1
|
Melnik LI, Garry RF. Enterotoxigenic Escherichia coli Heat-Stable Toxin and Ebola Virus Delta Peptide: Similarities and Differences. Pathogens 2022; 11:pathogens11020170. [PMID: 35215114 PMCID: PMC8878840 DOI: 10.3390/pathogens11020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) STb toxin exhibits striking structural similarity to Ebola virus (EBOV) delta peptide. Both ETEC and EBOV delta peptide are enterotoxins. Comparison of the structural and functional similarities and differences of these two toxins illuminates features that are important in induction of pathogenesis by a bacterial and viral pathogen.
Collapse
Affiliation(s)
- Lilia I. Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Viral Hemorrhagic Fever Consortium, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +1-(504)988-3818
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Viral Hemorrhagic Fever Consortium, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
3
|
Bisset SW, Yang SH, Amso Z, Harris PWR, Patchett ML, Brimble MA, Norris GE. Using Chemical Synthesis to Probe Structure-Activity Relationships of the Glycoactive Bacteriocin Glycocin F. ACS Chem Biol 2018; 13:1270-1278. [PMID: 29701461 DOI: 10.1021/acschembio.8b00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycocin F, a bacteriocin produced by Lactobacillus plantarum KW30, is glycosylated with two N-acetyl-d-glucosamine sugars, and has been shown to exhibit a rapid and reversible bacteriostasis on susceptible cells. The roles of certain structural features of glycocin F have not been studied to date. We report here the synthesis of various glycocin F analogues through solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL), allowing us to probe the roles of different structural features of this peptide. Our results indicate that the bacteriostatic activity of glycocin F is controlled by the glycosylated interhelical loop, while the glycosylated flexible tail appears to be involved in localizing the peptide to its cellular target.
Collapse
Affiliation(s)
- Sean W. Bisset
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Zaid Amso
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Paul W. R. Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Mark L. Patchett
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
| | - Margaret A. Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
| | - Gillian E. Norris
- Institute of Fundamental Sciences, Massey University, Colombo Rd, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, New Zealand
| |
Collapse
|
4
|
Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc Natl Acad Sci U S A 2017; 114:12572-12577. [PMID: 29109272 DOI: 10.1073/pnas.1712153114] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MacB is an ABC transporter that collaborates with the MacA adaptor protein and TolC exit duct to drive efflux of antibiotics and enterotoxin STII out of the bacterial cell. Here we present the structure of ATP-bound MacB and reveal precise molecular details of its mechanism. The MacB transmembrane domain lacks a central cavity through which substrates could be passed, but instead conveys conformational changes from one side of the membrane to the other, a process we term mechanotransmission. Comparison of ATP-bound and nucleotide-free states reveals how reversible dimerization of the nucleotide binding domains drives opening and closing of the MacB periplasmic domains via concerted movements of the second transmembrane segment and major coupling helix. We propose that the assembled tripartite pump acts as a molecular bellows to propel substrates through the TolC exit duct, driven by MacB mechanotransmission. Homologs of MacB that do not form tripartite pumps, but share structural features underpinning mechanotransmission, include the LolCDE lipoprotein trafficking complex and FtsEX cell division signaling protein. The MacB architecture serves as the blueprint for understanding the structure and mechanism of an entire ABC transporter superfamily and the many diverse functions it supports.
Collapse
|
5
|
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:355-366. [PMID: 27155131 DOI: 10.1016/j.addr.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The oral route is the preferred for the administration of drugs; however, it has some serious limitations. One of the main disadvantages is poor permeability across the intestinal barrier. Various approaches are currently being adopted to overcome this issue. In this review, we describe the alternatives that use peptides to enhance intestinal absorption. First, we define the various sources of peptide enhancers followed by the analysis of the absorption mechanism used. We then comment on the possible toxic effects derived from their use as permeation enhancers, as well as potential formulation strategies. Finally, the advantages and drawbacks of peptides as intestinal enhancers are examined.
Collapse
|
6
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun 2013; 81:2819-27. [PMID: 23716609 DOI: 10.1128/iai.00455-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli heat-stable toxin b (STb) causes diarrhea in animals. STb binds to sulfatide, its receptor, and is then internalized. In the cytoplasm, through a cascade of events, STb triggers the opening of ion channels, allowing ion secretion and water loss and leading to diarrhea. Tight junctions (TJs) are well known for controlling paracellular traffic of ions and water by forming a physical intercellular barrier in epithelial cells, and some bacterial toxins are known to affect adversely TJs. The present study aimed at determining the effect of STb on TJs. T84 cells were treated for 24 h with purified STb and a nontoxic STb mutant (D30V). Transepithelial resistance (TER), paracellular flux marker, and confocal microscopy were used to analyze the effect of STb on TJs. Purified STb caused a significant reduction of TER parallel to an increase in paracellular permeability compared to the results seen in untreated cells or mutant D30V. The increased paracellular permeability was associated with a marked alteration of F-actin stress fibers. F-actin filament dissolution and condensation were accompanied by redistribution and/or fragmentation of ZO-1, claudin-1, and occludin. These changes were also observed following treatment of T84 cells with an 8-amino-acid peptide found in the STb sequence corresponding to a consensus sequence of Vibrio cholerae Zot toxin. These effects were not observed with a scrambled peptide or mutant D30V. Our findings indicate that STb induces epithelial barrier dysfunction through changes in TJ proteins that could contribute to diarrhea.
Collapse
|
8
|
Syed HC, Dubreuil JD. Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines. Microb Pathog 2012; 53:147-53. [DOI: 10.1016/j.micpath.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/12/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022]
|
9
|
Biochemical and biological characterization of Escherichia coli STb His12 to Asn variant. Toxicon 2011; 59:300-5. [PMID: 22155058 DOI: 10.1016/j.toxicon.2011.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
Abstract
We identified a variant of Escherichia coli STb toxin by PCR amplification of clinical isolates obtained from diseased pigs. The variant differed by only one amino acid at position 12 from His to Asn. This change was observed in 23 of the 100 randomly selected enterotoxigenic E. coli (ETEC) isolates tested. There was a positive correlation between the presence of the STa enterotoxin and the STb variant. As the variant represented a high percentage of the ETEC strains tested, we were interested in determining if the single amino acid change results in altered biological characteristics of the toxin. Circular dichroism analysis revealed that the secondary structure of the variant was similar to wildtype and that their thermal stabilities were similar. Surface plasmon resonance showed that the variant and the wildtype toxins possessed similar binding affinities for sulfatide but the variant exhibited a reduced binding capacity. A flow cytometry-based internalization assay showed that the variant toxin is more internalized into epithelial intestinal cells than the wildtype strain. However, this difference was minor. Overall, our results indicate that while wildtype STb and the variant share similar structural properties, modest differences exist in their internalization.
Collapse
|
10
|
Albert MA, Kojic LD, Nabi IR, Dubreuil JD. Cell type-dependent internalization of the Escherichia coli STb enterotoxin. ACTA ACUST UNITED AC 2011; 61:205-17. [PMID: 21204997 DOI: 10.1111/j.1574-695x.2010.00765.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have suggested that internalization of the Escherichia coli STb enterotoxin in human and rat intestinal epithelial cells is involved in STb pathogenesis, but toxin uptake in porcine jejunum epithelium, the in vivo target tissue, still remains elusive. Using flow cytometry, we studied the internalization of fluorescein isothiocyanate-labelled STb in porcine intestinal epithelial IPEC-J2 and murine fibroblast NIH-3T3 cell lines. In contrast to the selective pronase resistance of STb in NIH-3T3 cells at 37 °C, but not at 4 °C, indicative of toxin internalization, most of the toxin was pronase-sensitive at both temperatures in IPEC-J2 cells, indicating reduced uptake, but significant cell surface binding. Actin reorganization is required for STb internalization by NIH-3T3 cells, confirming STb endocytosis in these cells. The toxin receptor, sulfatide, could not explain these internalization differences because both cell lines possessed surface sulfatide and internalized antisulfatide antibodies over time at 37 °C. Inhibition of lipid rafts endocytosis, known to contain sulfatide, with methyl-β-cyclodextrin or genistein, did not influence toxin uptake by either cell line. STb internalization is therefore differentially regulated depending on the cell type, possibly by factors other than sulfatide. Although a small STb fraction could be internalized by porcine intestinal epithelial cells, our findings suggest the ability of STb to induce, from the cell surface, intracellular signalling leading to fluid secretion in porcine intestinal epithelium.
Collapse
Affiliation(s)
- Marie-Astrid Albert
- Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, QC, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
Escherichia coli enterotoxigenic strains produce one or more toxins which action result in production of diarrhea in animals including Man. One of these toxins, STb, has been mainly associated with colibacillosis in swine. Although highly prevalent in pigs with diarrhea, a relation between STb and disease was arduous to establish. With the recent recognition of a new adhesin, originally found in human E. coli isolates, named AIDA (adhesin involved in diffuse adherence) and its association with new E. coli pathotypes to which STb is linked, new light was shed on STb toxic potency. In this review, the association of STb and AIDA is examined according to the recent knowledge gained with newly described E. coli pathotypes.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
12
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
13
|
|
14
|
MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 2008; 190:7693-8. [PMID: 18805970 DOI: 10.1128/jb.00853-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli is an extracellular peptide toxin that evokes watery diarrhea in the host. Two types of STs, STI and STII, have been found. Both STs are synthesized as precursor proteins and are then converted to the active forms with intramolecular disulfide bonds after being released into the periplasm. The active STs are finally translocated across the outer membrane through a tunnel made by TolC. However, it is unclear how the active STs formed in the periplasm are led to the TolC channel. Several transporters in the inner membrane and their periplasmic accessory proteins are known to combine with TolC and form a tripartite transport system. We therefore expect such transporters to also act as a partner with TolC to export STs from the periplasm to the exterior. In this study, we carried out pulse-chase experiments using E. coli BL21(DE3) mutants in which various transporter genes (acrAB, acrEF, emrAB, emrKY, mdtEF, macAB, and yojHI) had been knocked out and analyzed the secretion of STs in those strains. The results revealed that the extracellular secretion of STII was largely decreased in the macAB mutant and the toxin molecules were accumulated in the periplasm, although the secretion of STI was not affected in any mutant used in this study. The periplasmic stagnation of STII in the macAB mutant was restored by the introduction of pACYC184, containing the macAB gene, into the cell. These results indicate that MacAB, an ATP-binding cassette transporter of MacB and its accessory protein, MacA, participates in the translocation of STII from the periplasm to the exterior. Since it has been reported that MacAB cooperates with TolC, we propose that the MacAB-TolC system captures the periplasmic STII molecules and exports the toxin molecules to the exterior.
Collapse
|
15
|
Taillon C, Nadeau E, Mourez M, Dubreuil JD. Heterogeneity of Escherichia coli STb enterotoxin isolated from diseased pigs. J Med Microbiol 2008; 57:887-890. [PMID: 18566148 DOI: 10.1099/jmm.0.2008/000281-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the presence and frequency of estB variant(s), a collection of 100 STb-positive enterotoxigenic Escherichia coli (ETEC) strains isolated from 1980 to 2007 inclusively and randomly selected from diseased pigs in Québec, Canada, was analysed. A wide diversity of virulence gene profiles (virotypes) was detected in the strain collection. The estB gene was amplified by PCR using primers designed from the signal sequence and the C-terminal end, and the amplified fragment was sequenced using the forward primer. The translated DNA sequence revealed a His(12)-->Asn change in 23 of the 100 ETEC isolates tested. The STb-variant strains were observed throughout the sampling period covered in the study. No other STb-variant type was found in this study. All 23 variant strains were also positive for the STa enterotoxin and were resistant to tetracycline, as for strain 2173. The STb variant was associated with Stx2-positive strains (5/6) and STa : STb strains that did not harbour any of the tested porcine fimbrial adhesins (13/17). The remaining variant strains were associated with fimbriae F4 (1/40), F5 (1/6), F6 (1/1) and F18 (2/7; excluding F18 : Stx2 strains).
Collapse
Affiliation(s)
- Christine Taillon
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada
| | - Eric Nadeau
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada
| | - Michaël Mourez
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada
| | - J Daniel Dubreuil
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 7C6, Canada
| |
Collapse
|
16
|
. JDD, . SP, . CG. Escherichia coli STb Enterotoxin Toxicity and Internalization Investigations: A Mini-Review. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jm.2007.209.215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Gonçalves C, Vachon V, Schwartz JL, Dubreuil JD. The Escherichia coli enterotoxin STb permeabilizes piglet jejunal brush border membrane vesicles. Infect Immun 2007; 75:2208-13. [PMID: 17307947 PMCID: PMC1865759 DOI: 10.1128/iai.01829-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-permeabilizing ability of the Escherichia coli enterotoxin STb was evaluated using brush border membrane vesicles isolated from piglet jejunum and a membrane-potential-sensitive fluorescent probe, 3,3'-dipropylthiadicarbocyanine iodide. A strong membrane potential was generated by the efflux of K+ ions from the vesicles in the presence of the potassium ionophore valinomycin. Under these conditions, preincubation of the vesicles with STb efficiently depolarized the membrane in a dose-dependent and saturable manner. This activity was independent of pH, however, at least between pH 5.5 and 8.0. On the other hand, in the absence of valinomycin, STb had no significant influence on the measured fluorescence levels, indicating that it was unable to modify the ionic selectivity of the intact membrane. In agreement with the fact that the integrity of the disulfide bridges of STb is known to be essential for its biological activity, a reduced and alkylated form of the toxin was unable to depolarize the membrane in the presence of valinomycin. Furthermore, two previously described poorly active STb mutants, M42S and K22A-K23A, showed no membrane-permeabilizing capacity. These results demonstrate for the first time that STb can permeabilize its target membrane and suggest that it does so by forming nonspecific pores.
Collapse
Affiliation(s)
- Carina Gonçalves
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte Street, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | | | | | | |
Collapse
|
18
|
Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TKS, Sato K, Tytgat J, Yu C, San BCC, Ranganathan S, Bowie HJ, Kini RM, Gopalakrishnakone P. kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. J Biol Chem 2002; 277:30040-7. [PMID: 12034709 DOI: 10.1074/jbc.m111258200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important and exciting challenge in the postgenomic era is to understand the functions of newly discovered proteins based on their structures. The main thrust is to find the common structural motifs that contribute to specific functions. Using this premise, here we report the purification, solution NMR, and functional characterization of a novel class of weak potassium channel toxins from the venom of the scorpion Heterometrus fulvipes. These toxins, kappa-hefutoxin1 and kappa-hefutoxin2, exhibit no homology to any known toxins. NMR studies indicate that kappa-hefutoxin1 adopts a unique three-dimensional fold of two parallel helices linked by two disulfide bridges without any beta-sheets. Based on the presence of the functional diad (Tyr(5)/Lys(19)) at a distance (6.0 +/- 1.0 A) comparable with other potassium channel toxins, we hypothesized its function as a potassium channel toxin. kappa-Hefutoxin 1 not only blocks the voltage-gated K(+)-channels, Kv1.3 and Kv1.2, but also slows the activation kinetics of Kv1.3 currents, a novel feature of kappa-hefutoxin 1, unlike other scorpion toxins, which are considered solely pore blockers. Alanine mutants (Y5A, K19A, and Y5A/K19A) failed to block the channels, indicating the importance of the functional diad.
Collapse
Affiliation(s)
- Kellathur N Srinivasan
- Venom and Toxin Research Programme, Faculty of Medicine, National University of Singapore, 4 Medical Dr., Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Beausoleil HE, Lépine F, Dubreuil JD. LC-MS analysis of pig intestine sulfatides: interaction with Escherichia coli STb enterotoxin and characterization of molecular species present. FEMS Microbiol Lett 2002; 209:183-8. [PMID: 12007803 DOI: 10.1111/j.1574-6968.2002.tb11129.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
STb, a 48-amino acid thermostable enterotoxin is produced by enterotoxigenic Escherichia coli strains and is responsible for diarrheal diseases in many animals, including man. Our laboratory recently identified a family of molecules, from a lipid extract of porcine intestinal epithelial cells, that could bind to STb. These molecules were identified as sulfatides as they reacted with a monoclonal antibody raised against this family of molecules. However, as the epitope recognized by this monoclonal antibody was the galactose 3-sulfate, a doubt could remain as to the exact nature of the identified receptors. The goal of this study was thus to confirm the chemical nature of the STb-binding molecule as sulfatides or as distinctive molecules comprising a sulfated galactosyl residue. Using a thin-layer chromatography-overlay method we confirmed using antibodies to STb that STb recognizes the commercial sulfatides and a band migrating at the same level from the intestinal tissue lipid extract obtained from an 8-week-old piglet. The compounds recovered from the silica gel plates were analyzed by mass spectrometry in electrospray negative-ionization mode. The most abundant ions observed had m/z values of 779, 795, 879 and 907. For commercial bovine brain sulfatides the ions 795, 879 and 907 have been attributed to hydroxylated sulfatides with a saturated fatty acid chain containing 16, 22 and 24 carbons, while the 779 ion contained a saturated fatty acid chain of 16 carbons. The general profile of the ions observed was similar to the already described commercial bovine brain sulfatides.
Collapse
Affiliation(s)
- Hans-Erick Beausoleil
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | | |
Collapse
|
20
|
Beausoleil HE, Labrie V, Dubreuil JD. Trypan blue uptake by chinese hamster ovary cultured epithelial cells: a cellular model to study Escherichia coli STb enterotoxin. Toxicon 2002; 40:185-91. [PMID: 11689240 DOI: 10.1016/s0041-0101(01)00222-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermostable enterotoxin b (STb) produced by enterotoxigenic Escherichia coli strains is responsible for diarrheal diseases mainly in weaning piglets. For now, the only available assay for biological activity of STb toxin was in the animal host (i.e. piglet) or in an animal model (i.e. rat, mouse). In this study, we developed a cellular model for the study of the biological activity of STb enterotoxin. Using a trypan blue vital stain method, we showed that STb-treated cells of three out of the five cell lines tested absorbed more vital stain than their controls. Of all the cell lines tested, the chinese hamster's ovary derivated cells (CHO) were the most sensitive, absorbing 50% more trypan blue than their control. Maximal stain uptake was observed after 2h. We then evaluated the trypan blue uptake for 16 STb mutants, produced in a previous work, on the CHO cell lines in order to compare it with the in vivo rat loop assay data. Interestingly, we observed a good correlation between the two bioassays. In fact, the biological activity observed in the rat could be correlated with the trypan blue uptake by the CHO cells (R(2)=0.78) for STb toxin and the 16 mutants. Using the variance analysis statistical test, we determined that the correlation between the two bioassays is significant (F(c)> or =F(0.005)). These results suggest that the trypan blue uptake bioassay could represent a new method to evaluate the biological activity and facilitate the elucidation of the mechanism of action of E. coli STb enterotoxin.
Collapse
Affiliation(s)
- Hans-Erick Beausoleil
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada J25 7C6
| | | | | |
Collapse
|
21
|
Okamoto K, Yamanaka H, Takeji M, Fuji Y. Region of heat-stable enterotoxin II of Escherichia coli involved in translocation across the outer membrane. Microbiol Immunol 2002; 45:349-55. [PMID: 11471822 DOI: 10.1111/j.1348-0421.2001.tb02630.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat-stable enterotoxin II of Escherichia coli (STII) is synthesized as a precursor form consisting of pre- and mature regions. The pre-region is cleaved off from the mature region during translocation across the inner membrane, and the mature region emerges in the periplasm. The mature region, composed of 48 amino acid residues, is processed in the periplasm by DsbA to form an intramolecular disulfide bond between Cys-10 and Cys-48 and between Cys-21 and Cys-36. STII formed with these disulfide bonds is efficiently secreted out of the cell through the secretory system, including TolC. However, it remains unknown which regions of STII are involved in interaction with TolC. In this study, we mutated the STII gene and examined the secretion of these STIIs into the culture supernatant. A deletion of the part covering from amino acid residue 37 to the carboxy terminal end did not markedly reduce the efficiency of secretion of STII into the culture supernatant. On the other hand, the efficiency of secretion of the peptide covering from the amino terminal end to position 18 to the culture supernatant was significantly low. These observations indicated that the central region of STII from amino acid residue 19 to that at position 36 is involved in the secretion of STII into the milieu. The experiment using a dsbA-deficient strain of E. coli showed that the disulfide bond between Cys-21 and Cys-36 by DsbA is necessary for STII to adapt to the structure that can cross the outer membrane.
Collapse
Affiliation(s)
- K Okamoto
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
22
|
Labrie V, Beausoleil HE, Harel J, Dubreuil JD. Binding to sulfatide and enterotoxicity of various Escherichia coli STb mutants. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3141-8. [PMID: 11700365 DOI: 10.1099/00221287-147-11-3141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Binding of the 48 amino acid polypeptide of the mature heat-stable Escherichia coli enterotoxin b (STb) to the functional receptor sulfatide (SFT) constitutes the first step in inducing secretory diarrhoea in the intestinal lumen of animals. The NMR structure of this toxin dictated the choice of amino acids for site-directed mutagenesis to delineate the binding site of STb to SFT. Amino acids facing the solvent either in the loop or the hydrophobic alpha-helix were selected. Seventeen site-specific mutants of STb toxin were produced and purified by high-pressure liquid chromatography. Enterotoxicity of the 17 mutants was determined using a rat loop assay and binding was evaluated using a microtitre plate binding assay. Both hydrophobic and electrostatic interactions are important for STb attachment. When mutations (F37K, I41S and M42S) were introduced into the hydrophobic alpha-helix to lessen hydrophobicity, binding activity and enterotoxicity decreased by more than sixfold. The loop defined by C21 and C36 also made specific contributions. Mutants generated at basic residues (K22, K23 and R29) within this region exhibited both reduced binding activities and reduced toxic activities. For all STb mutants constructed and analysed, when binding to SFT was reduced, a reduction in toxicity equivalent or greater was noted, indicating that binding to SFT is a step that precedes the toxic effect observed for STb toxin. Significantly, when the negatively charged D30 was substituted for either alanine or valine, the binding to SFT was about twice that of native STb, whereas the enterotoxicity was reduced by half.
Collapse
Affiliation(s)
- V Labrie
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, CP 5000, Saint-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | |
Collapse
|
23
|
Abstract
Bacteroides fragilis are both key commensals and important human pathogens. Particular strains of B. fragilis, termed enterotoxigenic B. fragilis (ETBF), are recently identified enteric pathogens of children and adults. These strains are distinguished by secretion of a 20kDa metalloprotease toxin (B. fragilis toxin or BFT), the first recognized and only established toxin to date for B. fragilis. Three isotypes of BFT are encoded by distinct bft loci contained within a 6kb chromosomal region unique to ETBF strains termed the B. fragilis pathogenicity island (BfPAI). Experimental studies have suggested that the cellular target for BFT is E-cadherin, the primary protein of the zonula adherens. It is postulated that BFT cleavage of E-cadherin is critical in precipitating the intracellular events culminating in the two established activities for BFT; namely, stimulation of secretion in ligated intestinal segments in several animal species and alteration of cellular morphology only in epithelial cells that retain the ability to polarize and form a tight junctional complex. Future studies will be directed to characterizing in greater detail both the molecular genetics of the BFT toxin and the precise steps in its cellular mechanism of action.
Collapse
Affiliation(s)
- C L Sears
- Johns Hopkins University School of Medicine, Division of Infectious Diseases, Department of Medicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
24
|
Labrie V, Harel J, Dubreuil JD. Oligomerization of Escherichia coli enterotoxin b through its C-terminal hydrophobic alpha-helix. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:128-33. [PMID: 11342001 DOI: 10.1016/s0925-4439(00)00091-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a chemical cross-linker and gel electrophoresis or a dot blot overlay assay, we studied protein-protein interaction of STb toxin, a 48-residue amphiphilic polypeptide causing intestinal disorders. For the first time, we report on the oligomerization property of STb. This enterotoxin forms hexamers and heptamers in a temperature-independent fashion in presence or absence of its receptor (sulfatide) anchored in a 50-nm liposome or as a free molecule. Full STb structure integrity is necessary for its oligomerization as this process is not observed under reducing conditions in the presence of beta-mercaptoethanol. STb treatment with tetramethylurea (TMU) and different detergents prevented oligomerization. Site-directed mutagenesis decreasing overall STb hydrophobicity in the hydrophobic alpha-helix resulted in the incapacity to form oligomers. Taken together, these data suggest that the C-terminal hydrophobic alpha-helix corresponds to the domain of STb-STb inter-binding where hydrophobic interaction is involved.
Collapse
Affiliation(s)
- V Labrie
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, C.P. 5000, Québec J2S 7C6, Saint-Hyacinthe, Canada
| | | | | |
Collapse
|
25
|
Chao KL, Dreyfus LA. Interaction of Escherichia coli heat-stable enterotoxin B with rat intestinal epithelial cells and membrane lipids. FEMS Microbiol Lett 1999; 172:91-7. [PMID: 10079533 DOI: 10.1111/j.1574-6968.1999.tb13455.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The binding of 125I-labeled Escherichia coli heat-stable enterotoxin B to rat intestinal epithelial cells was unsaturable and nonspecific, at concentrations well above that required to mediate biological events. Following its interaction with intestinal cells, approximately 50-80% of heat-stable enterotoxin B remained stably associated with the cells, implying that it was partitioned into the membrane and/or internalized by the cell. The toxin bound with different affinities to lipids isolated from intestinal epithelial cells, phospholipids, glycolipids, neutral lipids and to model membrane vesicles containing negatively charged lipids. These results indicate that heat-stable enterotoxin B utilizes the membrane bilayer, rather than a surface protein or glycoprotein in modulating toxin-induced enterotoxicity.
Collapse
Affiliation(s)
- K L Chao
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | |
Collapse
|
26
|
Rousset E, Harel J, Dubreuil JD. Binding characteristics of Escherichia coli enterotoxin b (STb) to the pig jejunum and partial characterization of the molecule involved. Microb Pathog 1998; 24:277-88. [PMID: 9600860 DOI: 10.1006/mpat.1997.0193] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli heat-stable enterotoxin b (STb) causes severe diarrhoea in weaning piglets. STb most probably has to bind to intestinal epithelial cells in order to achieve its effect. Using biotinylated biologically active STb, we developed a semi-quantitative binding assay using indirect fluorescence microscopy. We demonstrated the attachment of the biotinylated toxin to microvilli of the pig jejunum. However, binding was abolished when biotinylated STb was either boiled or treated with 2-mercaptoethanol, treatments known to abolish biological activity. Different characteristics of STb attachment to the pig small intestine were determined. The reaction was rapid and reached maximum intensity after approximately 10 min. The binding was pH dependent showing an optimum at pH 5.8. Incubation at either 4 degrees C, 25 degrees C or 37 degrees C did not affect the binding. No competition was observed with non-biotinylated STb. However, preincubation of biotinylated STb with streptavidin conjugated to horseradish peroxidase completely abolished the binding. Pig tissues other than jejunum demonstrated binding towards STb including duodenum, ileum, caecum, colon, liver, lung, spleen and kidney. The molecule involved was then partially characterized. Metaperiodate treatment of the jejunum sections abrogated binding but protease treatment had no effect. Enzymatic treatments of jejunal sections demonstrated that N- and O-glycosidases, and several exoglycosidases did not affect binding, whereas reduced binding was observed with ceramide glycanase and alpha-glucosidase, and was completely abolished following neuraminidase treatment. Overall, our results suggest that in vitro STb binding was rapid, pH dependent, temperature independent, not restricted to jejunum and involves a molecule that seems to be composed of a ceramide moiety, terminal neuraminic acid and/or alpha-linked terminal glucose residue(s).
Collapse
Affiliation(s)
- E Rousset
- Groupe de recherche sur les malades infectieuses du porc (GREMIP), Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, C. P. 5000, Saint-Hyacinthe, Québec, J2S 7C6, Canada
| | | | | |
Collapse
|
27
|
Barthe P, Yang YS, Chiche L, Hoh F, Strub MP, Guignard L, Soulier J, Stern MH, van Tilbeurgh H, Lhoste JM, Roumestand C. Solution structure of human p8MTCP1, a cysteine-rich protein encoded by the MTCP1 oncogene, reveals a new alpha-helical assembly motif. J Mol Biol 1997; 274:801-15. [PMID: 9405159 DOI: 10.1006/jmbi.1997.1438] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MTCP1 (for Mature-T-Cell Proliferation) is the first gene unequivocally identified in the group of uncommon leukemias with a mature phenotype. The three-dimensional solution structure of the human p8(MTCP1) protein encoded by the MTCP1 oncogene was determined by homonuclear proton two-dimensional NMR methods at 600 MHz. After sequence specific assignments, a total of 931 distance restraints and 57 dihedral restraints were collected. The location of the three previously unassigned disulfide bridges was determined from preliminary DIANA structures, using a statistical analysis of intercystinyl distances. The solution structure of p8(MTCP1) is presented as a set of 30 DIANA structures, further refined by restrained molecular dynamics using a simulated annealing protocol with the AMBER force field. The r.m.s.d. values with respect to the mean structure for the backbone and all heavy atoms for a family of 30 structures are 0.73(+/-0.28) and 1.17(+/-0.23) A, when the structured core of the protein (residues 5 to 63) is considered. The solution structure of p8(MTCP1) reveals an original scaffold consisting of three alpha helices, associated with a new cysteine motif. Two of the helices are covalently paired by two disulfide bridges, forming an alpha-hairpin which resembles an antiparallel coiled-coil. The third helix is oriented roughly parallel to the plane defined by the alpha-antiparallel motif and its axis forms an angle of approximately 60 degrees with respect to the main axis of this motif.
Collapse
Affiliation(s)
- P Barthe
- CNRS-UMR 9955, INSERM-U414, Faculté de Pharmacie, Université de Montpellier I, 15 Avenue Charles Flahault, Montpellier Cedex, 34060, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chao KL, Dreyfus LA. Interaction of Escherichia coli heat-stable enterotoxin B with cultured human intestinal epithelial cells. Infect Immun 1997; 65:3209-17. [PMID: 9234777 PMCID: PMC175454 DOI: 10.1128/iai.65.8.3209-3217.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Binding of Escherichia coli heat-stable enterotoxin B (STb) to the human intestinal epithelial cell lines T84 and HT29 and to polarized T84 cells was studied to define the initial interaction of this peptide toxin with target cells. Equilibrium and competitive binding isotherms showed that 125I-STb bound specifically to T84 and HT29 cells; however, the toxin-epithelial cell interactions could be characterized by low-affinity binding (< or = 10(5) M(-1)) to a high number of binding sites (> or = 10(6) per cell). STb binding to T84 and HT29 cells as a function of 125I-STb concentration did not approach saturation at levels well above the effective biological concentration of STb for fluid secretion. Treatment of the 125I-STb-bound T84 and HT29 cells with an acidic saline solution to remove surface-bound toxin revealed that only approximately 55% +/- 10% of 125I-STb could be removed by this treatment at 4 degrees C, suggesting that approximately half of the bound STb was stably associated with the plasma membrane and/or internalized into the cytoplasm. Similar results were obtained when binding and internalization experiments were conducted at 22 and 37 degrees C. Immunofluorescence studies demonstrated that the strongest signal for STb appeared in the plasma membrane even after acid treatment. Toxin-treated cells also displayed diffuse cytoplasmic staining, indicating that once cell bound, STb did not appear to preferentially associate with membrane vesicles or cellular organelles. Binding and subsequent internalization of 125I-STb were not affected by treatment of the cells with trypsin, endoglycosidase F/peptide N-glycosidase F, Vibrio cholerae neuraminidase, tunicamycin, or 5 mM sodium chlorate, which blocks sulfation of surface proteoglycans. In addition, the internalization process was not altered by preincubation of the cells with the cytoskeleton inhibitors cytochalasin D and colchicine or cellular perturbants (i.e., 0.45 M sucrose and 5 mM sodium azide), indicating that cell surface proteins or carbohydrates did not function as STb receptors. The binding of 125I-STb to polarized T84 cells was also examined, and the total and nonspecific binding isotherms were found to overlap, indicating that the apical surface of polarized T84 cells did not contain a specific receptor for STb. In comparison to undifferentiated cells, twice the amount of bound STb (approximately 80% +/- 10%) was removable from polarized T84 cells after treatment with acidic solution. The percentage of surface-bound STb to polarized T84 cells did not vary significantly with the transepithelial electrical resistance of the cells or when STb was applied basolaterally. Together, our results indicate that STb binds with relatively low affinity to the plasma membrane of cultured intestinal epithelial cells and polarized T84 cells, probably to membrane lipids, and becomes stably associated with the lipid bilayer. The fact that a significant portion of the bound STb becomes free in the cytoplasm, even at a low temperature, suggests that the bound toxin may directly traverse the membrane bilayer.
Collapse
Affiliation(s)
- K L Chao
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 64110, USA
| | | |
Collapse
|
29
|
Nokihara K, Wray V, Ando E, Naruse S, Hayakawa T. Synthesis, solution structure, binding activity, and cGMP activation of human guanylin and its disulfide isomer. REGULATORY PEPTIDES 1997; 70:111-20. [PMID: 9272623 DOI: 10.1016/s0167-0115(97)00020-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guanylin is a recently isolated peptide consisting of 15 amino acid residues with four cysteines, which may form two intramolecular disulfide bridges, and stimulates intestinal membrane guanylate cyclase. The position of the disulfide linkages of guanylin was predicted from its structural similarity to a heat stable enterotoxin which is thought to be responsible for secretory diarrhoea. Both guanylin, with disulfide positions 4-12 and 7-15, and its disulfide isomer, with disulfides positions 4-15 and 7-12, were chemically synthesized by the solid-phase method and purified. Two specific disulfides were selectively formed and confirmed by sequencing, mass spectrometry and high-performance liquid chromatography in combination with enzymatic cleavage. The structure of both isomers has been investigated in solution by 1H nuclear magnetic resonance spectroscopy. Guanylin exists as a mixture of two stable conformations which have compact spiral structures, from comparison with literature data. In contrast, the disulfide isomer of guanylin shows only a single conformation with an elongated curved plate-like structure. Binding assays were performed using labelled guanylin with membranes obtained from rat jejunum. Both disulfide isomers were investigated by the cGMP assay. Both binding and cGMP assays indicated that the relevant form of disulfide bridges in the intact guanylin was as predicted.
Collapse
Affiliation(s)
- K Nokihara
- Central Research Laboratory, Shimadzu Corp., Kyoto, Japan.
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- J Daniel Dubreuil
- Département de pathologie et microbiologie vétérinaires, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe (Québec), CanadaJ2S 7C6
| |
Collapse
|
31
|
Barnham KJ, Dyke TR, Kem WR, Norton RS. Structure of neurotoxin B-IV from the marine worm Cerebratulus lacteus: a helical hairpin cross-linked by disulphide bonding. J Mol Biol 1997; 268:886-902. [PMID: 9180379 DOI: 10.1006/jmbi.1997.0980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
B-IV is a 55-residue, crustacean-selective, neurotoxin secreted by Cerebratulus lacteus, a large marine worm found along the northeastern coast of North America. The 3D structure of this molecule in aqueous solution has been determined by 1H NMR spectroscopy at 600 MHz. The molecule has a well-defined helical hairpin structure, with the branches of the hairpin linked by four disulphide bonds. The disulphide connectivities were established from the NMR data to be 1-8/2-7/3-6/4-5, which differed from those determined previously by chemical means, where 1-7 and 2-8 connectivities were found. Each branch of the hairpin is largely alpha-helical, with the helices in the N and C-terminal branches encompassing residues 11 to 23 and 34 to 49, respectively. The loop connecting the branches of the hairpin contains two inverse gamma-turns centred on residues 24 and 25, a type I beta-turn at residues 28 to 31 and a type II beta-turn at residues 30 to 33. Arg17, -25 and -34, which are important for activity, are all on the same face of the molecule, while Trp30, which is also important for activity, is on the opposite face. Structure comparisons show that the B-IV structure is quite similar to those of Rop (ColE1 repressor of primer) and the heat-stable enterotoxin B from Escherichia coli. These structural similarities are discussed in relation to possible mechanisms of action of B-IV.
Collapse
Affiliation(s)
- K J Barnham
- Biomolecular Research Institute, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
32
|
Franco AA, Mundy LM, Trucksis M, Wu S, Kaper JB, Sears CL. Cloning and characterization of the Bacteroides fragilis metalloprotease toxin gene. Infect Immun 1997; 65:1007-13. [PMID: 9038310 PMCID: PMC175082 DOI: 10.1128/iai.65.3.1007-1013.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Strains of Bacteroides fragilis that produce a ca. 20-kDa heat-labile protein toxin (termed B. fragilis toxin [BFT]) have been associated with diarrheal disease of animals and humans. BFT alters the morphology of intestinal epithelial cells both in vitro and in vivo and stimulates secretion in ligated intestinal segments of rats, rabbits, and lambs. Previous genetic and biochemical data indicated that BFT was a metalloprotease which hydrolyzed G (monomeric) actin, gelatin, and azocoll in vitro. In this paper, the cloning and sequencing of the entire B. fragilis toxin gene (bft) from enterotoxigenic B. fragilis (ETBF) 86-5443-2-2 is reported. The bft gene from this ETBF strain consists of one open reading frame of 1,191 nucleotides encoding a predicted 397-residue holotoxin with a calculated molecular weight of 44,493. Comparison of the predicted BFT protein sequence with the N-terminal amino acid sequence of purified BFT indicates that BFT is most probably synthesized by ETBF strains as a preproprotein. These data predict that BFT is processed to yield a biologically active toxin of 186 residues with a molecular mass of 20.7 kDa which is secreted into the culture supernatant. Analysis of the holotoxin sequence predicts a 20-residue amphipathic region at the carboxy terminus of BFT. Thus, in addition to the metalloprotease activity of BFT, the prediction of an amphipathic domain suggests that oligomerization of BFT may permit membrane insertion of the toxin with creation of a transmembrane pore. Comparison of the sequences available for the bft genes from ETBF 86-5443-2-2 and VPI 13784 revealed two regions of reduced homology. Hybridization of oligonucleotide probes specific for each bft to toxigenic B.fragilis strains revealed that 51 and 49% of toxigenic strains contained the 86-5433-2-2 and VPI 13784 bft genes, respectively. No toxigenic strain hybridized with both probes. We propose that these two subtypes of bft be termed bft-1 (VPI 13784) and bft-2 (86-5433-2-2).
Collapse
Affiliation(s)
- A A Franco
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
33
|
Saidi RF, Sears CL. Bacteroides fragilis toxin rapidly intoxicates human intestinal epithelial cells (HT29/C1) in vitro. Infect Immun 1996; 64:5029-34. [PMID: 8945542 PMCID: PMC174484 DOI: 10.1128/iai.64.12.5029-5034.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enterotoxigenic Bacteroides fragilis strains associated with childhood diarrhea produce a 20-kDa protein toxin (BFT). Purified BFT causes striking morphologic changes in subconfluent human colonic epithelial cells (HT29/C1). In a 3-h HT29/C1 cell assay, the estimated half-maximal effective concentration of BFT was 12.5 pM, and morphologic effects were detectable as early as 30 min and nearly complete by 1.5 h. Concentrations as low as 0.5 pM could also cause intoxication, but morphologic changes were detectable only when the assay was extended to 18 h. The onset of this intoxication was concentration dependent and rapid, occurring within minutes (<7 min at 0.25 nM, <2 min at 2.5 nM). Notably, the onset of intoxication at 37 degrees C became irreversible to washing within 2 min after exposure to BFT. Morphologic changes were completely inhibited by treatment of HT29/C1 cells with BFT at 4 degrees C but could be demonstrated by subsequent warming to temperatures of 15 degrees C or higher after washing. The time required for the association of BFT with HT29/C1 cells at 4 degrees C was inversely correlated with concentration. Inhibitors of endosomal and Golgi trafficking (NH4Cl and brefeldin A) prevented the intoxication of HT29/C1 cells by Clostridium difficile toxin A and cholera toxin, respectively, but not by BFT. Agents altering microtubule structure did not affect the cellular activity of BFT. These data indicate that a purified toxin from B. fragilis strains associated with diarrhea rapidly and irreversibly intoxicates human intestinal epithelial cells (HT29/C1) in a concentration- and temperature-dependent manner and that the process of intoxication may not involve internalization mechanisms utilizing microtubules or sensitive to pH or brefeldin A.
Collapse
Affiliation(s)
- R F Saidi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
34
|
Wen PH, Blumenthal KM. Role of electrostatic interactions in defining the potency of neurotoxin B-IV from Cerebratulus lacteus. J Biol Chem 1996; 271:29752-8. [PMID: 8939911 DOI: 10.1074/jbc.271.47.29752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chemical modification implicates arginine residues of the Cerebratulus lacteus neurotoxin B-IV in biological activity. In the present study, we used site-directed mutagenesis to assess the functional contributions of each of these residues. Panels of mutants at each site have been constructed by polymerase chain reaction and recombinant proteins expressed and purified to homogeneity using an Escherichia coli expression system developed in this laboratory. All substitutions for Arg-17 (Gln, Ala, or Lys) yield proteins having undetectable levels of activity, while charge neutralizing replacement of Arg-25 (R25Q) causes a 400-fold reduction in specific toxicity. However, the R25K mutein is almost as active as natural toxin. Circular dichroism spectroscopy indicates that there are no major conformational changes in any of these muteins. These results therefore demonstrate the requirement for a guanidinium group at position 17, and a positive charge at position 25. NMR analyses (Hansen, P. E., Kem, W. R., Bieber, A. L., and Norton, R. S. (1992) Eur. J. Biochem. 210, 231-240) reveal neurotoxin B-IV to contain two antiparallel alpha-helices, which together include 57% of the sequence. Both Arg-17 and Arg-25 lie on the same face of the N-terminal helix (residues 13-26), as do the carboxyl groups of Glu-13 and Asp-21. However, charge neutralizing mutations of the latter two sites have no effects on biological activity. Arg-34, situated near the N terminus of helix 2 (residues 33-49) is also important for activity, as its replacement by Gln or Ala diminishes activity by 20- and 80-fold, respectively. However, unlike Arg-17 and Arg-25, thermal denaturation experiments suggest that R34Q may be structurally destabilized relative to wild-type B-IV.
Collapse
Affiliation(s)
- P H Wen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA.
| | | |
Collapse
|
35
|
Arriaga YL, Harville BA, Dreyfus LA. Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun 1995; 63:4715-20. [PMID: 7591127 PMCID: PMC173676 DOI: 10.1128/iai.63.12.4715-4720.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heat-stable enterotoxins (STs) of Escherichia coli are peptides which alter normal gut physiology by stimulating the loss of water and electrolytes. The action of heat-stable toxin B (STb) is associated with an increase in levels of lumenal 5-hydroxytryptamine and prostaglandin E2, known mediators of intestinal secretion. In addition, the toxin is responsible for elevation of cytosolic calcium ion levels in cultured cells. STb is a 48-amino-acid basic peptide containing four cysteine residues and two disulfide bonds. Previous work indicates that disulfide bonds are required for intestinal secretory activity, and yet the relative contribution of the two bonds to toxin stability and action is presently unclear. Site-directed mutagenesis was used to alter the cysteine residues of STb to assess the role of the individual disulfide bonds in toxin activity. Our results indicate that loss of a single disulfide bond was sufficient to abolish the intestinal secretory and G protein-coupled calcium ion influx activities associated with STb toxicity. Loss of toxin action was not a function of increased sensitivity of STb mutants to proteolysis, since mutant toxins displayed proteolytic decay rates equivalent to that of wild-type STb. Circular dichroism spectroscopy of mutant STb toxins indicated that single-disulfide-bond elimination did not apparently affect the toxin secondary structure of one mutant, STbC33S,C71S. In contrast, the alpha-helical content of the other disulfide bond mutant, STbC44S,C59G, was significantly altered, as was that of reduced and alkylated authentic STb. Since both Cys-Cys mutant STbs were completely nontoxic, the absence of biological activity cannot be explained by dramatic secondary structural changes alone; keys to the conformational requirements for STb toxicity undoubtedly reside in the three-dimensional structure of this peptide.
Collapse
Affiliation(s)
- Y L Arriaga
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City 64110, USA
| | | | | |
Collapse
|