1
|
Hao HC, Zhang G, Wang YN, Sun R, Xu YJ, Ge JF. Distinguishing cancer cells from normal cells with an organelle-targeted fluorescent marker. J Mater Chem B 2022; 10:5796-5803. [PMID: 35866374 DOI: 10.1039/d2tb01351g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this paper we report a hemicyanine dye that is used to distinguish cancer cells from normal cells with its ability to target different organelles. Probe 1, a red emission hemicyanine functional dye, was connected to oxazolo[4,5-b]pyridine and diethylaminobenzene with a double bond. The maximum absorption peaks of probe 1 were located in the 509-552 nm range in organic solvents. Meanwhile, the probe possessed a high molar extinction coefficient (5.50 × 104 M-1 cm-1 in DMSO) with high photostability. The maximum emission wavelength of the probe ranged from 572 nm to 644 nm, and it also had a large Stokes shift (126 nm in DMSO). In particular, the probe showed weak fluorescence in water (Φ = 0.016), whereas it displayed strong fluorescence at 595 nm in β-cyclodextrin (β-CD) solution (Φ = 0.13). In addition, cell colocalization experiments showed that probe 1 (3 μM) was located in the endoplasmic reticulum in cancer cells, while it could target lysosomes in normal cells. What's more, further cell imaging experiments demonstrated that the average fluorescence intensity of probe 1 (0.3 μM) in cancer cells increased with the addition of β-CD, but it did not occur in normal cells. The study provides a convenient way to distinguish cancer cells from normal ones, which has potential for application in the early detection of cancer.
Collapse
Affiliation(s)
- Hao-Chi Hao
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou, 215123, China.
| | - Gang Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Ya-Nan Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou, 215123, China.
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou, 215123, China.
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou, 215123, China.
| |
Collapse
|
2
|
Rowland RJ, Chen Y, Breen I, Wu L, Offen WA, Beenakker TJ, Su Q, van den Nieuwendijk AMCH, Aerts JMFG, Artola M, Overkleeft HS, Davies GJ. Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Chemistry 2021; 27:16377-16388. [PMID: 34570911 PMCID: PMC9298352 DOI: 10.1002/chem.202102359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β‐glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA‐targeting activity‐based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism‐based mode of action and uncover binding of the new N‐functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6‐fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA's preference for O6‐ and N‐functionalised reagents, a bi‐functional aziridine ABP was synthesized as a potentially more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.
Collapse
Affiliation(s)
- Rhianna J Rowland
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Yurong Chen
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Imogen Breen
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Wendy A Offen
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Thomas J Beenakker
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Qin Su
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | | | - Johannes M F G Aerts
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Marta Artola
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
3
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Glycoside hydrolase family 5: structural snapshots highlighting the involvement of two conserved residues in catalysis. Acta Crystallogr D Struct Biol 2021; 77:205-216. [PMID: 33559609 DOI: 10.1107/s2059798320015557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
The ability of retaining glycoside hydrolases (GHs) to transglycosylate is inherent to the double-displacement mechanism. Studying reaction intermediates, such as the glycosyl-enzyme intermediate (GEI) and the Michaelis complex, could provide valuable information to better understand the molecular factors governing the catalytic mechanism. Here, the GEI structure of RBcel1, an endo-1,4-β-glucanase of the GH5 family endowed with transglycosylase activity, is reported. It is the first structure of a GH5 enzyme covalently bound to a natural oligosaccharide with the two catalytic glutamate residues present. The structure of the variant RBcel1_E135A in complex with cellotriose is also reported, allowing a description of the entire binding cleft of RBcel1. Taken together, the structures deliver different snapshots of the double-displacement mechanism. The structural analysis revealed a significant movement of the nucleophilic glutamate residue during the reaction. Enzymatic assays indicated that, as expected, the acid/base glutamate residue is crucial for the glycosylation step and partly contributes to deglycosylation. Moreover, a conserved tyrosine residue in the -1 subsite, Tyr201, plays a determinant role in both the glycosylation and deglycosylation steps, since the GEI was trapped in the RBcel1_Y201F variant. The approach used to obtain the GEI presented here could easily be transposed to other retaining GHs in clan GH-A.
Collapse
Affiliation(s)
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
4
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
5
|
He J, Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Yu F. Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS One 2019; 14:e0210548. [PMID: 30650138 PMCID: PMC6334952 DOI: 10.1371/journal.pone.0210548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/27/2018] [Indexed: 11/19/2022] Open
Abstract
Xylanases isolated from microorganisms such as the Trichoderma reesei have attracted considerable research interest because of their potential in various industrial applications. However, naturally isolated xylanases cannot withstand harsh conditions such as high temperature and basic pH. In this study, we performed structural analysis of the major T. reesei xylanase (Xyn2), and novel flexible regions of the enzyme were identified based on B-factor, a molecular dynamics (MD) parameter. To improve thermostability of the Xyn2, disulfide bonds were introduced into the unstable flexible region by using site-directed mutagenesis and two recombinant xylanases, XM1 (Xyn2Cys12-52) and XM2 (Xyn2Cys59-149) were successfully expressed in Pichia pastoris. Secreted recombinant Xyn2 was estimated by SDS-PAGE to be 24 kDa. Interestingly, the half-lives of XM1 and XM2 at 60°C were 2.5- and 1.8- fold higher, respectively than those of native Xyn2. The XM1 also exhibited improved pH stability and maintained more than 60% activity over pH values ranging from 2.0 to 10.0. However, the specific activity and catalytic efficiency of XM1 was decreased as compared to those of XM2 and native Xyn2. Our results will assist not only in elucidating of the interactions between protein structure and function, but also in rational target selection for improving the thermostability of enzymes.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- * E-mail:
| | - Feng Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Feng Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
6
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
7
|
Hoch DG, Abegg D, Adibekian A. Cysteine-reactive probes and their use in chemical proteomics. Chem Commun (Camb) 2018; 54:4501-4512. [PMID: 29645055 DOI: 10.1039/c8cc01485j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic profiling using bioorthogonal chemical probes that selectively react with certain amino acids is now a widely used method in life sciences to investigate enzymatic activities, study posttranslational modifications and discover novel covalent inhibitors. Over the past two decades, researchers have developed selective probes for several different amino acids, including lysine, serine, cysteine, threonine, tyrosine, aspartate and glutamate. Among these amino acids, cysteines are particularly interesting due to their highly diverse and complex biochemical role in our cells. In this feature article, we focus on the chemical probes and methods used to study cysteines in complex proteomes.
Collapse
Affiliation(s)
- Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | | | |
Collapse
|
8
|
Selective glycosidase inhibitors: A patent review (2012–present). Int J Biol Macromol 2018; 111:82-91. [DOI: 10.1016/j.ijbiomac.2017.12.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023]
|
9
|
Jain N, Attia MA, Offen WA, Davies GJ, Brumer H. Synthesis and application of a highly branched, mechanism-based 2-deoxy-2-fluoro-oligosaccharide inhibitor of endo-xyloglucanases. Org Biomol Chem 2018; 16:8732-8741. [DOI: 10.1039/c8ob02250j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Xyloglucan (XyG) is a complex polysaccharide that is ubiquitous and often abundant in the cell walls of terrestrial plants.
Collapse
Affiliation(s)
- Namrata Jain
- Michael Smith Laboratories
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Mohamed A. Attia
- Michael Smith Laboratories
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | | | | | - Harry Brumer
- Michael Smith Laboratories
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
10
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
11
|
Caramia S, Gatius AGM, dal Piaz F, Gaja D, Hochkoeppler A. Dual role of imidazole as activator/inhibitor of sweet almond ( Prunus dulcis) β-glucosidase. Biochem Biophys Rep 2017; 10:137-144. [PMID: 28955741 PMCID: PMC5614632 DOI: 10.1016/j.bbrep.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022] Open
Abstract
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1-5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125-0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125-0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.
Collapse
Affiliation(s)
- Sara Caramia
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Angela Gala Morena Gatius
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Fabrizio dal Piaz
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Denis Gaja
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
12
|
Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 2015; 71:297-338. [PMID: 25480507 DOI: 10.1016/b978-0-12-800128-8.00004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article covers recent developments in the design and application of activity-based probes (ABPs) for glycosidases, with emphasis on the different enzymes involved in metabolism of glucosylceramide in humans. Described are the various catalytic reaction mechanisms employed by inverting and retaining glycosidases. An understanding of catalysis at the molecular level has stimulated the design of different types of ABPs for glycosidases. Such compounds range from (1) transition-state mimics tagged with reactive moieties, which associate with the target active site—forming covalent bonds in a relatively nonspecific manner in or near the catalytic pocket—to (2) enzyme substrates that exploit the catalytic mechanism of retaining glycosidase targets to release a highly reactive species within the active site of the enzyme, to (3) probes based on mechanism-based, covalent, and irreversible glycosidase inhibitors. Some applications in biochemical and biological research of the activity-based glycosidase probes are discussed, including specific quantitative visualization of active enzyme molecules in vitro and in vivo, and as strategies for unambiguously identifying catalytic residues in glycosidases in vitro.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Tom Wennekes
- Department of Synthetic Organic Chemistry, Wageningen University, Wageningen, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
A stereoselective transformation of (−)-shikimic acid into (3R,4S,5R,7R)-7-(hydroxymethyl)azepane-3,4,5-triol, a potential glycosidase inhibitor. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Chen R, Dawson DW, Pan S, Ottenhof NA, de Wilde RF, Wolfgang CL, May DH, Crispin DA, Lai LA, Lay AR, Waghray M, Wang S, McIntosh MW, Simeone DM, Maitra A, Brentnall TA. Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma. J Transl Med 2015; 95:43-55. [PMID: 25347153 PMCID: PMC4281293 DOI: 10.1038/labinvest.2014.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/06/2014] [Accepted: 08/30/2014] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated.
Collapse
Affiliation(s)
- Ru Chen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David W Dawson
- 1] Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA [2] Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Niki A Ottenhof
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roeland F de Wilde
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Damon H May
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, WA, USA
| | - David A Crispin
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Anna R Lay
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Meghna Waghray
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Shouli Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou, China
| | - Martin W McIntosh
- Fred Hutchinson Cancer Research Center, Molecular Diagnostics Program, Seattle, WA, USA
| | - Diane M Simeone
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Anirban Maitra
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
16
|
Brás NF, Cerqueira NMFSA, Ramos MJ, Fernandes PA. Glycosidase inhibitors: a patent review (2008 – 2013). Expert Opin Ther Pat 2014; 24:857-74. [DOI: 10.1517/13543776.2014.916280] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
|
18
|
Liu SW, Li YK. Expression, Purification and Characterization of Human α-l-Fucosidase. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. C-(α-d-Glucopyranosyl)-phenyldiazomethanes—irreversible inhibitors of α-glucosidase. Bioorg Med Chem 2013; 21:4793-802. [DOI: 10.1016/j.bmc.2013.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/10/2013] [Accepted: 05/28/2013] [Indexed: 11/25/2022]
|
20
|
Walvoort MTC, van der Marel GA, Overkleeft HS, Codée JDC. On the reactivity and selectivity of donor glycosides in glycochemistry and glycobiology: trapped covalent intermediates. Chem Sci 2013. [DOI: 10.1039/c2sc21610h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Mechanistic insights into the inhibition of endo-β 1,4 xyloglucan hydrolase by a classical aspartic protease inhibitor. J Fluoresc 2012; 23:311-21. [PMID: 23212130 DOI: 10.1007/s10895-012-1149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
This is the first report of inactivation of xyloglucanase from Thermomonospora sp by pepstatin A, a specific inhibitor towards aspartic proteases. The steady state kinetics revealed a reversible, competitive, two-step inhibition mechanism with IC 50 and K i values of 3.5 ± 0.5 μM and 1.25 ± 0.5 μM respectively. The rate constants determined for the isomerization of EI to EI(*) and the dissociation of EI* were 14.5 ± 1.5 × 10(-5) s(-1) and 2.85 ± 1.2 × 10(-8) s(-1) respectively, whereas the overall inhibition constant K i(*) was 27 ± 1 nM. The conformational changes induced upon inhibitor binding to xyloglucanase were monitored by fluorescence analysis and the rate constants derived were in agreement with the kinetic data. The abolished isoindole fluorescence of o-phthalaldehyde (OPTA)-labeled xyloglucanase and far UV analysis suggested that pepstatin binds to the active site of the enzyme. Our results revealed that the inactivation of xyloglucanase is due to the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis.
Collapse
|
22
|
Tiwari MK, Lee KM, Kalyani D, Singh RK, Kim H, Lee JK, Ramachandran P. Role of Glu445 in the substrate binding of β-glucosidase. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
The crystallization and structural analysis of cellulases (and other glycoside hydrolases): strategies and tactics. Methods Enzymol 2012; 510:141-68. [PMID: 22608725 DOI: 10.1016/b978-0-12-415931-0.00008-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The three-dimensional (3-D) structures of cellulases, and other glycoside hydrolases, are a central feature of research in carbohydrate chemistry and biochemistry. 3-D structure is used to inform protein engineering campaigns, both academic and industrial, which are typically used to improve the stability or activity of an enzyme. Examples of classical protein engineering goals include higher thermal stability, reduced metal-ion dependency, detergent and protease resistance, decreased product inhibition, and altered specificity. 3-D structure may also be used to interpret the behavior of enzyme variants that are derived from screening or random mutagenesis approaches, with a view to establishing an iterative design process. In other areas, 3-D structure is used as one of the many tools to probe enzymatic catalysis, typically dovetailing with physical organic chemistry approaches to provide complete reaction mechanisms for enzymes by visualizing catalytic site interactions at different stages of the reaction. Such mechanistic insight is not only fundamentally important, impacting on inhibitor and drug design approaches with ramifications way beyond cellulose hydrolysis, but also provides the framework for the design of enzyme variants to use as biocatalysts for the synthesis of bespoke oligosaccharides. Here we review some of the strategies and tactics that may be applied to the X-ray structure solution of cellulases (and other carbohydrate-active enzymes). The general approach is first to decide why you are doing the work, then to establish correct domain boundaries for truncated constructs (typically the catalytic domain only), and finally to pursue crystallization of pure, homogeneous, and monodisperse protein with appropriate ligand and additive combinations. Cellulase-specific strategies are important for the delineation of domain boundaries, while glycoside hydrolases generally also present challenges and opportunities for the selection and optimization of ligands to both aid crystallization, and also provide structural and mechanistic insight. As the many roles for plant cell wall degrading enzymes increase, so does the need for rapid high-quality structure determination to provide a sound structural foundation for understanding mechanism and specificity, and for future protein engineering strategies.
Collapse
|
24
|
Michikawa M, Ichinose H, Momma M, Biely P, Jongkees S, Yoshida M, Kotake T, Tsumuraya Y, Withers SG, Fujimoto Z, Kaneko S. Structural and biochemical characterization of glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum. J Biol Chem 2012; 287:14069-77. [PMID: 22367201 DOI: 10.1074/jbc.m112.346288] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.
Collapse
Affiliation(s)
- Mari Michikawa
- Food Biotechnology Division, National Agriculture and Food Research Organization Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Suzuki N, Kim YM, Fujimoto Z, Momma M, Okuyama M, Mori H, Funane K, Kimura A. Structural elucidation of dextran degradation mechanism by streptococcus mutans dextranase belonging to glycoside hydrolase family 66. J Biol Chem 2012; 287:19916-26. [PMID: 22337884 DOI: 10.1074/jbc.m112.342444] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dextranase is an enzyme that hydrolyzes dextran α-1,6 linkages. Streptococcus mutans dextranase belongs to glycoside hydrolase family 66, producing isomaltooligosaccharides of various sizes and consisting of at least five amino acid sequence regions. The crystal structure of the conserved fragment from Gln(100) to Ile(732) of S. mutans dextranase, devoid of its N- and C-terminal variable regions, was determined at 1.6 Å resolution and found to contain three structural domains. Domain N possessed an immunoglobulin-like β-sandwich fold; domain A contained the enzyme's catalytic module, comprising a (β/α)(8)-barrel; and domain C formed a β-sandwich structure containing two Greek key motifs. Two ligand complex structures were also determined, and, in the enzyme-isomaltotriose complex structure, the bound isomaltooligosaccharide with four glucose moieties was observed in the catalytic glycone cleft and considered to be the transglycosylation product of the enzyme, indicating the presence of four subsites, -4 to -1, in the catalytic cleft. The complexed structure with 4',5'-epoxypentyl-α-d-glucopyranoside, a suicide substrate of the enzyme, revealed that the epoxide ring reacted to form a covalent bond with the Asp(385) side chain. These structures collectively indicated that Asp(385) was the catalytic nucleophile and that Glu(453) was the acid/base of the double displacement mechanism, in which the enzyme showed a retaining catalytic character. This is the first structural report for the enzyme belonging to glycoside hydrolase family 66, elucidating the enzyme's catalytic machinery.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang R, Pan YT, He S, Lam M, Brayer GD, Elbein AD, Withers SG. Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis. J Biol Chem 2011; 286:35601-35609. [PMID: 21840994 DOI: 10.1074/jbc.m111.280362] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of α-aryl glucosides as well as α-glucosyl fluoride, thereby allowing facile, continuous assays. Reaction of TreS with 5-fluoroglycosyl fluorides results in the trapping of a covalent glycosyl-enzyme intermediate consistent with TreS being a member of the retaining glycoside hydrolase family 13 enzyme family, thus likely following a two-step, double displacement mechanism. This trapped intermediate was subjected to protease digestion followed by LC-MS/MS analysis, and Asp(230) was thereby identified as the catalytic nucleophile. The isomerization reaction was shown to be an intramolecular process by demonstration of the inability of TreS to incorporate isotope-labeled exogenous glucose into maltose or trehalose consistent with previous studies on other TreS enzymes. The absence of a secondary deuterium kinetic isotope effect and the general independence of k(cat) upon leaving group ability both point to a rate-determining conformational change, likely the opening and closing of the enzyme active site.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yuan T Pan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shouming He
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael Lam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gary D Brayer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Alan D Elbein
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
27
|
Gusakov AV, Semenova MV, Sinitsyn AP. Mass spectrometry in the study of extracellular enzymes produced by filamentous fungi. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810140030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, Ramsay RJ, Cutfield JF. Carbohydrate binding sites in Candida albicans exo-β-1,3-glucanase and the role of the Phe-Phe 'clamp' at the active site entrance. FEBS J 2010; 277:4549-61. [PMID: 20875088 DOI: 10.1111/j.1742-4658.2010.07869.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida albicans exo-β-1,3-glucanase (Exg; EC 3.2.1.58) is implicated in cell wall β-D-glucan remodelling through its glucosyl hydrolase and/or transglucosylase activities. A pair of antiparallel phenylalanyl residues (F144 and F258) flank the entrance to the active site pocket. Various Exg mutants were studied using steady-state kinetics and crystallography aiming to understand the roles played by these residues in positioning the β-1,3-D-glucan substrate. Mutations at the Phe-Phe entranceway demonstrated the requirement for double-sided CH/π interactions at the +1 subsite, and the necessity for phenylalanine rather than tyrosine or tryptophan. The Tyr-Tyr double mutations introduced ordered water molecules into the entranceway. A third Phe residue (F229) nearby was evaluated as a possible +2 subsite. The inactive double mutant E292S/F229A complexed with laminaritriose has provided the first picture of substrate binding to Exg and demonstrated how the Phe-Phe arrangement acts as a clamp at the +1 subsite. The terminal sugar at the -1 site showed displacement from the position of a monosaccharide analogue with interchange of water molecules and sugar hydroxyls. An unexpected additional glucose binding site, well removed from the active site, was revealed. This site may enable Exg to associate with the branched glucan structure of the C. albicans cell wall.
Collapse
Affiliation(s)
- Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
29
|
Gonçalves S, Borges N, Esteves AM, Victor BL, Soares CM, Santos H, Matias PM. Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase provides evidence for a second catalytic metal ion and new insight into the retaining mechanism of glycosyltransferases. J Biol Chem 2010; 285:17857-68. [PMID: 20356840 PMCID: PMC2878549 DOI: 10.1074/jbc.m109.095976] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/17/2010] [Indexed: 11/06/2022] Open
Abstract
Mannosyl-3-phosphoglycerate synthase is a glycosyltransferase involved in the two-step synthetic pathway of mannosylglycerate, a compatible solute that accumulates in response to salt and/or heat stresses in many microorganisms thriving in hot environments. The three-dimensional structure of mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27 in its binary complex form, with GDP-alpha-D-mannose and Mg(2+), shows a second metal binding site, about 6 A away from the mannose moiety. Kinetic and mutagenesis studies have shown that this metal site plays a role in catalysis. Additionally, Asp(167) in the DXD motif is found within van der Waals contact distance of the C1' atom in the mannopyranose ring, suggesting its action as a catalytic nucleophile, either in the formation of a glycosyl-enzyme intermediate according to the double-displacement S(N)2 reaction mechanism or in the stabilization of the oxocarbenium ion-like intermediate according to the D(N)*A(Nss) (S(N)i-like) reaction mechanism. We propose that either mechanism may occur in retaining glycosyltransferases with a GT-A fold, and, based on the gathered structural information, we identified an extended structural signature toward a common scaffold between the inverting and retaining glycosyltransferases.
Collapse
Affiliation(s)
- Susana Gonçalves
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Nuno Borges
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Ana M. Esteves
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Bruno L. Victor
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Cláudio M. Soares
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Helena Santos
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | - Pedro M. Matias
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| |
Collapse
|
30
|
Cobucci-Ponzano B, Aurilia V, Riccio G, Henrissat B, Coutinho PM, Strazzulli A, Padula A, Corsaro MM, Pieretti G, Pocsfalvi G, Fiume I, Cannio R, Rossi M, Moracci M. A new archaeal beta-glycosidase from Sulfolobus solfataricus: seeding a novel retaining beta-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase GBA2. J Biol Chem 2010; 285:20691-703. [PMID: 20427274 DOI: 10.1074/jbc.m109.086470] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate active enzymes (CAZymes) are a large class of enzymes, which build and breakdown the complex carbohydrates of the cell. On the basis of their amino acid sequences they are classified in families and clans that show conserved catalytic mechanism, structure, and active site residues, but may vary in substrate specificity. We report here the identification and the detailed molecular characterization of a novel glycoside hydrolase encoded from the gene sso1353 of the hyperthermophilic archaeon Sulfolobus solfataricus. This enzyme hydrolyzes aryl beta-gluco- and beta-xylosides and the observation of transxylosylation reactions products demonstrates that SSO1353 operates via a retaining reaction mechanism. The catalytic nucleophile (Glu-335) was identified through trapping of the 2-deoxy-2-fluoroglucosyl enzyme intermediate and subsequent peptide mapping, while the general acid/base was identified as Asp-462 through detailed mechanistic analysis of a mutant at that position, including azide rescue experiments. SSO1353 has detectable homologs of unknown specificity among Archaea, Bacteria, and Eukarya and shows distant similarity to the non-lysosomal bile acid beta-glucosidase GBA2 also known as glucocerebrosidase. On the basis of our findings we propose that SSO1353 and its homologs are classified in a new CAZy family, named GH116, which so far includes beta-glucosidases (EC 3.2.1.21), beta-xylosidases (EC 3.2.1.37), and glucocerebrosidases (EC 3.2.1.45) as known enzyme activities.
Collapse
|
31
|
Trincone A, Pagnotta E, Giordano A, Perugino G, Rossi M, Moracci M. Enzymatic Synthesis of 2-Deoxyglycosides Using the ß-Glycosidase of the ArchaeonSulfolobus solfataricus. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/1024242031000076224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Soliman MES, Ruggiero GD, Pernía JJR, Greig IR, Williams IH. Computational mutagenesis reveals the role of active-site tyrosine in stabilising a boat conformation for the substrate: QM/MM molecular dynamics studies of wild-type and mutant xylanases. Org Biomol Chem 2009; 7:460-8. [DOI: 10.1039/b814695k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
|
34
|
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 2008; 77:521-55. [PMID: 18518825 DOI: 10.1146/annurev.biochem.76.061005.092322] [Citation(s) in RCA: 1440] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosyltransferases catalyze glycosidic bond formation using sugar donors containing a nucleoside phosphate or a lipid phosphate leaving group. Only two structural folds, GT-A and GT-B, have been identified for the nucleotide sugar-dependent enzymes, but other folds are now appearing for the soluble domains of lipid phosphosugar-dependent glycosyl transferases. Structural and kinetic studies have provided new insights. Inverting glycosyltransferases utilize a direct displacement S(N)2-like mechanism involving an enzymatic base catalyst. Leaving group departure in GT-A fold enzymes is typically facilitated via a coordinated divalent cation, whereas GT-B fold enzymes instead use positively charged side chains and/or hydroxyls and helix dipoles. The mechanism of retaining glycosyltransferases is less clear. The expected two-step double-displacement mechanism is rendered less likely by the lack of conserved architecture in the region where a catalytic nucleophile would be expected. A mechanism involving a short-lived oxocarbenium ion intermediate now seems the most likely, with the leaving phosphate serving as the base.
Collapse
Affiliation(s)
- L L Lairson
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
35
|
Piens K, Fauré R, Sundqvist G, Baumann MJ, Saura-Valls M, Teeri TT, Cottaz S, Planas A, Driguez H, Brumer H. Mechanism-based Labeling Defines the Free Energy Change for Formation of the Covalent Glycosyl-enzyme Intermediate in a Xyloglucan endo-Transglycosylase. J Biol Chem 2008; 283:21864-72. [DOI: 10.1074/jbc.m803057200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Febbraio F, D'Andrea SE, Mandrich L, Merone L, Rossi M, Nucci R, Manco G. Irreversible inhibition of the thermophilic esterase EST2 from Alicyclobacillus acidocaldarius. Extremophiles 2008; 12:719-28. [PMID: 18622571 DOI: 10.1007/s00792-008-0179-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 06/18/2008] [Indexed: 12/18/2022]
Abstract
Kinetic studies of irreversible inhibition in recent years have received growing attention owing to their relevance to problems of basic scientific interest as well as to their practical importance. Our studies have been devoted to the characterization of the effects that well-known acetylcholinesterase irreversible inhibitors exert on a carboxylesterase (EST2) from the thermophilic eubacterium Alicyclobacillus acidocaldarius. In particular, sulfonyl inhibitors and the organophosphorous insecticide diethyl-p-nitrophenyl phosphate (paraoxon) have been studied. The incubation of EST2 with sulfonyl inhibitors resulted in a time-dependent inactivation according to a pseudo-first-order kinetics. On the other hand, the EST2 inactivation process elicited by paraoxon, being the inhibition reaction completed immediately after the inhibitor addition, cannot be described as a pseudo-first-order kinetics but is better considered as a high affinity inhibition. The values of apparent rate constants for paraoxon inactivation were determined by monitoring the enzyme/substrate reaction in the presence of the inhibitor, and were compared with those of the sulfonyl inhibitors. The protective effect afforded by a competitive inhibitor on the EST2 irreversible inhibition, and the reactivation of a complex enzyme/irreversible-inhibitor by hydroxylamine and 2-PAM, were also investigated. The data have been discussed in the light of the recently described dual substrate binding mode of EST2, considering that the irreversible inhibitors employed were able to discriminate between the two different binding sites.
Collapse
Affiliation(s)
- Ferdinando Febbraio
- Istituto di Biochimica delle Proteine, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rempel BP, Withers SG. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 2008; 18:570-86. [PMID: 18499865 DOI: 10.1093/glycob/cwn041] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycoside hydrolases are important enzymes in a number of essential biological processes. Irreversible inhibitors of this class of enzyme have attracted interest as probes of both structure and function. In this review we discuss some of the compounds used to covalently modify glycosidases, their use in residue identification, structural and mechanistic investigations, and finally their applications, both in vitro and in vivo, to complex biological systems.
Collapse
Affiliation(s)
- Brian P Rempel
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
38
|
Aldonolactones as chiral synthons. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/bfb0119255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Goedl C, Schwarz A, Mueller M, Brecker L, Nidetzky B. Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and alpha,alpha-trehalose phosphorylase. Carbohydr Res 2008; 343:2032-40. [PMID: 18346723 DOI: 10.1016/j.carres.2008.01.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 11/26/2022]
Abstract
Sucrose phosphorylase utilizes a glycoside hydrolase-like double displacement mechanism to convert its disaccharide substrate and phosphate into alpha-d-glucose 1-phosphate and fructose. Site-directed mutagenesis was employed to characterize the proposed roles of Asp(196) and Glu(237) as catalytic nucleophile and acid-base, respectively, in the reaction of sucrose phosphorylase from Leuconostoc mesenteroides. The side chain of Asp(295) is suggested to facilitate the catalytic steps of glucosylation and deglucosylation of Asp(196) through a strong hydrogen bond (23 kJ/mol) with the 2-hydroxyl of the glucosyl oxocarbenium ion-like species believed to be formed in the transition states flanking the beta-glucosyl enzyme intermediate. An assortment of biochemical techniques used to examine the mechanism of alpha-retaining glucosyl transfer by Schizophyllum commune alpha,alpha-trehalose phosphorylase failed to provide evidence in support of a similar two-step catalytic reaction via a covalent intermediate. Mutagenesis studies suggested a putative active-site structure for this trehalose phosphorylase that is typical of retaining glycosyltransferases of fold family GT-B and markedly different from that of sucrose phosphorylase. While ambiguity remains regarding the chemical mechanism by which the trehalose phosphorylase functions, the two disaccharide phosphorylases have evolved strikingly different reaction coordinates to achieve catalytic efficiency and stereochemical control in their highly analogous substrate transformations.
Collapse
Affiliation(s)
- Christiane Goedl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
40
|
Celen S, Deroose C, de Groot T, Chitneni SK, Gijsbers R, Debyser Z, Mortelmans L, Verbruggen A, Bormans G. Synthesis and evaluation of 18F- and 11C-labeled phenyl-galactopyranosides as potential probes for in vivo visualization of LacZ gene expression using positron emission tomography. Bioconjug Chem 2008; 19:441-9. [PMID: 18179161 DOI: 10.1021/bc700216d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3-Hydroxy-2-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside, a derivative of the chromogenic beta-galactosidase (beta-gal) substrate o-nitrophenyl beta-D-galactopyranoside (ONPG) was synthesized using a Koenigs-Knorr glycosylation reaction. It was alkylated with 2-[(18)F]fluoroethyl triflate or [(11)C]methyl triflate, followed by deacetylation of the sugar hydroxyl groups to obtain radiolabeled 3-(2'-[(18)F]fluoroethoxy)-2-nitrophenyl beta-D-galactopyranoside ([(18)F]-2c) and 3-[(11)C]methoxy-2-nitrophenyl beta- d-galactopyranoside ([(11)C]-3c), which were evaluated as potential reporter probes for in vivo visualization of LacZ gene expression with positron emission tomography (PET). In vitro, [(18)F]- 2c and [(11)C]-3c were good substrates of beta-gal and showed, respectively, a 7.5- and 2.5-fold higher uptake into beta-gal expressing cells (LacZ cells) compared to control cells. However, reversed-phase HPLC analysis of the LacZ cell lysate and supernatant showed that labeled 3-(2'-[(18)F]fluoroethoxy)-2-nitrophenol, the hydrolysis product formed by beta-gal-mediated cleavage of [(18)F]-2c, substantially leaked out of the cells, which would lead to loss of PET signal. In a microPET study of [(18)F]-2c in a mouse with a beta-gal expressing tumor, high retention was observed in liver and kidneys, but only negligible accumulation was seen in the tumor. As a general conclusion, it can be stated that the synthesized PET tracers [ (18)F]-2c and [(11)C]-3c are not suitable for use as LacZ reporter probes. Further structural modifications to improve the diffusion over the tumor cell membrane and to increase retention in beta-gal expressing cells may lead to more favorable in vivo imaging probes.
Collapse
Affiliation(s)
- Sofie Celen
- Laboratory for Radiopharmacy, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Michael J Evans
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Wan CF, Chen WH, Chen CT, Chang MT, Lo LC, Li YK. Mutagenesis and mechanistic study of a glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Trichoderma koningii. Biochem J 2007; 401:551-8. [PMID: 17002602 PMCID: PMC1820808 DOI: 10.1042/bj20060717] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/17/2022]
Abstract
A GH (glycoside hydrolase) family 54 alpha-L-arabinofuranosidase from Trichoderma koningii G-39 (termed Abf) was successfully expressed in Pichia pastoris and purified to near homogeneity by cation-exchange chromatography. To determine the amino acid residues essential for the catalytic activity of Abf, extensive mutagenesis of 24 conserved glutamate and aspartate residues was performed. Among the mutants, D221N, E223Q and D299N were found to decrease catalytic activity significantly. The kcat values of the D221N and D299N mutants were 7000- and 1300-fold lower respectively, than that of the wild-type Abf. E223Q was nearly inactive. These results are consistent with observations obtained from the Aspergillus kawachii alpha-L-arabinofuranosidase three-dimensional structure. This structure indicates that Asp221 of T. koningii Abf is significant for substrate binding and that Glu223 as well as Asp299 function as a nucleophile and a general acid/base catalyst for the enzymatic reaction respectively. The catalytic mechanism of wild-type Abf was further investigated by NMR spectroscopy and kinetic analysis. The results showed that Abf is a retaining enzyme. It catalyses the hydrolysis of various substrates via the formation of a common intermediate that is probably an arabinosyl-enzyme intermediate. A two-step, double-displacement mechanism involving first the formation, and then the breakdown, of an arabinosyl-enzyme intermediate was proposed. Based on the kcat values of a series of aryl-alpha-L-arabinofuranosides catalytically hydrolysed by wild-type Abf, a relatively small Brønsted constant, beta(lg)=-0.18, was obtained, suggesting that the rate-limiting step of the enzymatic reaction is the dearabinosylation step. Further kinetic studies with the D299G mutant revealed that the catalytic activity of this mutant depended largely on the pK(a) values (>6) of leaving phenols, with beta(lg)=-1.3, indicating that the rate-limiting step of the reaction becomes the arabinosylation step. This kinetic outcome supports the idea that Asp299 is the general acid/base residue. The pH activity profile of D299N provided further evidence strengthening this suggestion.
Collapse
Key Words
- α-l-arabinofuranosidase
- brønsted plot
- catalytic mechanism
- glycoside hydrolase
- site-directed mutagenesis
- trichoderma koningii
- abf, glycoside hydrolase family 54 α-l-arabinofuranosidase from trichoderma koningii g-39
- gh, glycoside hydrolase
- cnpaf, 4-chloro-2-nitrophenyl-α-l-arabinofuranoside
- 2,5-dnpaf, 2,5-dinitrophenyl-α-l-arabinofuranoside
- maf, methyl-α-l-arabinofuranoside
- mnpaf, m-nitrophenyl-α-l-arabinofuranoside
- paf, phenyl-α-l-arabinofuranoside
- pcpaf, p-cyanophenyl-α-l-arabinofuranoside
- pnpaf, p-nitrophenyl-α-l-arabinofuranoside
- p.p.m., parts per million
Collapse
Affiliation(s)
- Chin-Feng Wan
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Hong Chen
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Ta Chen
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | | | - Lee-Chiang Lo
- ‡Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yaw-Kuen Li
- *Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
43
|
Bogas AC, Watanabe MAE, Barbosa A, Vilas-Boas LA, Bonatto AC, Dekker R, Souza EM, Fungaro MHP. Structural characterization of the bglH gene encoding a beta-glucosidase-like enzyme in an endophytic Bacillus pumilus strain. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Yoon SH, Bruce Fulton D, Robyt JF. Formation of covalent β-linked carbohydrate–enzyme intermediates during the reactions catalyzed by α-amylases. Carbohydr Res 2007; 342:55-64. [PMID: 17123489 DOI: 10.1016/j.carres.2006.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/26/2006] [Accepted: 10/30/2006] [Indexed: 11/16/2022]
Abstract
Porcine pancreatic and Bacillus amyloliquefaciens alpha-amylases were examined for the formation of covalent carbohydrate intermediates during reaction. The enzymes were precipitated and denatured by adding 10 volumes of acetone. When these denatured enzymes were mixed with methyl alpha-6-[(3)H]-maltooligosaccharide glycosides and chromatographed on BioGel P-2, no carbohydrate was found in the protein void volume peak. When the enzymes were added to the methyl alpha-6-[(3)H]-maltooligosaccharide glycosides and allowed to react for 15s at 1 degrees C and then precipitated and denatured with 10 volumes of acetone, (3)H-labeled carbohydrates were found in the BioGel P-2 protein void volume peak, indicating the formation of enzyme-carbohydrate covalent intermediates. (1)H NMR analysis of the denatured enzyme from the reaction with methyl alpha-maltooligosaccharide glycosides confirmed that carbohydrate was attached to the denatured enzyme. (1)H NMR saturation-transfer analysis further showed that the carbohydrate was attached to the denatured enzyme by a beta-configuration. This configuration is what would be expected for an enzyme that catalyzes the hydrolysis of alpha-(1-->4) glycosidic linkages by a two-step, S(N)2 double-displacement reaction to give retention of the alpha-configuration of the substrates at the reducing-end of the products.
Collapse
Affiliation(s)
- Seung-Heon Yoon
- Laboratory of Carbohydrate Chemistry and Enzymology, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
45
|
Katapodis P, Nerinckx W, Claeyssens M, Christakopoulos P. Purification and characterization of a thermostable intracellular β-xylosidase from the thermophilic fungus Sporotrichum thermophile. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Balakrishnan H, Satyanarayana L, Gaikwad S, Suresh C. Structural and active site modification studies implicate Glu, Trp and Arg in the activity of xylanase from alkalophilic Bacillus sp. (NCL 87-6-10). Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Ferrer M, Golyshina OV, Plou FJ, Timmis KN, Golyshin PN. A novel alpha-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem J 2006; 391:269-76. [PMID: 15954864 PMCID: PMC1276924 DOI: 10.1042/bj20050346] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferroplasma acidiphilum strain Y (DSM 12658), a ferrous iron-oxidizing, acidophilic and mesophilic archaeon, was found to produce a membrane-bound alpha-glucosidase (alphaGluFa) showing no significant similarity to any of the known glycoside hydrolases classified in different families and having an unusual catalytic site consisting of a threonine and a histidine residue. The highest alpha-glucosidase activity was found at low pH, 2.4-3.5, and the substrate preference order was: sucrose>maltose>maltotriose >>maltotetraose>>malto-oligosaccharides from maltopentaose to maltoheptaose>>>soluble starch (kcat/K(m) was 293.0, 197.0, 18.8, 0.3 and 0.02 s(-1) x mM(-1) respectively). The enzyme was able to transfer glucosyl groups from maltose as donor, to produce exclusively maltotriose (up to 300 g/l). Chemical modification and electrospray ionization MS analysis of 5-fluoro-alpha-D-glucopyranosyl-enzyme derivatives, coupled with site-directed mutagenesis, strongly suggested that the putative catalytic nucleophile in this enzyme is Thr212. Iron was found to be essential for enzyme activity and integrity, and His390 was shown to be essential for iron binding. These results suggest that the metalloenzyme alphaGluFa is a new member of the glycosyl hydrolase family that uses a novel mechanism for sugar glycosylation and/or transglycosylation.
Collapse
Affiliation(s)
- Manuel Ferrer
- Department of Microbiology, German Research Centre for Biotechnology (GFB), Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
48
|
Hinou H, Kurogochi M, Nishimura SI. Mechanism‐Based Inhibitors to Probe Transitional States of Glycoside Hydrolases. Methods Enzymol 2006; 415:202-12. [PMID: 17116476 DOI: 10.1016/s0076-6879(06)15013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent structural and kinetic studies indicate that glycosidases (glycoside hydrolases) change the peripheral structure of their catalytic sites dynamically to trim glycan structures. Inhibitors that label specific amino acid residues in the active site of these enzymes based on its mechanism of action are powerful tools to probe such a hidden transitional state. This chapter describes methods of mechanism-based irreversible inhibitors having fluorescence tags, including synthesis, inhibitory assay, rapid separation of the peptides containing labeled residues using antibody column, and proteomic analysis of key amino acid residues using matrix-assisted laser desorption/ionization-time-of-flight (TOF)/TOF mass spectrometry.
Collapse
Affiliation(s)
- Hiroshi Hinou
- Hokkaido University, Graduate School of Advanced Life Science, Sapporo, Japan
| | | | | |
Collapse
|
49
|
Hommalai G, Chaiyen P, Svasti J. Studies on the transglucosylation reactions of cassava and Thai rosewood β-glucosidases using 2-deoxy-2-fluoro-glycosyl-enzyme intermediates. Arch Biochem Biophys 2005; 442:11-20. [PMID: 16139237 DOI: 10.1016/j.abb.2005.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Beta-glucosidases from cassava and Thai rosewood can synthesize a variety of alkyl glucosides using various alcohols as glucosyl acceptors for transglucosylation. Both enzymes were inactivated by 2-deoxy-2-fluoro-sugar analogues to form the covalent glycosyl-enzyme intermediates, indicating that the reaction mechanism was of the double-replacement type. The trapped enzyme intermediates were used for investigating transglucosylation specificity, by measuring the rate of reactivation by various alcohols. The glucosyl-enzyme intermediate from the cassava enzyme showed a 20- to 120-fold higher rate of glucose transfer to alcohols than the glucosyl-enzyme intermediate from the Thai rosewood enzyme. Kinetic analysis indicated that the aglycone binding site of the cassava enzyme was hydrophobic, since the enzyme bound better to more hydrophobic alcohols and showed poor transfer of glucose to hydrophilic sugars. With butanol, transglucosylation was faster with the primary alcohols than with the secondary or tertiary alcohol. Studies with ethanol and chloro-substituted ethanols indicated that the rate of transglucosylation was significantly faster with alcohols with lower pKa values, where the reactive alkoxide was more readily generated, indicating that the formation of the alkoxide species was a major step governing the formation of the transition state in the cassava enzyme.
Collapse
Affiliation(s)
- Greanggrai Hommalai
- Department of Biochemistry, Center for Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
50
|
Barglow KT, Cravatt BF. Discovering disease-associated enzymes by proteome reactivity profiling. ACTA ACUST UNITED AC 2005; 11:1523-31. [PMID: 15556003 DOI: 10.1016/j.chembiol.2004.08.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/10/2004] [Accepted: 08/17/2004] [Indexed: 11/20/2022]
Abstract
Proteomics aims to identify new markers and targets for the diagnosis and treatment of human disease. To realize this goal, methods and reagents are needed to profile proteins based on their functional properties, rather than mere abundance. Here, we describe a general strategy for synthesizing and evaluating structurally diverse libraries of activity-based proteomic probes. Quantitative screening of probe-proteome reactions coupled with bioinformatic analysis enabled the selection of a suite of probes that exhibit complementary protein reactivity profiles. This optimal probe set was applied to discover several enzyme activities differentially expressed in lean and obese (ob/ob) mice. Interestingly, one of these enzymes, hydroxypyruvate reductase, which was 6-fold upregulated in ob/ob livers, participates in the conversion of serine to glucose, suggesting that this unusual metabolic pathway may contribute to gluconeogenesis selectively in states of obesity.
Collapse
Affiliation(s)
- Katherine T Barglow
- The Skaggs Institute for Chemical Biology and Department of Cell Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|