1
|
Heider J, Hege D. The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function. Appl Microbiol Biotechnol 2025; 109:106. [PMID: 40301148 PMCID: PMC12041015 DOI: 10.1007/s00253-025-13467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025]
Abstract
Aldehyde dehydrogenases participate in many biochemical pathways, either by degrading organic substrates via organic acids or by producing reactive aldehyde intermediates in many biosynthetic pathways, and are becoming increasingly important for constructing synthetic metabolic pathways. Although they consist of simple and highly conserved basic structural motifs, they exhibit a surprising variability in the reactions catalyzed. We attempt here to give an overview of the known enzymes of two superfamilies comprising the known aldehyde dehydrogenases, focusing on their structural similarities and the residues involved in the catalytic reactions. The analysis reveals that the enzymes of the two superfamilies share many common traits and probably have a common evolutionary origin. While all enzymes catalyzing irreversible aldehyde oxidation to acids exhibit a universally conserved reaction mechanism with shared catalytic active-site residues, the enzymes capable of reducing activated acids to aldehydes deviate from this mechanism, displaying different active-site modifications required to allow these reactions which apparently evolved independently in different enzyme subfamilies. KEY POINTS: • The two aldehyde dehydrogenase superfamilies share significant similarities. • Catalytic amino acids of irreversibly acting AlDH are universally conserved. • Reductive or reversible reactions are enabled by water exclusion via the loss of conserved residues.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
2
|
Rosas-Rodríguez JA, Almada M, Zamora-Álvarez LA, Félix-Arredondo A, Encinas-Basurto D, Moran-Palacio EF, Hernandez-Leon SG, Valenzuela-Soto EM, Muñoz-Bacasehua C. The influence of potassium on folding parameters of porcine kidney betaine aldehyde dehydrogenase. Biochem Biophys Res Commun 2025; 742:151065. [PMID: 39626370 DOI: 10.1016/j.bbrc.2024.151065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Porcine kidney betaine aldehyde dehydrogenase (pkBADH) uses NAD+ as a coenzyme to convert betaine aldehyde to glycine betaine. In previous studies we described the impact of potassium on the affinity of pkBADH for NAD+, the effect on the tertiary and secondary structure, and changes in the flexibility of the amino acids involved in the formation of the pkBADH-NAD+. However, there are still unanswered questions about how K+ influences the folding and maintenance of the quaternary structure. Thus, this work aims to analyze the impact of the K+ concentration on the enzyme's folding and thermal stability parameters. Fluorescence data indicate that thermal stability is dependent on the K+ concentration. The analysis of (Tm)app from pkBADH showed a value of 44.5 °C; addition of 25 mM, 50 mM, and 100 mM K+ increased the (Tm)app to 48.8 °C or 50.7 and 51.0 °C, respectively. The analysis of the thermodynamic parameters indicates that the thermal stability of the pkBADH structure increases depending on the concentration of K+, and the molecular dynamics simulation of pkBADH results in better structural stability in presence of potassium ions, as evidenced by more minor fluctuations and lower root mean square deviation (RMSD) values compared to the system without K+.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, 85880, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, 85880, Mexico
| | - Luis Alberto Zamora-Álvarez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, 85880, Mexico
| | - Anabel Félix-Arredondo
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, 85880, Mexico
| | - David Encinas-Basurto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, Mexico
| | - Edgar F Moran-Palacio
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, 85880, Mexico
| | - Sergio G Hernandez-Leon
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, Mexico
| | - César Muñoz-Bacasehua
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa, 85880, Mexico.
| |
Collapse
|
3
|
Hardege I, Morud J, Yu J, Wilson TS, Schroeder FC, Schafer WR. Neuronally produced betaine acts via a ligand-gated ion channel to control behavioral states. Proc Natl Acad Sci U S A 2022; 119:e2201783119. [PMID: 36413500 PMCID: PMC9860315 DOI: 10.1073/pnas.2201783119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Trimethylglycine, or betaine, is an amino acid derivative found in diverse organisms, from bacteria to plants and animals, with well-established functions as a methyl donor and osmolyte in all cells. In addition, betaine is found in the nervous system, though its function there is not well understood. Here, we show that betaine is synthesized in the nervous system of the nematode worm, Caenorhabditis elegans, where it functions in the control of different behavioral states. Specifically, we find that betaine can be produced in a pair of interneurons, the RIMs, and packed into synaptic vesicles by the vesicular monoamine transporter, CAT-1, expressed in these cells. Mutant animals defective in betaine synthesis are unable to control the switch from local to global foraging, a phenotype that can be rescued by restoring betaine specifically to the RIM neurons. These effects on behavior are mediated by a newly identified betaine-gated chloride channel, LGC-41, which is expressed broadly in the navigation circuit. These results implicate neuronally produced betaine as a neuromodulator in vivo and suggest a potentially similar role for betaine in nervous systems of other animals.
Collapse
Affiliation(s)
- Iris Hardege
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Julia Morud
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Tatiana S. Wilson
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - William R. Schafer
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Department of Biology, KU Leuven, Leuven3000, Belgium
| |
Collapse
|
4
|
Muñoz-Bacasehua C, Rosas-Rodríguez JA, López-Zavala AA, Valenzuela-Soto EM. Spectroscopic analysis of coenzyme binding to betaine aldehyde dehydrogenase dependent on potassium. LUMINESCENCE 2021; 36:1733-1742. [PMID: 34213071 DOI: 10.1002/bio.4115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 11/06/2022]
Abstract
Glycine betaine is the main osmolyte synthesized and accumulated in mammalian renal cells. Glycine betaine synthesis is catalyzed by the enzyme betaine aldehyde dehydrogenase (BADH) using NAD+ as the coenzyme. Previous studies have shown that porcine kidney betaine aldehyde dehydrogenase (pkBADH) binds NAD+ with different affinities at each active site and that the binding is K+ dependent. The objective of this work was to analyze the changes in the pkBADH secondary and tertiary structure resulting from variable concentrations of NAD+ and the role played by K+ . Intrinsic fluorescence studies were carried out at fixed-variable concentrations of K+ and titrating the enzyme with varying concentrations of NAD+ . Fluorescence analysis showed a shift of the maximum emission towards red as the concentration of K+ was increased. Changes in the exposure of tryptophan located near the NAD+ binding site were found when the enzyme was titrated with NAD+ in the presence of potassium. Fluorescence data analysis showed that the K+ presence promoted static quenching that facilitated the pkBADH-NAD+ complex formation. DC data analysis showed that binding of K+ to the enzyme caused changes in the α-helix content of 4% and 12% in the presence of 25 mM and 100 mM K+ , respectively. The presence of K+ during NAD+ binding to pkBADH increased the thermal stability of the complex. These results indicated that K+ facilitated the pkBADH-NAD+ complex formation and suggested that K+ caused small changes in secondary and tertiary structures that could influence the active site conformation.
Collapse
Affiliation(s)
- César Muñoz-Bacasehua
- Centro de Investigación en Alimentación y Desarrollo A.C, Hermosillo, Sonora, Mexico
| | - Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa, Sonora, Mexico
| | | | | |
Collapse
|
5
|
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys 2020; 691:108477. [PMID: 32717224 DOI: 10.1016/j.abb.2020.108477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 10/23/2022]
Abstract
Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical β-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.
Collapse
Affiliation(s)
- Jesse W Wyatt
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States
| | - David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - John J Tanner
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
6
|
Muñoz‐Bacasehua C, Rosas‐Rodríguez JA, Arvizu‐Flores AA, Stephens‐Camacho A, Soñanez‐Organis JG, Figueroa‐Soto CG, Valenzuela‐Soto EM. Heterogeneity of active sites in recombinant betaine aldehyde dehydrogenase is modulated by potassium. J Mol Recognit 2020; 33:e2869. [DOI: 10.1002/jmr.2869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 01/26/2023]
Affiliation(s)
- César Muñoz‐Bacasehua
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| | - Jesús A. Rosas‐Rodríguez
- Departamento de Ciencias Químico Biológicas y AgropecuariasUniversidad de Sonora Unidad Regional Sur Navojoa México
| | | | - Aurora Stephens‐Camacho
- Licenciatura en Nutrición HumanaUniversidad Estatal de Sonora UAN, Periférico Sur y Carretera a Huatabampo Navojoa México
| | - José G. Soñanez‐Organis
- Departamento de Ciencias Químico Biológicas y AgropecuariasUniversidad de Sonora Unidad Regional Sur Navojoa México
| | - Ciria G. Figueroa‐Soto
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| | - Elisa M. Valenzuela‐Soto
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| |
Collapse
|
7
|
Muñoz-Bacasehua C, Rosas-Rodríguez JA, Arvizu-Flores AA, Valenzuela-Soto EM. Role of potassium levels in pkBADH heterogeneity of NAD + binding site. J Bioenerg Biomembr 2020; 52:61-70. [PMID: 32128683 DOI: 10.1007/s10863-020-09827-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Betaine aldehyde dehydrogenase (BADH) catalyzes the oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Studies in porcine kidney BADH (pkBADH) suggested that the enzyme exhibits heterogeneity of active sites and undergoes potassium-induced conformational changes. This study aimed to analyze if potassium concentration plays a role in the heterogeneity of pkBADH active sites through changes in NAD+ affinity constants, in its secondary structure content and stability. The enzyme was titrated with NAD+ 1 mM at fixed-variable KCl concentration, and the interaction measured by Isothermal Titration Calorimetry (ITC) and Circular Dichroism (CD). ITC data showed that K+ increased the first active site affinity in a manner dependent on its concentration; KD values to the first site were 14.4, 13.1, and 10.4 μM, at 25, 50, and 75 mM KCl. ΔG values showed that the coenzyme binding is a spontaneous reaction without changes between active sites or depending on KCl concentration. ΔH and TΔSb values showed that NAD+ binding to the active site is an endothermic process and is carried out at the expense of changes in entropy. α-Helix content increased as KCl increased, enzyme (Tm)app values were 2.6 °C and 3.3 °C higher at 20 mM and 200 mM K+. PkBADH molecular model showed three different interaction K+ sites. Results suggested K+ can interact with pkBADH and cause changes in the secondary structure, it provokes changes in the enzyme affinity by the coenzyme, and in the thermostability.
Collapse
Affiliation(s)
- César Muñoz-Bacasehua
- Centro de Investigación en Alimentación y Desarrollo A.C, GE Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | | | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Apartado Postal, 83000, Hermosillo, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C, GE Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
8
|
Kinetic and structural analysis of human ALDH9A1. Biosci Rep 2019; 39:BSR20190558. [PMID: 30914451 PMCID: PMC6487263 DOI: 10.1042/bsr20190558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for γ-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αβE region consisting of an α-helix and a β-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete β-nicotinamide adenine dinucleotide (NAD+) binding pocket.
Collapse
|
9
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Rahuel-Clermont S, Bchini R, Barbe S, Boutserin S, André I, Talfournier F. Enzyme Active Site Loop Revealed as a Gatekeeper for Cofactor Flip by Targeted Molecular Dynamics Simulations and FRET-Based Kinetics. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Raphaël Bchini
- Université de Lorraine, CNRS, IMoPA, Campus Biologie Santé, F-54000 Nancy, France
| | - Sophie Barbe
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France, 135, Avenue de Rangueil, F-31077 Toulouse cedex 04, France
| | - Séverine Boutserin
- Université de Lorraine, CNRS, IMoPA, Campus Biologie Santé, F-54000 Nancy, France
| | - Isabelle André
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France, 135, Avenue de Rangueil, F-31077 Toulouse cedex 04, France
| | - François Talfournier
- Université de Lorraine, CNRS, IMoPA, Campus Biologie Santé, F-54000 Nancy, France
| |
Collapse
|
11
|
Liu LK, Tanner JJ. Crystal Structure of Aldehyde Dehydrogenase 16 Reveals Trans-Hierarchical Structural Similarity and a New Dimer. J Mol Biol 2018; 431:524-541. [PMID: 30529746 DOI: 10.1016/j.jmb.2018.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022]
Abstract
The aldehyde dehydrogenase (ALDH) superfamily is a vast group of enzymes that catalyze the NAD+-dependent oxidation of aldehydes to carboxylic acids. ALDH16 is perhaps the most enigmatic member of the superfamily, owing to its extra C-terminal domain of unknown function and the absence of the essential catalytic cysteine residue in certain non-bacterial ALDH16 sequences. Herein we report the first production of recombinant ALDH16, the first biochemical characterization of ALDH16, and the first crystal structure of ALDH16. Recombinant expression systems were generated for the bacterial ALDH16 from Loktanella sp. and human ALDH16A1. Four high-resolution crystal structures of Loktanella ALDH16 were determined. Loktanella ALDH16 is found to be a bona fide enzyme, exhibiting NAD+-binding, ALDH activity, and esterase activity. In contrast, human ALDH16A1 apparently lacks measurable aldehyde oxidation activity, suggesting that it is a pseudoenzyme, consistent with the absence of the catalytic Cys in its sequence. The fold of ALDH16 comprises three domains: NAD+-binding, catalytic, and C-terminal. The latter is unique to ALDH16 and features a Rossmann fold connected to a protruding β-flap. The tertiary structural interactions of the C-terminal domain mimic the quaternary structural interactions of the classic ALDH superfamily dimer, a phenomenon we call "trans-hierarchical structural similarity." ALDH16 forms a unique dimer in solution, which mimics the classic ALDH superfamily dimer-of-dimer tetramer. Small-angle X-ray scattering shows that human ALDH16A1 has the same dimeric structure and fold as Loktanella ALDH16. We suggest that the Loktanella ALDH16 structure may be considered to be the archetype of the ALDH16 family.
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Korasick DA, White TA, Chakravarthy S, Tanner JJ. NAD + promotes assembly of the active tetramer of aldehyde dehydrogenase 7A1. FEBS Lett 2018; 592:3229-3238. [PMID: 30184263 PMCID: PMC6188814 DOI: 10.1002/1873-3468.13238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is the redox cofactor of many enzymes, including the vast aldehyde dehydrogenase (ALDH) superfamily. Although the function of NAD(H) in hydride transfer is established, its influence on protein structure is less understood. Herein, we show that NAD+ -binding promotes assembly of the ALDH7A1 tetramer. Multiangle light scattering, small-angle X-ray scattering, and sedimentation velocity all show a pronounced shift of the dimer-tetramer equilibrium toward the tetramer when NAD+ is present. Furthermore, electron microscopy shows that cofactor binding enhances tetramer formation even at the low enzyme concentration used in activity assays, suggesting the tetramer is the active species. Altogether, our results suggest that the catalytically active oligomer of ALDH7A1 is assembled on demand in response to cofactor availability.
Collapse
Affiliation(s)
- David A. Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Tommi A. White
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Department of Chemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Hayes K, Noor M, Djeghader A, Armshaw P, Pembroke T, Tofail S, Soulimane T. The quaternary structure of Thermus thermophilus aldehyde dehydrogenase is stabilized by an evolutionary distinct C-terminal arm extension. Sci Rep 2018; 8:13327. [PMID: 30190503 PMCID: PMC6127216 DOI: 10.1038/s41598-018-31724-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 12/04/2022] Open
Abstract
Aldehyde dehydrogenases (ALDH) form a superfamily of dimeric or tetrameric enzymes that catalyze the oxidation of a broad range of aldehydes into their corresponding carboxylic acids with the concomitant reduction of the cofactor NAD(P) into NAD(P)H. Despite their varied polypeptide chain length and oligomerisation states, ALDHs possess a conserved architecture of three domains: the catalytic domain, NAD(P)+ binding domain, and the oligomerization domain. Here, we describe the structure and function of the ALDH from Thermus thermophilus (ALDHTt) which exhibits non-canonical features of both dimeric and tetrameric ALDH and a previously uncharacterized C-terminal arm extension forming novel interactions with the N-terminus in the quaternary structure. This unusual tail also interacts closely with the substrate entry tunnel in each monomer providing further mechanistic detail for the recent discovery of tail-mediated activity regulation in ALDH. However, due to the novel distal extension of the tail of ALDHTt and stabilizing termini-interactions, the current model of tail-mediated substrate access is not apparent in ALDHTt. The discovery of such a long tail in a deeply and early branching phylum such as Deinococcus-Thermus indicates that ALDHTt may be an ancestral or primordial metabolic model of study. This structure provides invaluable evidence of how metabolic regulation has evolved and provides a link to early enzyme regulatory adaptations.
Collapse
Affiliation(s)
- Kevin Hayes
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Mohamed Noor
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ahmed Djeghader
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Patricia Armshaw
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Tony Pembroke
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Syed Tofail
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.,Physics Department, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Tewfik Soulimane
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland. .,Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
14
|
Baicharoen A, Vijayan R, Pongprayoon P. Structural insights into betaine aldehyde dehydrogenase (BADH2) from Oryza sativa explored by modeling and simulations. Sci Rep 2018; 8:12892. [PMID: 30150624 PMCID: PMC6110774 DOI: 10.1038/s41598-018-31204-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 12/02/2022] Open
Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) plays a key role in the accumulation of 2-acetyl-1-pyrroline (2AP), a fragrant compound in rice (Oryza sativa). BADH2 catalyses the oxidation of aminoaldehydes to carboxylic acids. An inactive BADH2 is known to promote fragrance in rice. The 3D structure and atomic level protein-ligand interactions are currently unknown. Here, the 3D dimeric structure of BADH2 was modeled using homology modeling. Furthermore, two 0.5 µs simulations were performed to explore the nature of BADH2 dimer structurally and dynamically. Each monomer comprises of 3 domains (substrate-binding, NAD+-binding, and oligomerization domains). The NAD+-binding domain is the most mobile. A scissor-like motion was observed between the monomers. Inside the binding pocket, N162 and E260 are tethered by strong hydrogen bonds to residues in close proximity. In contrast, the catalytic C294 is very mobile and interacts occasionally with N162. The flexibility of the nucleophilic C294 could facilitate the attack of free carbonyl on an aldehyde substrate. Key inter-subunit salt bridges contributing to dimerization were also identified. E487, D491, E492, K498, and K502 were found to form strong salt bridges with charged residues on the adjacent monomer. Specifically, the nearly permanent R430-E487 hydrogen bond (>90%) highlights its key role in dimer association. Structural and dynamic insights of BADH2 obtained here could play a role in the improvement of rice fragrance, which could lead to an enhancement in rice quality and market price.
Collapse
Affiliation(s)
- Apisara Baicharoen
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box, 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand. .,Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
15
|
Alcohol Metabolic Inefficiency: Structural Characterization of Polymorphism-Induced ALDH2 Dysfunctionality and Allosteric Site Identification for Design of Potential Wildtype Reactivators. Protein J 2018; 37:216-222. [DOI: 10.1007/s10930-018-9768-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Jung K, Hong SH, Ngo HPT, Ho TH, Ahn YJ, Oh DK, Kang LW. Crystal structures of an atypical aldehyde dehydrogenase having bidirectional oxidizing and reducing activities. Int J Biol Macromol 2017; 105:816-824. [PMID: 28732729 DOI: 10.1016/j.ijbiomac.2017.07.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 11/15/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent oxidoreductases that catalyze the oxidation of a variety of aldehydes to their acid forms. In this study, we determined the crystal structures of ALDH from Bacillus cereus (BcALDH), alone, and in complex with NAD+ and NADP+. This enzyme can oxidize all-trans-retinal to all-trans-retinoic acid using either NAD+ or NADP+ with equal efficiency, and atypically, as a minor activity, can reduce all-trans-retinal to all-trans-retinol using NADPH. BcALDH accommodated the additional 2'-phosphate of NADP+ by expanding the cofactor-binding pocket and upshifting the AMP moiety in NADP+. The nicotinamide moiety in NAD+ and NADP+ had direct interactions with the conserved catalytic residues (Cys300 and Glu266) and caused concerted conformational changes. We superimposed the structure of retinoic acid bound to human ALDH1A3 onto the BcALDH structure and speculated a model of the substrate all-trans-retinal bound to BcALDH. We also proposed a plausible mechanism for the minor reducing activity of BcALDH. These BcALDH structures will be useful in understanding cofactor specificity and the catalytic mechanism of an atypical bacterial BcALDH and should help the development of a new biocatalyst to produce retinoic acid and related high-end products.
Collapse
Affiliation(s)
- Kyoungho Jung
- Department of Biological Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Seung-Hye Hong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | - Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Seoul 143-701, South Korea
| | - Yeh-Jin Ahn
- Department of Life Science, Sangmyung University, Seoul 110-743, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea.
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
17
|
Ochoa-Montaño B, Blundell TL. XSuLT: a web server for structural annotation and representation of sequence-structure alignments. Nucleic Acids Res 2017; 45:W381-W387. [PMID: 28510698 PMCID: PMC5793734 DOI: 10.1093/nar/gkx421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
The web server XSuLT, an enhanced version of the protein alignment annotation program JoY, formats a submitted multiple-sequence alignment using three-dimensional (3D) structural information in order to assist in the comparative analysis of protein evolution and in the optimization of alignments for comparative modelling and construct design. In addition to the features analysed by JoY, which include secondary structure, solvent accessibility and sidechain hydrogen bonds, XSuLT annotates each amino acid residue with residue depth, chain and ligand interactions, inter-residue contacts, sequence entropy, root mean square deviation and secondary structure and disorder prediction. It is also now integrated with built-in 3D visualization which interacts with the formatted alignment to facilitate inspection and understanding. Results can be downloaded as stand-alone HTML for the formatted alignment and as XML with the underlying annotation data. XSuLT is freely available at http://structure.bioc.cam.ac.uk/xsult/.
Collapse
Affiliation(s)
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
18
|
Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines. Chem Biol Interact 2017; 276:52-64. [PMID: 28216341 DOI: 10.1016/j.cbi.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023]
Abstract
The catalytic mechanism of the NAD(P)+-dependent aldehyde dehydrogenases (ALDHs) involves the nucleophilic attack of the essential cysteine (Cys302, mature HsALDH2 numbering) on the aldehyde substrate. Although oxidation of Cys302 will inactivate these enzymes, it is not yet well understood how this oxidation is prevented. In this work we explore possible mechanisms of protection by systematically analyzing the reported three-dimensional structures and amino acid sequences of the enzymes of the ALDH superfamily. Specifically, we considered the Cys302 conformational space, the structure and residues conservation of the catalytic loop where Cys302 is located, the observed oxidation states of Cys302, the ability of physiological reductants to revert its oxidation, and the presence of vicinal Cys in the catalytic loop. Our analyses suggested that: 1) In the apo-enzyme, the thiol group of Cys302 is quite resistant to oxidation by ambient O2 or mild oxidative conditions, because the protein environment promotes its high pKa. 2) NAD(P)+ bound in the "hydride transfer" conformation afforded total protection against Cys302 oxidation by an unknown mechanism. 3) If formed, the Cys302-sulfenic acid is protected against irreversible oxidation. 4) Of the physiological reductant agents, the dithiol lipoic acid could reduce a sulfenic or a disulfide bond in the ALDHs active site; glutathione cannot because its thiol group cannot reach Cys302, and other physiological monothiols may be ineffective in those ALDHs where their active site cannot sterically accommodate two molecules of the monothiols. 5) Formation of the disulfides Cys301-Cys302, Cys302-Cys304, Cys302-Cys305 and Cys-302-Cys306 in those ALDHs that have these Cys residues is not probable, because of the permitted Cys conformers as well as the conserved structure and low flexibility of the catalytic loop. 6) Only in some ALDH2, ALDH9, ALDH16 and ALDH23 enzymes, Cys303, alone or in conjunction with Cys301, allows disulfide formation. Interestingly, several of these enzymes are mitochondrial.
Collapse
|
19
|
Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Chem Biol Interact 2017; 276:65-74. [PMID: 28212821 DOI: 10.1016/j.cbi.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.
Collapse
|
20
|
NADP-Dependent Aldehyde Dehydrogenase from Archaeon Pyrobaculum sp.1860: Structural and Functional Features. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9127857. [PMID: 27956891 PMCID: PMC5121451 DOI: 10.1155/2016/9127857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022]
Abstract
We present the functional and structural characterization of the first archaeal thermostable NADP-dependent aldehyde dehydrogenase AlDHPyr1147. In vitro, AlDHPyr1147 catalyzes the irreversible oxidation of short aliphatic aldehydes at 60-85°С, and the affinity of AlDHPyr1147 to the NADP+ at 60°С is comparable to that for mesophilic analogues at 25°С. We determined the structures of the apo form of AlDHPyr1147 (3.04 Å resolution), three binary complexes with the coenzyme (1.90, 2.06, and 2.19 Å), and the ternary complex with the coenzyme and isobutyraldehyde as a substrate (2.66 Å). The nicotinamide moiety of the coenzyme is disordered in two binary complexes, while it is ordered in the ternary complex, as well as in the binary complex obtained after additional soaking with the substrate. AlDHPyr1147 structures demonstrate the strengthening of the dimeric contact (as compared with the analogues) and the concerted conformational flexibility of catalytic Cys287 and Glu253, as well as Leu254 and the nicotinamide moiety of the coenzyme. A comparison of the active sites of AlDHPyr1147 and dehydrogenases characterized earlier suggests that proton relay systems, which were previously proposed for dehydrogenases of this family, are blocked in AlDHPyr1147, and the proton release in the latter can occur through the substrate channel.
Collapse
|
21
|
Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications. Biochem J 2016; 473:873-85. [DOI: 10.1042/bj20151084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022]
Abstract
The activity of plant BADH enzymes may be down-regulated in the short term by a novel and physiologically relevant mechanism, consisting of the reversible formation of a thiohemiacetal between a conserved non-essential cysteine residue and the substrate betaine aldehyde.
Collapse
|
22
|
Do H, Lee CW, Lee SG, Kang H, Park CM, Kim HJ, Park H, Park H, Lee JH. Crystal structure and modeling of the tetrahedral intermediate state of methylmalonate-semialdehyde dehydrogenase (MMSDH) from Oceanimonas doudoroffii. J Microbiol 2016; 54:114-21. [PMID: 26832667 DOI: 10.1007/s12275-016-5549-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/24/2022]
Abstract
The gene product of dddC (Uniprot code G5CZI2), from the Gram-negative marine bacterium Oceanimonas doudoroffii, is a methylmalonate-semialdehyde dehydrogenase (OdoMMSDH) enzyme. MMSDH is a member of the aldehyde dehydrogenase superfamily, and it catalyzes the NAD-dependent decarboxylation of methylmalonate semialdehyde to propionyl-CoA. We determined the crystal structure of OdoMMSDH at 2.9 Å resolution. Among the twelve molecules in the asymmetric unit, six subunits complexed with NAD, which was carried along the protein purification steps. OdoMMSDH exists as a stable homodimer in solution; each subunit consists of three distinct domains: an NAD-binding domain, a catalytic domain, and an oligomerization domain. Computational modeling studies of the OdoMMSDH structure revealed key residues important for substrate recognition and tetrahedral intermediate stabilization. Two basic residues (Arg103 and Arg279) and six hydrophobic residues (Phe150, Met153, Val154, Trp157, Met281, and Phe449) were found to be important for tetrahedral intermediate binding. Modeling data also suggested that the backbone amide of Cys280 and the side chain amine of Asn149 function as the oxyanion hole during the enzymatic reaction. Our results provide useful insights into the substrate recognition site residues and catalytic mechanism of OdoMMSDH.
Collapse
Affiliation(s)
- Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 406-840, Republic of Korea
| | - Chang Woo Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 406-840, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 406-840, Republic of Korea
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 406-840, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 406-840, Republic of Korea
| | - Hara Kang
- Division of Life Science, College of Life Science and Bioengineering, Incheon National University, Incheon, 406-772, Republic of Korea
| | - Chul Min Park
- Medicinal Chemistry Research Center, Bio-Organic Division, Korea Research Institute of Chemical Technology, Daejeon, 305-600, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan, 608-739, Republic of Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 406-840, Republic of Korea. .,Department of Polar Sciences, University of Science and Technology, Incheon, 406-840, Republic of Korea.
| | - HaJeung Park
- X-Ray Core, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #1A1, Jupiter, FL, 33458, USA.
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 406-840, Republic of Korea. .,Department of Polar Sciences, University of Science and Technology, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
23
|
Zhao C, Wang D, Feng B, Gou M, Liu X, Li Q. Identification and characterization of aldehyde dehydrogenase 9 from Lampetra japonica and its protective role against cytotoxicity. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:102-9. [DOI: 10.1016/j.cbpb.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/16/2014] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
|
24
|
Delgado-Gaytán MF, Hernández-Palomares MLE, Soñanez-Organis JG, Muhlia-Almazán A, Sánchez-Paz A, Stephens-Camacho NA, Valenzuela-Soto EM, Rosas-Rodríguez JA. Molecular characterization and organ-specific expression of the gene that encodes betaine aldehyde dehydrogenase from the white shrimp Litopenaeus vannamei in response to osmotic stress. Comp Biochem Physiol B Biochem Mol Biol 2015. [PMID: 26219579 DOI: 10.1016/j.cbpb.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.
Collapse
Affiliation(s)
- María F Delgado-Gaytán
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Magally L E Hernández-Palomares
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - José G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Adriana Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S. C. (CIBNOR), Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Calle Hermosa 101, Col. Los Angeles, CP 83106, Hermosillo, Sonora, Mexico
| | - Norma A Stephens-Camacho
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora UAN, Periférico Sur y Carretera a Huatabampo, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo AC, Apartado Postal 1735, Hermosillo 83000, Sonora, Mexico
| | - Jesús A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| |
Collapse
|
25
|
Muñoz-Clares RA, González-Segura L, Riveros-Rosas H, Julián-Sánchez A. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases. Chem Biol Interact 2015; 234:45-58. [DOI: 10.1016/j.cbi.2015.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/21/2014] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
|
26
|
Halavaty AS, Rich RL, Chen C, Joo JC, Minasov G, Dubrovska I, Winsor JR, Myszka DG, Duban M, Shuvalova L, Yakunin AF, Anderson WF. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1159-75. [PMID: 25945581 PMCID: PMC4427200 DOI: 10.1107/s1399004715004228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023]
Abstract
When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | | | - Chao Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jeong Chan Joo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Ievgeniia Dubrovska
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - James R. Winsor
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | | | - Mark Duban
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL 60611, USA
| |
Collapse
|
27
|
González-Segura L, Riveros-Rosas H, Julián-Sánchez A, Muñoz-Clares RA. Residues that influence coenzyme preference in the aldehyde dehydrogenases. Chem Biol Interact 2015; 234:59-74. [PMID: 25601141 DOI: 10.1016/j.cbi.2014.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/12/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022]
Abstract
To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can easily be changed through evolution and selected in response to physiological needs.
Collapse
Affiliation(s)
- Lilian González-Segura
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico
| | - Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico.
| |
Collapse
|
28
|
Keller MA, Zander U, Fuchs JE, Kreutz C, Watschinger K, Mueller T, Golderer G, Liedl KR, Ralser M, Kräutler B, Werner ER, Marquez JA. A gatekeeper helix determines the substrate specificity of Sjögren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase. Nat Commun 2014; 5:4439. [PMID: 25047030 PMCID: PMC4109017 DOI: 10.1038/ncomms5439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/17/2014] [Indexed: 11/09/2022] Open
Abstract
Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a 'gatekeeper' helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site. Activity assays demonstrate that the gatekeeper helix is important for directing the substrate specificity of FALDH towards long-chain fatty aldehydes. The gatekeeper feature is conserved across membrane-associated aldehyde dehydrogenases. Finally, we provide insight into the previously elusive molecular basis of SLS-causing mutations.
Collapse
Affiliation(s)
- Markus A. Keller
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis court Rd, Cambridge CB2 1GA, UK
| | - Ulrich Zander
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thomas Mueller
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis court Rd, Cambridge CB2 1GA, UK
- MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ernst R. Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80-82, 6020 Innsbruck, Austria
- These authors contributed equally to this work
| | - Jose A. Marquez
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
- Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
- These authors contributed equally to this work
| |
Collapse
|
29
|
Structure-based mutational studies of substrate inhibition of betaine aldehyde dehydrogenase BetB from Staphylococcus aureus. Appl Environ Microbiol 2014; 80:3992-4002. [PMID: 24747910 DOI: 10.1128/aem.00215-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD(+) binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.
Collapse
|
30
|
Stiti N, Podgórska K, Bartels D. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:681-93. [DOI: 10.1016/j.bbapap.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
|
31
|
Kopečny D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 2013; 288:9491-507. [PMID: 23408433 DOI: 10.1074/jbc.m112.443952] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.
Collapse
Affiliation(s)
- David Kopečny
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The mechanism of discrimination between oxidized and reduced coenzyme in the aldehyde dehydrogenase domain of Aldh1l1. Chem Biol Interact 2013; 202:62-9. [PMID: 23295222 DOI: 10.1016/j.cbi.2012.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 11/20/2022]
Abstract
Aldh1l1, also known as 10-formyltetrahydrofolate dehydrogenase (FDH), contains the carboxy-terminal domain (Ct-FDH), which is a structural and functional homolog of aldehyde dehydrogenases (ALDHs). This domain is capable of catalyzing the NADP(+)-dependent oxidation of short chain aldehydes to their corresponding acids, and similar to most ALDHs it has two conserved catalytic residues, Cys707 and Glu673. Previously, we demonstrated that in the Ct-FDH mechanism these residues define the conformation of the bound coenzyme and the affinity of its interaction with the protein. Specifically, the replacement of Cys707 with an alanine resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme. We suggested that this was due to the loss of a covalent bond between the cysteine and the C4N atom of nicotinamide ring of NADP(+) formed during Ct-FDH catalysis. To obtain further insight into the functional significance of the covalent bond between Cys707 and the coenzyme, and the overall role of the two catalytic residues in the coenzyme binding and positioning, we have now solved crystal structures of Ct-FDH in the complex with thio-NADP(+) and the complexes of the C707S mutant with NADP(+) and NADPH. This study has allowed us to trap the coenzyme in the contracted conformation, which provided a snapshot of the conformational processing of the coenzyme during the transition from oxidized to reduced form. Overall, the results of this study further support the previously proposed mechanism by which Cys707 helps to differentiate between the oxidized and reduced coenzyme during ALDH catalysis.
Collapse
|
33
|
Liu T, Hao L, Wang R, Liu B. Molecular characterization of a thermostable aldehyde dehydrogenase (ALDH) from the hyperthermophilic archaeon Sulfolobus tokodaii strain 7. Extremophiles 2012; 17:181-90. [PMID: 23224332 DOI: 10.1007/s00792-012-0503-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022]
Abstract
Aldehyde dehydrogenase (ALDH) is a widely distributed enzyme in nature. Although many ALDHs have been reported until now, the detailed enzymatic properties of ALDH from Archaea remain elusive. Herein, we describe the characterization of an ALDH from the hyperthermophilic archaeon Sulfolobus tokodaii. The enzyme (stALDH) could utilize various aldehydes as substrates, and maximal activity was found with acetaldehyde and the coenzyme NAD. The optimal temperature and pH were 80 °C and 8, respectively, and high thermostability was found with the half-life at 90 °C to be 4 h. The enzyme was considerably resistant to nitroglycerin (GTN) inhibition, which could be restored by reducing agent DTT or (±)-α-lipoic acid. Coenzyme NAD or NADP could regulate the enzymatic thermostability, as well as the esterase activity. Molecular modeling suggested that the enzyme harbored similar structural arrangement with its eukaryotic and bacterial counterparts. Sequence alignment showed the conserved catalytic residues E240 and C274 and cofactor interactive sites N142, K165, I168 and E370, the function of which were verified by site-directed mutagenesis analysis. This is the most thermostable ALDH reported until now and the unique property of this enzyme is potentially beneficial in the fields of biotechnology and biomedicine.
Collapse
Affiliation(s)
- Tianming Liu
- College of Food and Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Shandong Polytechnic University, Jinan, 250353, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Jiamsomboon K, Treesuwan W, Boonyalai N. Dissecting substrate specificity of two rice BADH isoforms: Enzyme kinetics, docking and molecular dynamics simulation studies. Biochimie 2012; 94:1773-83. [DOI: 10.1016/j.biochi.2012.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/07/2012] [Indexed: 11/16/2022]
|
35
|
Bchini R, Dubourg-Gerecke H, Rahuel-Clermont S, Aubry A, Branlant G, Didierjean C, Talfournier F. Adenine binding mode is a key factor in triggering the early release of NADH in coenzyme A-dependent methylmalonate semialdehyde dehydrogenase. J Biol Chem 2012; 287:31095-103. [PMID: 22782904 DOI: 10.1074/jbc.m112.350272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Structural dynamics associated with cofactor binding have been shown to play key roles in the catalytic mechanism of hydrolytic NAD(P)-dependent aldehyde dehydrogenases (ALDH). By contrast, no information is available for their CoA-dependent counterparts. We present here the first crystal structure of a CoA-dependent ALDH. The structure of the methylmalonate semialdehyde dehydrogenase (MSDH) from Bacillus subtilis in binary complex with NAD(+) shows that, in contrast to what is observed for hydrolytic ALDHs, the nicotinamide ring is well defined in the electron density due to direct and H(2)O-mediated hydrogen bonds with the carboxamide. The structure also reveals that a conformational isomerization of the NMNH is possible in MSDH, as shown for hydrolytic ALDHs. Finally, the adenine ring is substantially more solvent-exposed, a result that could be explained by the presence of a Val residue at position 229 in helix α(F) that reduces the depth of the binding pocket and the absence of Gly-225 at the N-terminal end of helix α(F). Substitution of glycine for Val-229 and/or insertion of a glycine residue at position 225 resulted in a significant decrease of the rate constant associated with the dissociation of NADH from the NADH/thioacylenzyme complex, thus demonstrating that the weaker stabilization of the adenine ring is a key factor in triggering the early NADH release in the MSDH-catalyzed reaction. This study provides for the first time structural insights into the mechanism whereby the cofactor binding mode is responsible at least in part for the different kinetic behaviors of the hydrolytic and CoA-dependent ALDHs.
Collapse
Affiliation(s)
- Raphaël Bchini
- Unité Mixte de Recherche CNRS-Université de Lorraine 7214 AREMS, ARN-RNP Structure-Fonction-Maturation, Enzymologie Moléculaire et Structurale, Faculté de Médecine, Biopôle, 9 Avenue de la Forêt de Haye, BP 184, 54506 Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
37
|
Wongpanya R, Boonyalai N, Thammachuchourat N, Horata N, Arikit S, Myint KM, Vanavichit A, Choowongkomon K. Biochemical and enzymatic study of rice BADH wild-type and mutants: an insight into fragrance in rice. Protein J 2012; 30:529-38. [PMID: 21959793 DOI: 10.1007/s10930-011-9358-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ(1)-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.
Collapse
Affiliation(s)
- Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee YC, Lin DT, Ong PL, Chen HL, Lo HF, Lin LL. Contribution of conserved Glu255 and Cys289 residues to catalytic activity of recombinant aldehyde dehydrogenase from Bacillus licheniformis. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:1233-1241. [PMID: 22117550 DOI: 10.1134/s0006297911110058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Based on the sequence homology, we have modeled the three-dimensional structure of Bacillus licheniformis aldehyde dehydrogenase (BlALDH) and identified two different residues, Glu255 and Cys289, that might be responsible for the catalytic function of the enzyme. The role of these residues was further investigated by site-directed mutagenesis and biophysical analysis. The expressed parental and mutant proteins were purified by nickel-chelate chromatography, and their molecular masses were determined to be approximately 53 kDa by SDS-PAGE. As compared with the parental BlALDH, a dramatic decrease or even complete loss of the dehydrogenase activity was observed for the mutant enzymes. Structural analysis showed that the intrinsic fluorescence and circular dichroism spectra of the mutant proteins were similar to the parental enzyme, but most of the variants exhibited a different sensitivity towards thermal- and guanidine hydrochloride-induced denaturation. These observations indicate that residues Glu255 and Cys289 play an important role in the dehydrogenase activity of BlALDH, and the rigidity of the enzyme has been changed as a consequence of the mutations.
Collapse
Affiliation(s)
- Yen-Chung Lee
- Department of Bioagricultural Science, National Chiayi University, Chiayi City, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Lo HF, Su JY, Chen HL, Chen JC, Lin LL. Biophysical studies of an NAD(P)(+)-dependent aldehyde dehydrogenase from Bacillus licheniformis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:1131-1142. [PMID: 21874381 DOI: 10.1007/s00249-011-0744-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase (ALDH) catalyzes the conversion of aldehydes to the corresponding acids by means of an NAD(P)(+)-dependent virtually irreversible reaction. In this investigation, the biophysical properties of a recombinant Bacillus licheniformis ALDH (BlALDH) were characterized in detail by analytical ultracentrifuge (AUC) and various spectroscopic techniques. The oligomeric state of BlALDH in solution was determined to be tetrameric by AUC. Far-UV circular dichroism analysis revealed that the secondary structures of BlALDH were not altered in the presence of acetone and ethanol, whereas SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl](05, N-U), at 0.93 M. BlALDH was active at concentrations of urea below 2 M, but it experienced an irreversible unfolding under 8 M denaturant. Taken together, this study provides a foundation for the future structural investigation of BlALDH, a typical member of ALDH superfamily enzymes.
Collapse
Affiliation(s)
- Huei-Fen Lo
- Department of Food Science and Technology, Hungkuang University, Shalu, Taichung City, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Bains J, Leon R, Temke KG, Boulanger MJ. Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400. Protein Sci 2011; 20:1048-59. [PMID: 21495107 DOI: 10.1002/pro.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 11/09/2022]
Abstract
Oxidation of cis-3,4-dehydroadipyl-CoA semialdehyde to cis-3,4-dehydroadipyl-CoA by the aldehyde dehydrogenase, ALDH(C) (EC.1.2.1.77), is an essential step in the metabolism of benzoate in Burkholderia xenovorans LB400. In a previous study, we established a structural blueprint for this novel group of ALDH enzymes. Here, we build significantly on this initial work and propose a detailed reaction mechanism for ALDH(C) based on comprehensive structural and functional investigations of active site residues. Kinetic analyses reveal essential roles for C296 as the nucleophile and E257 as the associated general base. Structural analyses of E257Q and C296A variants suggest a dynamic charge repulsion relationship between E257 and C296 that contributes to the inherent flexibility of E257 in the native enzyme, which is further regulated by E496 and E167. A proton relay network anchored by E496 and supported by E167 and K168 serves to reset E257 for the second catalytic step. We also propose that E167, which is unique to ALDH(C) and its homologs, serves a critical role in presenting the catalytic water to the newly reset E257 such that the enzyme can proceed with deacylation and product release. Collectively, the reaction mechanism proposed for ALDH(C) promotes a greater understanding of these novel ALDH enzymes, the ALDH super-family in general, and benzoate degradation in B. xenovorans LB400.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W3P6, Canada
| | | | | | | |
Collapse
|
41
|
Tsybovsky Y, Krupenko SA. Conserved catalytic residues of the ALDH1L1 aldehyde dehydrogenase domain control binding and discharging of the coenzyme. J Biol Chem 2011; 286:23357-67. [PMID: 21540484 DOI: 10.1074/jbc.m111.221069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The C-terminal domain (C(t)-FDH) of 10-formyltetrahydrofolate dehydrogenase (FDH, ALDH1L1) is an NADP(+)-dependent oxidoreductase and a structural and functional homolog of aldehyde dehydrogenases. Here we report the crystal structures of several C(t)-FDH mutants in which two essential catalytic residues adjacent to the nicotinamide ring of bound NADP(+), Cys-707 and Glu-673, were replaced separately or simultaneously. The replacement of the glutamate with an alanine causes irreversible binding of the coenzyme without any noticeable conformational changes in the vicinity of the nicotinamide ring. Additional replacement of cysteine 707 with an alanine (E673A/C707A double mutant) did not affect this irreversible binding indicating that the lack of the glutamate is solely responsible for the enhanced interaction between the enzyme and the coenzyme. The substitution of the cysteine with an alanine did not affect binding of NADP(+) but resulted in the enzyme lacking the ability to differentiate between the oxidized and reduced coenzyme: unlike the wild-type C(t)-FDH/NADPH complex, in the C707A mutant the position of NADPH is identical to the position of NADP(+) with the nicotinamide ring well ordered within the catalytic center. Thus, whereas the glutamate restricts the affinity for the coenzyme, the cysteine is the sensor of the coenzyme redox state. These conclusions were confirmed by coenzyme binding experiments. Our study further suggests that the binding of the coenzyme is additionally controlled by a long-range communication between the catalytic center and the coenzyme-binding domain and points toward an α-helix involved in the adenine moiety binding as a participant of this communication.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
42
|
Muñoz-Clares RA, González-Segura L, Díaz-Sánchez AG. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. Chem Biol Interact 2010; 191:137-46. [PMID: 21195066 DOI: 10.1016/j.cbi.2010.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
The overall chemical mechanism of the reaction catalyzed by the hydrolytic aldehyde dehydrogenases (ALDHs) involves three main steps: (1) nucleophilic attack of the thiol group of the catalytic cysteine on the carbonyl carbon of the aldehyde substrate; (2) hydride transfer from the tetrahedral thiohemiacetal intermediate to the pyridine ring of NAD(P)(+); and (3) hydrolysis of the resulting thioester intermediate (deacylation). Crystal structures of different ALDHs from several organisms-determined in the absence and presence of bound NAD(P)(+), NAD(P)H, aldehydes, or acid products-showed specific details at the atomic level about the catalytic residues involved in each of the catalytic steps. These structures also showed the conformational flexibility of the nicotinamide half of the cofactor, and of the catalytic cysteinyl and glutamyl residues, the latter being the general base that activates the hydrolytic water molecule in the deacylation step. The architecture of the ALDH active site allows for this conformational flexibility, which, undoubtedly, is crucial for catalysis in these enzymes. Focusing in the deacylation step of the ALDH-catalyzed reaction, here we review and systematize the crystallographic evidence of the structural features responsible for the conformational flexibility of the catalytic glutamyl residue, and for the positioning of the hydrolytic water molecule inside the ALDH active site. Based on the analysis of the available crystallographic data and of energy-minimized models of the thioester reaction intermediate, as well as on the results of theoretical calculations of the pK(a) of the carboxyl group of the catalytic glutamic acid in its three different conformations, we discuss the role that the conformational flexibility of this residue plays in the activation of the hydrolytic water. We also propose a critical participation in the water activation process of the peptide bond to which the catalytic glutamic acid in the intermediate conformation is hydrogen bonded.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF, Mexico.
| | | | | |
Collapse
|
43
|
Gene cloning and biochemical characterization of a NAD(P)+ -dependent aldehyde dehydrogenase from Bacillus licheniformis. Mol Biotechnol 2010; 46:157-67. [PMID: 20495892 DOI: 10.1007/s12033-010-9290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A putative aldehyde dehydrogenase (ALDH) gene, ybcD (gene locus b1467), was identified in the genome sequence of Bacillus licheniformis ATCC 14580. B. licheniformis ALDH (BlALDH) encoded by ybcD consists of 488 amino acid residues with a molecular mass of approximately 52.7 kDa. The coding sequence of ybcD gene was cloned in pQE-31, and functionally expressed in recombinant Escherichia coli M15. BlALDH had a subunit molecular mass of approximately 53 kDa and the molecular mass of the native enzyme was determined to be 220 kDa by FPLC, reflecting that the oilgomeric state of this enzyme is tetrameric. The temperature and pH optima for BlALDH were 37 degrees C and 7.0, respectively. In the presence of either NAD(+) or NADP(+), the enzyme could oxidize a number of aliphatic aldehydes, particularly C3- and C5-aliphatic aldehyde. Steady-state kinetic study revealed that BlALDH had a K (M) value of 0.46 mM and a k (cat) value of 49.38/s when propionaldehyde was used as the substrate. BlALDH did not require metal ions for its enzymatic reaction, whereas the dehydrogenase activity was enhanced by the addition of disulfide reductants, 2-mercaptoethanol and dithiothreitol. Taken together, this study lays a foundation for future structure-function studies with BlALDH, a typical member of NAD(P)(+)-dependent aldehyde dehydrogenases.
Collapse
|
44
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. Enzymes involved in osmolyte synthesis: how does oxidative stress affect osmoregulation in renal cells? Life Sci 2010; 87:515-20. [PMID: 20727361 DOI: 10.1016/j.lfs.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/09/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
Abstract
Kidney medulla cells are exposed to a wide range of changes in the ionic and osmotic composition of their environment as a consequence of the urine concentrating mechanism. During antidiuresis NaCl and urea concentrations increase and an efficient urinary concentrating mechanism is accompanied by medullar hypoxia. Medullar hypotonicity increases reactive oxygen species, a byproduct of mitochondria during ATP production. High intracellular ionic strength, hypoxia and elevated ROS concentration would have deleterious effects on medulla cell function. Medulla cells respond to hypertonicity by accumulating organic osmolytes, such as glycine betaine, glycerophosphorylcholine, sorbitol, inositol, and taurine, the main functions of which are osmoregulation and osmoprotection. The accumulation of compatible osmolytes is thus crucial for the viability of renal medulla cells. Studies about the effects of reactive oxygen species (ROS) on the enzymes involved in the synthesis of osmolytes are scarce. In this review we summarize the information available on the effects of ROS on the enzymes involved in osmolyte synthesis in kidney.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, Sonora, México
| | | |
Collapse
|
45
|
Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 2010; 396:870-82. [PMID: 20026072 DOI: 10.1016/j.jmb.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
46
|
Wong JWY, Chan CL, Tang WK, Cheng CHK, Fong WP. Is antiquitin a mitochondrial Enzyme? J Cell Biochem 2010; 109:74-81. [PMID: 19885858 DOI: 10.1002/jcb.22381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antiquitin is an aldehyde dehydrogenase involved in the catabolism of lysine. Mutations of antiquitin have been linked with the disease pyridoxine-dependent seizures. While it is well established that lysine metabolism takes place in the mitochondrial matrix, evidence for the mitochondrial localization of antiquitin has been lacking. In the present study, the subcellular localization of antiquitin was investigated using human embryonic kidney HEK293 cells. Three different approaches were used. First, confocal microscopic analysis was carried out on cells transiently transfected with fusion constructs containing enhanced green fluorescent protein with different lengths of antiquitin based on the different potential start codons of translation. Second, immunofluorescence staining was used to detect the localization of antiquitin directly in the cells. Third, subcellular fractionation was carried out and the individual fraction was analyzed for the presence of antiquitin by Western blot and flow cytometric analyses. All the results showed that antiquitin was present not only in the cytosol but also in the mitochondria.
Collapse
Affiliation(s)
- Judy Wei-Yan Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
47
|
Langendorf CG, Key TLG, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, Tuck KL, Law RHP, Whisstock JC. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. PLoS One 2010; 5:e9280. [PMID: 20174634 PMCID: PMC2823781 DOI: 10.1371/journal.pone.0009280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/23/2010] [Indexed: 01/14/2023] Open
Abstract
Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.
Collapse
Affiliation(s)
- Christopher G. Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Trevor L. G. Key
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wan-Ting Kan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| |
Collapse
|
48
|
Muñoz-Clares RA, Díaz-Sánchez AG, González-Segura L, Montiel C. Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Arch Biochem Biophys 2009; 493:71-81. [PMID: 19766587 DOI: 10.1016/j.abb.2009.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/05/2009] [Accepted: 09/14/2009] [Indexed: 11/19/2022]
Abstract
The betaine aldehyde dehydrogenases (BADH; EC 1.2.1.8) are so-called because they catalyze the irreversible NAD(P)(+)-dependent oxidation of betaine aldehyde to glycine betaine, which may function as (i) a very efficient osmoprotectant accumulated by both prokaryotic and eukaryotic organisms to cope with osmotic stress, (ii) a metabolic intermediate in the catabolism of choline in some bacteria such as the pathogen Pseudomonas aeruginosa, or (iii) a methyl donor for methionine synthesis. BADH enzymes can also use as substrates aminoaldehydes and other quaternary ammonium and tertiary sulfonium compounds, thereby participating in polyamine catabolism and in the synthesis of gamma-aminobutyrate, carnitine, and 3-dimethylsulfoniopropionate. This review deals with what is known about the kinetics and structural properties of these enzymes, stressing those properties that have only been found in them and not in other aldehyde dehydrogenases, and discussing their mechanistic and regulatory implications.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, México.
| | | | | | | |
Collapse
|
49
|
The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site. J Mol Biol 2008; 385:542-57. [PMID: 19013472 DOI: 10.1016/j.jmb.2008.10.082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/10/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The other--not described before for any ALDH but most likely present in most of them--is located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K(+) ions on the activity and stability of PaBADH.
Collapse
|
50
|
Talfournier F, Pailot A, Stinès-Chaumeil C, Branlant G. Stabilization and conformational isomerization of the cofactor during the catalysis in hydrolytic ALDHs. Chem Biol Interact 2008; 178:79-83. [PMID: 19028478 DOI: 10.1016/j.cbi.2008.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/28/2022]
Abstract
Over the past 15 years, mechanistic and structural aspects were studied extensively for hydrolytic ALDHs. One the most striking feature of nearly all X-ray structures of binary ALDH-NAD(P)(+) complexes is the great conformational flexibility of the NMN moiety of the NAD(P)(+), in particular of the nicotinamide ring. However, the fact that the acylation step is efficient in GAPN (non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase) from Streptococcus mutans and in other hydrolytic ALDHs implies an optimal positioning of the nicotinamide ring relative to the hemithioacetal intermediate within the ternary complex to allow an efficient and stereospecific hydride transfer. Another key aspect of the chemical mechanism of this ALDH family is the requirement for the reduced NMN (NMNH) to move away from the initial position of the NMN for adequate positioning and activation of the deacylating water molecule by invariant E268 for completion of the reaction. In recent years, significant efforts have been made to characterize structural and molecular factors involved in the stabilization of the NMN moiety of the cofactor during the acylation step and to provide structural evidence of conformational isomerization of the cofactor during the catalytic cycle of hydrolytic ALDHs. The results presented here will be discussed for their relevance to the two-step catalytic mechanism and from an evolutionary viewpoint.
Collapse
Affiliation(s)
- François Talfournier
- Faculté des Sciences et Techniques, UMR 7567 CNRS - Nancy Université, Maturation des ARN et Enzymologie Moléculaire, Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | |
Collapse
|