsomega.2c07635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 06/07/2023]
Abstract
Proteinaceous catalysts found in extant biology are products of life that were potentially derived through prolonged periods of evolution. Given their complexity, it is reasonable to assume that they were not accessible to prebiotic chemistry as such. Nevertheless, the dependence of many enzymes on metal ions or metal-ligand cores suggests that catalysis relevant to biology could also be possible with just the metal centers. Given their availability on the Hadean/Archean Earth, it is fair to conjecture that metal ions could have constituted the first forms of catalysts. A slow increase of complexity that was facilitated through the provision of organic ligands and amino acids/peptides possibly allowed for further evolution and diversification, eventually demarcating them into specific functions. Herein, we summarize some key experimental developments and observations that support the possible roles of metal catalysts in shaping the origins of life. Further, we also discuss how they could have evolved into modern-day enzymes, with some suggestions for what could be the imminent next steps that researchers can pursue, to delineate the putative sequence of catalyst evolution during the early stages of life.
Collapse
Affiliation(s)
- Anuraag Aithal
- Department
of Biology, Indian Institute of Science
Education and Research, Pune, Maharashtra 411008, India
| | - Shikha Dagar
- Department
of Biology, Indian Institute of Science
Education and Research, Pune, Maharashtra 411008, India
| | - Sudha Rajamani
- Department
of Biology, Indian Institute of Science
Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
28
|
The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism. Molecules 2023; 28:molecules28041537. [PMID: 36838526 PMCID: PMC9962302 DOI: 10.3390/molecules28041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Mo/W-containing formate dehydrogenases (FDH) catalyzed the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. While in the reaction of formate oxidation, the product is CO2, which exits the active site via a hydrophobic channel; bicarbonate is formed as the first intermediate during the reaction at the active site. Other than what has been previously reported, bicarbonate is formed after an oxygen atom transfer reaction, transferring the oxygen from water to formate and a subsequent proton-coupled electron transfer or hydride transfer reaction involving the sulfido ligand as acceptor.
Collapse
|
29
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
30
|
Formate Dehydrogenase Mimics as Catalysts for Carbon Dioxide Reduction. Molecules 2022; 27:molecules27185989. [PMID: 36144724 PMCID: PMC9506188 DOI: 10.3390/molecules27185989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Formate dehydrogenases (FDH) reversibly catalyze the interconversion of CO2 to formate. They belong to the family of molybdenum and tungsten-dependent oxidoreductases. For several decades, scientists have been synthesizing structural and functional model complexes inspired by these enzymes. These studies not only allow for finding certain efficient catalysts but also in some cases to better understand the functioning of the enzymes. However, FDH models for catalytic CO2 reduction are less studied compared to the oxygen atom transfer (OAT) reaction. Herein, we present recent results of structural and functional models of FDH.
Collapse
|
31
|
Gates C, Varnum H, Getty C, Loui N, Chen J, Kirk ML, Yang J, Nieter Burgmayer SJ. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes. Inorg Chem 2022; 61:13728-13742. [PMID: 36000991 PMCID: PMC10544801 DOI: 10.1021/acs.inorgchem.2c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex [TEA][Tp*MoIV(O)(S2BMOPP)] (1) [TEA = tetraethylammonium, Tp* = tris(3,5-dimethylpyrazolyl)hydroborate, and BMOPP = 6-(3-butynyl-2-methyl-2-ol)-2-pivaloyl pterin] is a structural analogue of the molybdenum cofactor common to all pyranopterin molybdenum enzymes because it possesses a pyranopterin-ene-1,2-dithiolate ligand (S2BMOPP) that exists primarily in the ring-closed pyrano structure as a resonance hybrid of ene-dithiolate and thione-thiolate forms. Compound 1, the protonated [Tp*MoIV(O)(S2BMOPP-H)] (1-H) and one-electron-oxidized [Tp*MoV(O)(S2BMOPP)] [1-Mo(5+)] species have been studied using a combination of electrochemistry, electronic absorption, and electron paramagnetic resonance (EPR) spectroscopy. Additional insight into the nature of these molecules has been derived from electronic structure computations. Differences in dithiolene C-S bond lengths correlate with relative contributions from both ene-dithiolate and thione-thiolate resonance structures. Upon protonation of 1 to form 1-H, large spectroscopic changes are observed with transitions assigned as Mo(xy) → pyranopterin metal-to-ligand charge transfer and dithiolene → pyranopterin intraligand charge transfer, respectively, and this underscores a dramatic change in electronic structure between 1 and 1-H. The changes in electronic structure that occur upon protonation of 1 are also reflected in a large >300 mV increase in the Mo(V/IV) redox potential for 1-H, resulting from the greater thione-thiolate resonance contribution and decreased charge donation that stabilize the Mo(IV) state in 1-H with respect to one-electron oxidation. EPR spin Hamiltonian parameters for one-electron-oxidized 1-Mo(5+) and uncyclized [Tp*MoV(O)(S2BDMPP)] [3-Mo(5+)] [BDMPP = 6-(3-butynyl-2,2-dimethyl)-2-pivaloyl pterin] are very similar to each other and to those of [Tp*MoVO(bdt)] (bdt = 1,2-ene-dithiolate). This indicates that the dithiolate form of the ligand dominates at the Mo(V) level, consistent with the demand for greater S → Mo charge donation and a corresponding increase in Mo-S covalency as the oxidation state of the metal is increased. Protonation of 1 represents a simple reaction that models how the transfer of a proton from neighboring acidic amino acid residues to the Mo cofactor at a nitrogen atom within the pyranopterin dithiolene (PDT) ligand in pyranopterin molybdenum enzymes can impact the electronic structure of the Mo-PDT unit. This work also illustrates how pyran ring-chain tautomerization drives changes in resonance contributions to the dithiolene chelate and may adjust the reduction potential of the Mo ion.
Collapse
Affiliation(s)
- Cassandra Gates
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Haley Varnum
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Catherine Getty
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Natalie Loui
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | | |
Collapse
|
32
|
Thorgersen MP, Schut GJ, Poole FL, Haja DK, Putumbaka S, Mycroft HI, de Vries WJ, Adams MWW. Obligately aerobic human gut microbe expresses an oxygen resistant tungsten-containing oxidoreductase for detoxifying gut aldehydes. Front Microbiol 2022; 13:965625. [PMID: 36051760 PMCID: PMC9424855 DOI: 10.3389/fmicb.2022.965625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Brevibacillus massiliensis strain phR is an obligately aerobic microbe that was isolated from human feces. Here, we show that it readily takes up tungsten (W), a metal previously associated only with anaerobes. The W is incorporated into an oxidoreductase enzyme (BmWOR) that was purified from native biomass. BmWOR consists of a single 65 kDa subunit and contains a single W-pyranopterin cofactor and a single [4Fe-4S] cluster. It exhibited high aldehyde-oxidizing activity with very high affinities (apparent Km < 6 μM) for aldehydes common in the human gut and in cooked foods, including furfural, propionaldehyde, benzaldehyde and tolualdehyde, suggesting that BmWOR plays a key role in their detoxification. B. massiliensis converted added furfural to furoic acid when grown in the presence of W, but not in the presence of the analogous element molybdenum. B. massiliensis ferredoxin (BmFd) served as the electron acceptor (apparent Km < 5 μM) for BmWOR suggesting it is the physiological electron carrier. Genome analysis revealed a Fd-dependent rather than NADH-dependent Complex I, suggesting that WOR not only serves a detoxification role but its aldehyde substrates could also serve as a source of energy. BmWOR is the first tungstoenzyme and the first member of the WOR family to be obtained from a strictly aerobic microorganism. Remarkably, BmWOR oxidized furfural in the presence of air (21% O2, v/v) but only if BmFd was also present. BmWOR is the first characterized member of the Clade 83 WORs, which are predominantly found in extremely halophilic and aerobic archaea (Clade 83A), with many isolated from food sources, while the remaining bacterial members (Clade 83B) include both aerobes and anaerobes. The potential advantages for microbes found in foods and involved in human gut health that harbor O2-resistant WORs, including in Bacillus and Brevibacillus based-probiotics, are discussed.
Collapse
|
33
|
Graham JE, Niks D, Zane GM, Gui Q, Hom K, Hille R, Wall JD, Raman CS. How a Formate Dehydrogenase Responds to Oxygen: Unexpected O 2 Insensitivity of an Enzyme Harboring Tungstopterin, Selenocysteine, and [4Fe–4S] Clusters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel E. Graham
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California92521, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Qin Gui
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California92521, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, Missouri65211, United States
| | - C. S. Raman
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland21201, United States
| |
Collapse
|
34
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
35
|
Oliveira AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC. Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis. ACS Chem Biol 2022; 17:1901-1909. [PMID: 35766974 PMCID: PMC9774666 DOI: 10.1021/acschembio.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.
Collapse
Affiliation(s)
- Ana Rita Oliveira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cristiano Mota
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Kateryna Klymanska
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Frédéric Biaso
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France
| | - Maria João Romão
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,UCIBIO,
Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA
School of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal,
| | - Bruno Guigliarelli
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, Aix Marseille Univ, CNRS, BIP, Marseille 13402, France,
| | - Inês Cardoso Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,
| |
Collapse
|
36
|
Winiarska A, Hege D, Gemmecker Y, Kryściak-Czerwenka J, Seubert A, Heider J, Szaleniec M. Tungsten Enzyme Using Hydrogen as an Electron Donor to Reduce Carboxylic Acids and NAD . ACS Catal 2022; 12:8707-8717. [PMID: 35874620 PMCID: PMC9295118 DOI: 10.1021/acscatal.2c02147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Tungsten-dependent
aldehyde oxidoreductases (AORs) catalyze the
oxidation of aldehydes to acids and are the only known enzymes reducing
non-activated acids using electron donors with low redox potentials.
We report here that AOR from Aromatoleum aromaticum (AORAa) catalyzes the reduction of organic
acids not only with low-potential Eu(II) or Ti(III) complexes but
also with H2 as an electron donor. Additionally, AORAa catalyzes the H2-dependent reduction
of NAD+ or benzyl viologen. The rate of H2-dependent
NAD+ reduction equals to 10% of that of aldehyde oxidation,
representing the highest H2 turnover rate observed among
the Mo/W enzymes. As AORAa simultaneously
catalyzes the reduction of acids and NAD+, we designed
a cascade reaction utilizing a NAD(P)H-dependent alcohol dehydrogenase
to reduce organic acids to the corresponding alcohols with H2 as the only reductant. The newly discovered W-hydrogenase side activity
of AORAa may find applications in either
NADH recycling or conversion of carboxylic acids to more useful biochemicals.
Collapse
Affiliation(s)
- Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| | - Dominik Hege
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Yvonne Gemmecker
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Joanna Kryściak-Czerwenka
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| | - Andreas Seubert
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Johann Heider
- Faculty of Biology, Philipps-Universität Marburg, Marburg D-35043, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg D-35043, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków 30-239, Poland
| |
Collapse
|
37
|
Membrane-anchored HDCR nanowires drive hydrogen-powered CO 2 fixation. Nature 2022; 607:823-830. [PMID: 35859174 DOI: 10.1038/s41586-022-04971-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/13/2022] [Indexed: 01/11/2023]
Abstract
Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.
Collapse
|
38
|
Nazemi A, Steeves AH, Kastner DW, Kulik HJ. Influence of the Greater Protein Environment on the Electrostatic Potential in Metalloenzyme Active Sites: The Case of Formate Dehydrogenase. J Phys Chem B 2022; 126:4069-4079. [PMID: 35609244 DOI: 10.1021/acs.jpcb.2c02260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mo/W-containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst that reversibly converts CO2 to formate under ambient conditions. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of classical molecular dynamics and multiscale quantum-mechanical (QM)/molecular-mechanical (MM) simulations. We leverage charge shift analysis to systematically construct QM regions and analyze the electronic environment of the active site by evaluating the degree of charge transfer between the core active site and the protein environment. The contribution of the terminal chalcogen ligand to the ESP of the metal center is substantial and dependent on the chalcogen identity, with similar, less negative ESPs for Se and S terminal chalcogens in comparison to O regardless of whether the metal is Mo or W. The orientation of the side chains and conformations of the cofactor also affect the ESP, highlighting the importance of sampling dynamic fluctuations in the protein. Overall, our observations suggest that the terminal chalcogen ligand identity plays an important role in the enzymatic activity of FDH, suggesting opportunities for a rational bioinspired catalyst design.
Collapse
Affiliation(s)
- Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Wiedner ES, Appel AM, Raugei S, Shaw WJ, Bullock RM. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines. Chem Rev 2022; 122:12427-12474. [PMID: 35640056 DOI: 10.1021/acs.chemrev.1c01001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pendant amines play an invaluable role in chemical reactivity, especially for molecular catalysts based on earth-abundant metals. As inspired by [FeFe]-hydrogenases, which contain a pendant amine positioned for cooperative bifunctionality, synthetic catalysts have been developed to emulate this multifunctionality through incorporation of a pendant amine in the second coordination sphere. Cyclic diphosphine ligands containing two amines serve as the basis for a class of catalysts that have been extensively studied and used to demonstrate the impact of a pendant base. These 1,5-diaza-3,7-diphosphacyclooctanes, now often referred to as "P2N2" ligands, have profound effects on the reactivity of many catalysts. The resulting [Ni(PR2NR'2)2]2+ complexes are electrocatalysts for both the oxidation and production of H2. Achieving the optimal benefit of the pendant amine requires that it has suitable basicity and is properly positioned relative to the metal center. In addition to the catalytic efficacy demonstrated with [Ni(PR2NR'2)2]2+ complexes for the oxidation and production of H2, catalysts with diphosphine ligands containing pendant amines have also been demonstrated for several metals for many different reactions, both in solution and immobilized on surfaces. The impact of pendant amines in catalyst design continues to expand.
Collapse
|
40
|
Optimized Operating Conditions for a Biological Treatment Process of Industrial Residual Process Brine Using a Halophilic Mixed Culture. FERMENTATION 2022. [DOI: 10.3390/fermentation8060246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Residual process brine is a sustainable raw material for chlor-alkali electrolysis processes. This study investigates the influence of critical process parameters on the performance of a continuous treatment process for residual process brine using halophilic microorganisms. The goal of the bioprocess is an efficient degradation of the organic impurities formate, aniline, phenol, and 4,4′-methylenedianline from this residual stream. It was shown that formate could be degraded with high efficiencies (89–98%) during the treatment process. It was observed that formate degradation was influenced by the co-substrate glycerol. The lowest residual formate concentrations were achieved with specific glycerol uptake rates of 8.0–16.0 × 10−3 g L−1 h−1 OD600−1. Moreover, a triple-nutrient limitation for glycerol, ammonium, and phosphate was successfully applied for continuous cultivations. Furthermore, it was shown that all aromatic impurities were degraded with an efficiency of 100%. Ultimately, this study proposed optimized operating conditions, allowing the efficient degradation of organics in the residual process brine under various process conditions. Future optimization steps will require a strategy to prevent the accumulation of potential intermediate degradation products formed at high aniline feed concentrations and increase the liquid dilution rates of the system to achieve a higher throughput of brines.
Collapse
|
41
|
Hakopian S, Niks D, Hille R. The air-inactivation of formate dehydrogenase FdsDABG from Cupriavidus necator. J Inorg Biochem 2022; 231:111788. [DOI: 10.1016/j.jinorgbio.2022.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/15/2022]
|
42
|
Liu M, Nazemi A, Taylor MG, Nandy A, Duan C, Steeves AH, Kulik HJ. Large-Scale Screening Reveals That Geometric Structure Matters More Than Electronic Structure in the Bioinspired Catalyst Design of Formate Dehydrogenase Mimics. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael G. Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H. Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
44
|
Li Y, Gomez-Mingot M, Fogeron T, Fontecave M. Carbon Dioxide Reduction: A Bioinspired Catalysis Approach. Acc Chem Res 2021; 54:4250-4261. [PMID: 34761916 DOI: 10.1021/acs.accounts.1c00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While developed in a number of directions, bioinspired catalysis has been explored only very recently for CO2 reduction, a challenging reaction of prime importance in the context of the energetic transition to be built up. This approach is particularly relevant because nature teaches us that CO2 reduction is possible, with low overpotentials, high rates, and large selectivity, and gives us unique clues to design and discover new interesting molecular catalysts. Indeed, on the basis of our relatively advanced understanding of the structures and mechanisms of the active sites of fascinating metalloenzymes such as formate dehydrogenases (FDHs) and CO dehydrogenases (CODHs), it is possible to design original, active, selective, and stable molecular catalysts using the bioinspired approach. These metalloenzymes use fascinating metal centers: in FDHs, a Mo(W) mononuclear ion is coordinated by four sulfur atoms provided by a specific organic ligand, molybdopterin (MPT), containing a pyranopterin heterocycle (composed of a pyran ring fused with a pterin unit) and two sulfhydryl groups for metal chelation; in CODHs, catalytic activity depends on either a unique nickel-iron-sulfur cluster or a dinuclear Mo-Cu complex in which the Mo ion is chelated by an MPT ligand. As a consequence, the novel class of catalysts, designed by bioinspiration, consists of mononuclear Mo, W, and Ni and as well as dinuclear Mo-Cu and Ni-Fe complexes in which the metal ions are coordinated by sulfur ligands, more specifically, dithiolene chelates mimicking the natural MPT cofactor. In general, their activity is evaluated in electrochemical systems (cyclic voltammetry and bulk electrolysis) or in photochemical systems (in the presence of a photosensitizer and a sacrificial electron donor) in solution. This research is multidisciplinary because it implies detailed biochemical, functional, and structural characterization of the inspiring enzymes together with synthetic organic and organometallic chemistry and molecular catalysis studies. The most important achievements in this direction, starting from the first report of a catalytically active biomimetic bis-dithiolene-Mo complex in 2015, are discussed in this Account, highlighting the challenging issues associated with synthesis of such sophisticated ligands and molecular catalysts as well as the complexity of reaction mechanisms. While the very first active biomimetic catalysts require further improvement, in terms of performance, they set the stage in which molecular chemistry and enzymology can synergistically cooperate for a better understanding of why nature has selected these sites and for developing highly active catalysts.
Collapse
Affiliation(s)
- Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Thibault Fogeron
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
45
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
46
|
Balch WE, Ferry JG. The Wolfe cycle of carbon dioxide reduction to methane revisited and the Ralph Stoner Wolfe legacy at 100 years. Adv Microb Physiol 2021; 79:1-23. [PMID: 34836609 DOI: 10.1016/bs.ampbs.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methanogens are a component of anaerobic microbial consortia decomposing biomass to CO2 and CH4 that is an essential link in the global carbon cycle. One of two major pathways of methanogenesis involves reduction of the methyl group of acetate to CH4 with electrons from oxidation of the carbonyl group while the other involves reduction of CO2 to CH4 with electrons from H2 or formate. Pioneering investigations of the CO2 reduction pathway by Ralph S. Wolfe in the 70s and 80s contributed findings impacting the broader fields of biochemistry and microbiology that directed discovery of the domain Archaea and expanded research on anaerobic microbes for decades that continues to the present. This review presents an historical overview of the CO2 reduction pathway (Wolfe cycle) with recent developments, and an account of Wolfe's larger and enduring impact on the broad field of biology 100 years after his birth.
Collapse
Affiliation(s)
- William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
47
|
Arias-Cartin R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. Identification and characterization of a non-canonical menaquinone-linked formate dehydrogenase. J Biol Chem 2021; 298:101384. [PMID: 34748728 PMCID: PMC8808070 DOI: 10.1016/j.jbc.2021.101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
The Molybdenum/Tungsten-bispyranopterin guanine dinucleotides (Mo/W-bisPGD) family of Formate Dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting owing to their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates employed by partner subunits interacting with the catalytic hub. Here, we unveiled two non-canonical FDHs in Bacillus subtilis which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the ForC catalytic subunit interacts with an unprecedented partner subunit, ForE, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The ForE essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic Mo/bisPGD cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a non-canonical FDH, which differs in terms of architecture, amino acid conservation around the Mo cofactor, and reactivity.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Alexandre Uzel
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Fabien Pierrel
- Grenoble Alpes Université, CNRS, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marianne Broc
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Université, CNRS, Plateforme Protéomique de l'IMM, IM2B Marseille Protéomique (MaP), 13009 Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Stéphane Grimaldi
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France.
| |
Collapse
|
48
|
Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc Natl Acad Sci U S A 2021; 118:2109008118. [PMID: 34686601 DOI: 10.1073/pnas.2109008118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.
Collapse
|
49
|
Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H 2 and CO 2 Gases. Appl Environ Microbiol 2021; 87:e0029921. [PMID: 34647819 DOI: 10.1128/aem.00299-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesizes formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate into H2 and CO2. However, the enzyme has been observed to catalyze hydrogenation of CO2 given the correct conditions, and so it has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO2 reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H2 and CO2 during bacterial growth in a pressurized batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurized gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here, we present our latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurized H2 and CO2 gases was established, and aqueous formic acid was produced as a result. Incorporation of tungsten into the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO2 reductase (HDCR).
Collapse
|
50
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|