1
|
Qu S, Wang J, Li G, Miao C, Yan L, Wang W. Structural basis for the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109762. [PMID: 40068458 DOI: 10.1016/j.plaphy.2025.109762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 05/07/2025]
Abstract
Fatty acids and uridine diphosphate (UDP)-sugars are essential metabolites involved in the biosynthesis of polysaccharides and lipids, both of which are critical for anther development in plants. Our previous study identified Defective Pollen Wall (DPW), a rice fatty acyl carrier protein reductase (FAR), as a key factor in pollen wall formation. In this study, we demonstrate that the structure of DPW in complex with its cofactor NADP+ exhibits structural similarities to that of UDP-glucose epimerase (UGE). In vitro enzymatic assays utilizing recombinant DPW confirmed its ability to interconvert UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) in an NADP(H)-dependent manner. Mutations in conserved NADP(H)-binding residues abolished both DPW's FAR and UGE activities. In vivo assays showed that the dpw mutation causes UDP-Glc accumulation, disrupting the balance between UDP-Glc and UDP-Gal in rice anthers. Taken together, our findings provide insights into the dual roles of DPW in lipid and UDP-sugar metabolism during rice anther development, shedding light on how plants integrate metabolic pathways through multifunctional enzymes to regulate male reproductive development.
Collapse
Affiliation(s)
- Shanshan Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, The Zhongzhou Laboratory for Integrative Biology, School of Life Sciences, Henan University, Jinming Avenue 1, Kaifeng, 475004, China
| | - Jin Wang
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China; School of Network and Communication Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; SJTU-Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, The Zhongzhou Laboratory for Integrative Biology, School of Life Sciences, Henan University, Jinming Avenue 1, Kaifeng, 475004, China
| | - Liming Yan
- Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, The Zhongzhou Laboratory for Integrative Biology, School of Life Sciences, Henan University, Jinming Avenue 1, Kaifeng, 475004, China; Laboratory of Structural Biology and MOE Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Ye F, Chen Y, Liu J, Gong Z, Zhang S, Lin Q, Zhou B, Liang Y. A water-soluble mycelium polysaccharide from Monascus pilosus: Extraction, structural characterization, immunomodulatory effect and yield enhanced by overexpression of UGE gene. Int J Biol Macromol 2024; 280:136138. [PMID: 39349085 DOI: 10.1016/j.ijbiomac.2024.136138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Mycelium polysaccharide (MPP) from Monascus pilosus with the compositions of glucose, galactose, mannose, glucosamine hydrochloride, rhamnose and arabinose, was obtained using alkaline extracting, and subsequently three purified components (MPP-0, MPP-0.1 and MPP-0.3) were separated. The purity and extraction volume of the MPP-0.1 fraction surpassed those of the other two groups, thus warranting its selection for subsequent experimental investigations. The sample MPP-0.1, with an average molecular weight of 3.7776 × 104 Da, exhibited exceptional thermal stability up to 170 °C. The main glycosidic linkage pattern of MPP-0.1 was structured as→[4)-α-D-Glcp-(1]6 → 4)-α-D-Glcp-(1 → [2)-α-D-Manp-(1]5 → 2)-α-D-Manp-(1 → 5)-β-D-Galf-(1 → 3)-β-D-Galf (1 → 3)-β-D-Galf-(1 → 3)-β-D-Galf-(1→, and branched Glcp, Manp, Galf fragments were connected with the main chain through →4, 6)-α-D-Glcp-(1→, →2, 6)-α-D-Manp-(1 → and →3, 6)-β-D-Galf-(1→. Besides, the up-regulated levels of Nitric oxide (NO), Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and other pro-inflammatory cytokines along with increased phagocytic activity revealed that MPP-0.1 has significant immunomodulatory effect, and can significantly enhance the proliferation and activation of RAW264.7 cells. Finally, the gene UGE (UDP-glucose 4-epimerase) was overexpressed in M. pilosus to increase the MPP production. Results showed that the biomass of the recombinant strain exhibited a remarkable increase of approximately 62.56 ± 1.50 % compared to that of the parental strain, and the extraction yield of MPP increased significantly by 83.19 ± 4.56 %.
Collapse
Affiliation(s)
- Fanyu Ye
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yajuan Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Zihan Gong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Bo Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ying Liang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Da Costa M, Gevaert O, Van Overtveldt S, Lange J, Joosten HJ, Desmet T, Beerens K. Structure-function relationships in NDP-sugar active SDR enzymes: Fingerprints for functional annotation and enzyme engineering. Biotechnol Adv 2021; 48:107705. [PMID: 33571638 DOI: 10.1016/j.biotechadv.2021.107705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Short-chain Dehydrogenase/Reductase enzymes that are active on nucleotide sugars (abbreviated as NS-SDR) are of paramount importance in the biosynthesis of rare sugars and glycosides. Some family members have already been extensively characterized due to their direct implication in metabolic disorders or in the biosynthesis of virulence factors. In this review, we combine the knowledge gathered from studies that typically focused only on one NS-SDR activity with an in-depth analysis and overview of all of the different NS-SDR families (169,076 enzyme sequences). Through this structure-based multiple sequence alignment of NS-SDRs retrieved from public databases, we could identify clear patterns in conservation and correlation of crucial residues. Supported by this analysis, we suggest updating and extending the UDP-galactose 4-epimerase "hexagonal box model" to an "heptagonal box model" for all NS-SDR enzymes. This specificity model consists of seven conserved regions surrounding the NDP-sugar substrate that serve as fingerprint for each specificity. The specificity fingerprints highlighted in this review will be beneficial for functional annotation of the large group of NS-SDR enzymes and form a guide for future enzyme engineering efforts focused on the biosynthesis of rare and specialty carbohydrates.
Collapse
Affiliation(s)
- Matthieu Da Costa
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Ophelia Gevaert
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Joanna Lange
- Bio-Prodict BV, Nieuwe Marktstraat 54E, 6511, AA, Nijmegen, the Netherlands
| | - Henk-Jan Joosten
- Bio-Prodict BV, Nieuwe Marktstraat 54E, 6511, AA, Nijmegen, the Netherlands
| | - Tom Desmet
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Koen Beerens
- Centre for Synthetic Biology - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
4
|
Fushinobu S. Molecular evolution and functional divergence of UDP-hexose 4-epimerases. Curr Opin Chem Biol 2020; 61:53-62. [PMID: 33171387 DOI: 10.1016/j.cbpa.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
UDP-glucose 4-epimerase (GalE) catalyzes the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) and/or the interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) in sugar metabolism. GalEs belong to the short-chain dehydrogenase/reductase superfamily, use a conserved 'transient keto intermediate' mechanism and have variable substrate specificity. GalEs have been classified into three groups based on substrate specificity: group 1 prefers UDP-Glc/Gal, group 3 prefers UDP-GlcNAc/GalNAc, and group 2 has comparable activities for both types of the substrates. The phylogenetic relationship and structural basis for the specificities of GalEs revealed possible molecular evolution of UDP-hexose 4-epimerases in various organisms. Based on the recent advances in studies on GalEs and related enzymes, an updated view of their evolutional diversification is presented.
Collapse
Affiliation(s)
- Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti. J Bacteriol 2019; 201:JB.00801-18. [PMID: 30833352 DOI: 10.1128/jb.00801-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/25/2019] [Indexed: 01/19/2023] Open
Abstract
Sinorhizobium meliloti produces multiple extracellular glycans, including among others, lipopolysaccharides (LPS), and the exopolysaccharides (EPS) succinoglycan (SG) and galactoglucan (GG). These polysaccharides serve cell protective roles. Furthermore, SG and GG promote the interaction of S. meliloti with its host Medicago sativa in root nodule symbiosis. ExoB has been suggested to be the sole enzyme catalyzing synthesis of UDP-galactose in S. meliloti (A. M. Buendia, B. Enenkel, R. Köplin, K. Niehaus, et al. Mol Microbiol 5:1519-1530, 1991, https://doi.org/10.1111/j.1365-2958.1991.tb00799.x). Accordingly, exoB mutants were previously found to be affected in the synthesis of the galactose-containing glycans LPS, SG, and GG and consequently, in symbiosis. Here, we report that the S. meliloti Rm2011 uxs1-uxe-apsS-apsH1-apsE-apsH2 (SMb20458-63) gene cluster directs biosynthesis of an arabinose-containing polysaccharide (APS), which contributes to biofilm formation, and is solely or mainly composed of arabinose. Uxe has previously been identified as UDP-xylose 4-epimerase. Collectively, our data from mutational and overexpression analyses of the APS biosynthesis genes and in vitro enzymatic assays indicate that Uxe functions as UDP-xylose 4- and UDP-glucose 4-epimerase catalyzing UDP-xylose/UDP-arabinose and UDP-glucose/UDP-galactose interconversions, respectively. Overexpression of uxe suppressed the phenotypes of an exoB mutant, evidencing that Uxe can functionally replace ExoB. We suggest that under conditions stimulating expression of the APS biosynthesis operon, Uxe contributes to the synthesis of multiple glycans and thereby to cell protection, biofilm formation, and symbiosis. Furthermore, we show that the C2H2 zinc finger transcriptional regulator MucR counteracts the previously reported CuxR-c-di-GMP-mediated activation of the APS biosynthesis operon. This integrates the c-di-GMP-dependent control of APS production into the opposing regulation of EPS biosynthesis and swimming motility in S. meliloti IMPORTANCE Bacterial extracellular polysaccharides serve important cell protective, structural, and signaling roles. They have particularly attracted attention as adhesives and matrix components promoting biofilm formation, which significantly contributes to resistance against antibiotics. In the root nodule symbiosis between rhizobia and leguminous plants, extracellular polysaccharides have a signaling function. UDP-sugar 4-epimerases are important enzymes in the synthesis of the activated sugar substrates, which are frequently shared between multiple polysaccharide biosynthesis pathways. Thus, these enzymes are potential targets to interfere with these pathways. Our finding of a bifunctional UDP-sugar 4-epimerase in Sinorhizobium meliloti generally advances the knowledge of substrate promiscuity of such enzymes and specifically of the biosynthesis of extracellular polysaccharides involved in biofilm formation and symbiosis in this alphaproteobacterium.
Collapse
|
6
|
Mapping key amino acid residues for the epimerase efficiency and stereospecificity of the sex pheromone biosynthetic short-chain dehydrogenases/reductases of Nasonia. Sci Rep 2019; 9:330. [PMID: 30674966 PMCID: PMC6344473 DOI: 10.1038/s41598-018-37200-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Males of the parasitic wasp genus Nasonia use blends of chiral hydroxylactones as sex pheromones to attract conspecific females. Whereas all Nasonia species use a mixture of (4R,5S)-5-hydroxy-4-decanolide (RS) and 4-methylquinazoline (MQ) as sex pheromones, Nasonia vitripennis evolved (4R,5R)-5-hydroxy-4-decanolide (RR) as an extra sex pheromone component. We recently identified and functionally characterized three short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 that are capable of catalyzing the epimerization of RS to RR via (4R)-5-oxo-4-decanolide (ODL) as intermediate. Despite their very high sequence identities of 88-98%, these proteins differ drastically in their ability to epimerize RS to RR and in their stereoselectivity when reducing ODL to RR/RS. Here, in order to unravel the sequence differences underlying these varying functional properties of NV1027, NV10128 and NV10129, we created chimeras of the three enzymes and monitored their catalytic activities in vitro. The results show that a few amino acid changes at the C-termini and active sites of Nasonia vitripennis SDRs lead to substantially altered RS to RR epimerization and ODL-reduction activities. Thus, our study adds to the understanding of pheromone evolution by showing that subtle mutations in key biosynthetic enzymes can result in drastic effects on the composition of chemical signals.
Collapse
|
7
|
Carbone V, Schofield LR, Sang C, Sutherland-Smith AJ, Ronimus RS. Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid. Proteins 2018; 86:1306-1312. [PMID: 30242905 DOI: 10.1002/prot.25606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/01/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Å. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann-fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenases/reductases superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the E. coli expression host during purification of the recombinant enzyme.
Collapse
Affiliation(s)
- Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Linley R Schofield
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carrie Sang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Ron S Ronimus
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
8
|
Beerens K, Soetaert W, Desmet T. UDP-hexose 4-epimerases: a view on structure, mechanism and substrate specificity. Carbohydr Res 2015; 414:8-14. [PMID: 26162744 DOI: 10.1016/j.carres.2015.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 12/19/2022]
Abstract
UDP-sugar 4-epimerase (GalE) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily of proteins and is one of enzymes in the Leloir pathway. They have been shown to be important virulence factors in a number of Gram-negative pathogens and to be involved in the biosynthesis of different polysaccharide structures. The metabolic disease type III galactosemia is caused by detrimental mutations in the human GalE. GalE and related enzymes display unusual enzymologic, chemical, and stereochemical properties; including irreversible binding of the cofactor NAD and uridine nucleotide-induced activation of this cofactor. These epimerases have been found active on UDP-hexoses, the N-acetylated and uronic acid forms thereof as well as UDP-pentoses. As they are involved in different pathways and functions, a deeper understanding of the enzymes, and their substrate promiscuity and/or selectivity, could lead to drug and vaccine design as well as antibiotic and probiotic development. This review summarizes the research performed on UDP-sugar 4-epimerases' structure, mechanism and substrate promiscuity.
Collapse
Affiliation(s)
- Koen Beerens
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
9
|
Zhang W, Dourado DF, Mannervik B. Evolution of the active site of human glutathione transferase A2-2 for enhanced activity with dietary isothiocyanates. Biochim Biophys Acta Gen Subj 2015; 1850:742-9. [DOI: 10.1016/j.bbagen.2014.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
|
10
|
Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA involves three easily distinguished 4-epimerase enzymes, Gne, Gnu and GnaB. PLoS One 2013; 8:e67646. [PMID: 23799153 PMCID: PMC3682973 DOI: 10.1371/journal.pone.0067646] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/21/2013] [Indexed: 11/29/2022] Open
Abstract
We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation.
Collapse
|
11
|
Beerens K, Soetaert W, Desmet T. Characterization and mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. Appl Microbiol Biotechnol 2012; 97:7733-40. [DOI: 10.1007/s00253-012-4635-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/15/2022]
|
12
|
Singh S, Phillips GN, Thorson JS. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep 2012; 29:1201-37. [PMID: 22688446 DOI: 10.1039/c2np20039b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides.
Collapse
Affiliation(s)
- Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
13
|
Bhatt VS, Guan W, Xue M, Yuan H, Wang PG. Insights into role of the hydrogen bond networks in substrate recognition by UDP-GalNAc 4-epimerases. Biochem Biophys Res Commun 2011; 412:232-7. [PMID: 21810411 PMCID: PMC3441825 DOI: 10.1016/j.bbrc.2011.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 10/18/2022]
Abstract
UDP-hexose 4-epimerases are critical in galactose metabolism and often important in lipopolysaccharide biosynthesis as well. Three groups of these enzymes have been reported based on their substrate specificity towards non-acetylated substrates (group 1), dual specificity towards N-acetylated and non-acetylated substrates (group 2) and specificity towards N-acetylated substrates (group 3). We recently reported the structure of a novel UDP-GalNAc 4-epimerase called WbgU and based on the structure proposed a model of specific substrate recognition by UDP-GalNAc 4-epimerases. In this work, we present an analysis of the proposed model of substrate recognition using site-directed mutagenesis of WbgU and crystal structure of the His305Ala mutant. This investigation reveals that the wild-type activity of WbgU is retained in most single-point mutants targeting the active site. However, a graded loss in activity is observed in double-and triple-point mutants with the quadruple-point mutant being completely inactive corroborating the proposed rationale of substrate recognition. Furthermore, crystal structure of the His305Ala mutant shows that the structure is significantly similar to the wild-type WbgU, albeit a loss in the critical hydrogen bond network seated at His305 and ensuing minor conformational changes. It is inferred that the specific and non-specific interactions throughout the active site confer it sufficient elasticity to sustain wild-type activity for several of the single-point mutations.
Collapse
Affiliation(s)
- Veer Sandeep Bhatt
- Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Wanyi Guan
- National Glycoengineering Research Center and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Mengyang Xue
- National Glycoengineering Research Center and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Huiqing Yuan
- School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng George Wang
- Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|