1
|
Hosseini SM, Nemati S, Karimi-Abdolrezaee S. Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury. Stem Cell Reports 2024; 19:1451-1473. [PMID: 39303705 PMCID: PMC11561464 DOI: 10.1016/j.stemcr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Neural degeneration is a hallmark of spinal cord injury (SCI). Multipotent neural precursor cells (NPCs) have the potential to reconstruct the damaged neuron-glia network due to their tri-lineage capacity to generate neurons, astrocytes, and oligodendrocytes. However, astrogenesis is the predominant fate of resident or transplanted NPCs in the SCI milieu adding to the abundant number of resident astrocytes in the lesion. How NPC-derived astrocytes respond to the inflammatory milieu of SCI and the mechanisms by which they contribute to the post-injury recovery processes remain largely unknown. Here, we uncover that activated NPC-derived astrocytes exhibit distinct molecular signature that is immune modulatory and foster neurogenesis, neuronal maturity, and synaptogenesis. Mechanistically, NPC-derived astrocytes perform regenerative matrix remodeling by clearing inhibitory chondroitin sulfate proteoglycans (CSPGs) from the injury milieu through LAR and PTP-σ receptor-mediated endocytosis and the production of ADAMTS1 and ADAMTS9, while most resident astrocytes are pro-inflammatory and contribute to the pathologic deposition of CSPGs. These novel findings unravel critical mechanisms of NPC-mediated astrogenesis in SCI repair.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Shiva Nemati
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada; Children Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Ayla S, Karakoc E, Byrne YY, Parlayan C, Keskin I, Karahuseyinoglu S, Taskiran A, Oktem G. Splicing variants of versican in CD133 +/CD44 + prostate cancer stem cells. Pathol Res Pract 2024; 260:155440. [PMID: 38964119 DOI: 10.1016/j.prp.2024.155440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
A cancer mass is composed of a heterogeneous group of cells, a small part of which constitutes the cancer stem cells since they are less differentiated and have a high capacity to develop cancer. Versican is an extracellular matrix protein located in many human tissues. The mRNA of versican has been shown to have "splicing patterns" as detected by RT-PCR, northern blot analysis, and cDNA sequencing. Based on this knowledge this study aims to reveal the splice variants of versican molecules, which are thought to be involved in the pathogenesis of the DU-145 human prostatic carcinoma cell line and prostatic cancer stem cells isolated from this cell line. In this study, RWPE-1 normal prostatic and DU-145 human prostate cancer cell lines have been used. Prostatic cancer stem cells and the remaining group of non-prostatic-cancer stem cells (bulk population) were isolated according to their CD133+/CD44+. RNA was isolated in all groups, and sequence analysis was accomplished for splicing variants by Illumina NextSeq 500 sequencing system. The results were analyzed by bioinformatic evaluation. As five isoforms of the versican gene in the differential transcript expression are analyzed, it was observed that a significant change was only found in the isoforms Versican 0 and Versican 1. In this study, we explored the function of this molecule which we think to be effective in cancer progression, and suggested that more valuable results can be obtained after the accomplishment of in vivo experiments.
Collapse
Affiliation(s)
- Sule Ayla
- Istanbul Medeniyet University, School of Medicine, Department of Histology and Embryology, Istanbul 34700, Turkey.
| | - Emre Karakoc
- Wellcome Sanger Institute, Cambridge, England, United Kingdom
| | - Yasemin Yozgat Byrne
- Research Institute for Health Sciences and Technologies (SABITA), Cancer Research Center, Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey
| | - Cuneyd Parlayan
- Bahçeşehir University School of Medicine, Department of Biostatistics and Medical Informatics, Sahrayıcedit, Istanbul 34353, Turkey
| | - Ilknur Keskin
- Research Institute for Health Sciences and Technologies (SABITA), Cancer Research Center, Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey; Istanbul Medipol University, School of Medicine, Department of Histology and Embryology, Istanbul 34810, Turkey
| | - Sercin Karahuseyinoglu
- Koc University, School of Medicine, Department of Histology and Embryology, Sariyer, Istanbul 34450, Turkey
| | - Aysegul Taskiran
- Ege University, School of Medicine, Department of Histology and Embryology, Bornova, Izmir 35100, Turkey
| | - Gulperi Oktem
- Ege University, School of Medicine, Department of Histology and Embryology, Bornova, Izmir 35100, Turkey
| |
Collapse
|
3
|
Lautert-Dutra W, Melo CM, Chaves LP, Souza FC, Crozier C, Sundby AE, Woroszchuk E, Saggioro FP, Avante FS, dos Reis RB, Squire JA, Bayani J. Identification of tumor-agnostic biomarkers for predicting prostate cancer progression and biochemical recurrence. Front Oncol 2023; 13:1280943. [PMID: 37965470 PMCID: PMC10641020 DOI: 10.3389/fonc.2023.1280943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The diverse clinical outcomes of prostate cancer have led to the development of gene signature assays predicting disease progression. Improved prostate cancer progression biomarkers are needed as current RNA biomarker tests have varying success for intermediate prostate cancer. Interest grows in universal gene signatures for invasive carcinoma progression. Early breast and prostate cancers share characteristics, including hormone dependence and BRCA1/2 mutations. Given the similarities in the pathobiology of breast and prostate cancer, we utilized the NanoString BC360 panel, comprising the validated PAM50 classifier and pathway-specific signatures associated with general tumor progression as well as breast cancer-specific classifiers. This retrospective cohort of primary prostate cancers (n=53) was stratified according to biochemical recurrence (BCR) status and the CAPRA-S to identify genes related to high-risk disease. Two public cohort (TCGA-PRAD and GSE54460) were used to validate the results. Expression profiling of our cohort uncovered associations between PIP and INHBA with BCR and high CAPRA-S score, as well as associations between VCAN, SFRP2, and THBS4 and BCR. Despite low levels of the ESR1 gene compared to AR, we found strong expression of the ER signaling signature, suggesting that BCR may be driven by ER-mediated pathways. Kaplan-Meier and univariate Cox proportional hazards regression analysis indicated the expression of ESR1, PGR, VCAN, and SFRP2 could predict the occurrence of relapse events. This is in keeping with the pathways represented by these genes which contribute to angiogenesis and the epithelial-mesenchymal transition. It is likely that VCAN works by activating the stroma and remodeling the tumor microenvironment. Additionally, SFRP2 overexpression has been associated with increased tumor size and reduced survival rates in breast cancer and among prostate cancer patients who experienced BCR. ESR1 influences disease progression by activating stroma, stimulating stem/progenitor prostate cancer, and inducing TGF-β. Estrogen signaling may therefore serve as a surrogate to AR signaling during progression and in hormone-refractory disease, particularly in prostate cancer patients with stromal-rich tumors. Collectively, the use of agnostic biomarkers developed for breast cancer stratification has facilitated a precise clinical classification of patients undergoing radical prostatectomy and highlighted the therapeutic potential of targeting estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- William Lautert-Dutra
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Camila M. Melo
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luiz P. Chaves
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Francisco C. Souza
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cheryl Crozier
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Adam E. Sundby
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Elizabeth Woroszchuk
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fabiano P. Saggioro
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Filipe S. Avante
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rodolfo B. dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jeremy A. Squire
- Department of Genetics, Medical School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Jane Bayani
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Deichaite I, Sears TJ, Sutton L, Rebibo D, Morgan K, Nelson T, Rose B, Tamayo P, Ferrara N, Asimakopoulos F, Carter H. Differential regulation of TNFα and IL-6 expression contributes to immune evasion in prostate cancer. J Transl Med 2022; 20:527. [PMID: 36371231 PMCID: PMC9652804 DOI: 10.1186/s12967-022-03731-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The role of the inflammatory milieu in prostate cancer progression is not well understood. Differences in inflammatory signaling between localized and metastatic disease may point to opportunities for early intervention. METHODS We modeled PCa disease progression by analyzing RNA-seq of localized vs. metastatic patient samples, followed by CIBERSORTx to assess their immune cell populations. The VHA CDW registry of PCa patients was analyzed for anti-TNF clinical outcomes. RESULTS We observed statistically significant opposing patterns of IL-6 and TNFα expression between localized and metastatic disease. IL-6 was robustly expressed in localized disease and downregulated in metastatic disease. The reverse was observed with TNFα expression. Metastatic disease was also characterized by downregulation of adhesion molecule E-selectin, matrix metalloproteinase ADAMTS-4 and a shift to M2 macrophages whereas localized disease demonstrated a preponderance of M1 macrophages. Treatment with anti-TNF agents was associated with earlier stage disease at diagnosis. CONCLUSIONS Our data points to clearly different inflammatory contexts between localized and metastatic prostate cancer. Primary localized disease demonstrates local inflammation and adaptive immunity, whereas metastases are characterized by immune cold microenvironments and a shift towards resolution of inflammation and tissue repair. Therapies that interfere with these inflammatory networks may offer opportunities for early intervention in monotherapy or in combination with immunotherapies and anti-angiogenic approaches.
Collapse
Affiliation(s)
- Ida Deichaite
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Leisa Sutton
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel Rebibo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kylie Morgan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tyler Nelson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brent Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Papadas A, Deb G, Cicala A, Officer A, Hope C, Pagenkopf A, Flietner E, Morrow ZT, Emmerich P, Wiesner J, Arauz G, Bansal V, Esbona K, Capitini CM, Matkowskyj KA, Deming DA, Politi K, Abrams SI, Harismendy O, Asimakopoulos F. Stromal remodeling regulates dendritic cell abundance and activity in the tumor microenvironment. Cell Rep 2022; 40:111201. [PMID: 35977482 PMCID: PMC9402878 DOI: 10.1016/j.celrep.2022.111201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulatory type 1 conventional dendritic cells (cDC1s) engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. The paradoxical accumulation of “poised” cDC1s within stromal sheets is unlikely to simply reflect passive exclusion from tumor cores. Drawing parallels with embryonic morphogenesis, we hypothesized that invasive margin stromal remodeling generates developmentally conserved cell fate cues that regulate cDC1 behavior. We find that, in human T cell-inflamed tumors, CD8+ T cells penetrate tumor nests, whereas cDC1s are confined within adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an essential organ-sculpting modification in development. VCAN is necessary, and its proteolytic fragment (matrikine) versikine is sufficient for cDC1 accumulation. Versikine does not influence tumor-seeding pre-DC differentiation; rather, it orchestrates a distinctive cDC1 activation program conferring exquisite sensitivity to DNA sensing, supported by atypical innate lymphoid cells. Thus, peritumoral stroma mimicking embryonic provisional matrix remodeling regulates cDC1 abundance and activity to elicit T cell-inflamed tumor microenvironments. T cell-inflamed tumor microenvironments are a prerequisite for immunotherapy efficacy; however, why some tumors are inflamed and others not remains poorly understood. Papadas et al. link stromal reaction dynamics with T cell-induced inflammation. Peritumoral stroma emulating embryonic provisional matrix remodeling regulates cDC1-NK-CD8+ crosstalk to promote T cell repriming and penetration into tumor nests.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Adam Officer
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Chelsea Hope
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Pagenkopf
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Evan Flietner
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary T Morrow
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip Emmerich
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Varun Bansal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Karla Esbona
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian M Capitini
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Division of Hematology and Oncology, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA; Division of Biomedical Informatics, Department of Medicine, University of California, San Diego (UCSD), Moores Cancer Center, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
6
|
Lind T, Melo FR, Gustafson AM, Sundqvist A, Zhao XO, Moustakas A, Melhus H, Pejler G. Mast Cell Chymase Has a Negative Impact on Human Osteoblasts. Matrix Biol 2022; 112:1-19. [PMID: 35908613 DOI: 10.1016/j.matbio.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Mast cells have been linked to osteoporosis and bone fractures, and in a previous study we found that mice lacking a major mast cell protease, chymase, develop increased diaphyseal bone mass. These findings introduce the possibility that mast cell chymase can regulate bone formation, but the underlying mechanism(s) has not previously been investigated. Here we hypothesized that chymase might exert such effects through a direct negative impact on osteoblasts, i.e., the main bone-building cells. Indeed, we show that chymase has a distinct impact on human primary osteoblasts. Firstly, chymase was shown to have pronounced effects on the morphological features of osteoblasts, including extensive cell contraction and actin reorganization. Chymase also caused a profound reduction in the output of collagen from the osteoblasts, and was shown to degrade osteoblast-secreted fibronectin and to activate pro-matrix metallopeptidase-2 released by the osteoblasts. Further, chymase was shown to have a preferential impact on the gene expression, protein output and phosphorylation status of TGFβ-associated signaling molecules. A transcriptomic analysis was conducted and revealed a significant effect of chymase on several genes of importance for bone metabolism, including a reduction in the expression of osteoprotegerin, which was confirmed at the protein level. Finally, we show that chymase interacts with human osteoblasts and is taken up by the cells. Altogether, the present findings provide a functional link between mast cell chymase and osteoblast function, and can form the basis for a further evaluation of chymase as a potential target for intervention in metabolic bone diseases.
Collapse
Affiliation(s)
- Thomas Lind
- Uppsala University Hospital, Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala, Sweden.
| | - Fabio Rabelo Melo
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Uppsala University Hospital, Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala, Sweden; Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Anders Sundqvist
- Uppsala University, Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala, Sweden
| | - Xinran O Zhao
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Aristidis Moustakas
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Håkan Melhus
- Uppsala University Hospital, Department of Medical Sciences, Section of Clinical Pharmacology, Uppsala, Sweden
| | - Gunnar Pejler
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| |
Collapse
|
7
|
Luthold C, Hallal T, Labbé DP, Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers (Basel) 2022; 14:cancers14122887. [PMID: 35740556 PMCID: PMC9221142 DOI: 10.3390/cancers14122887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite advancements made in diagnosis and treatment, prostate cancer remains the second most diagnosed cancer among men worldwide in 2020, and the first in North America and Europe. Patients with localized disease usually respond well to first-line treatments, however, up to 30% develop castration-resistant prostate cancer (CRPC), which is often metastatic, making this stage of the disease incurable and ultimately fatal. Over the last years, interest has grown into the extracellular matrix (ECM) stiffening as an important mediator of diseases, including cancers. While this process is increasingly well-characterized in breast cancer, a similar in-depth look at ECM stiffening remains lacking for prostate cancer. In this review, we scrutinize the current state of literature regarding ECM stiffening in prostate cancer and its potential association with disease progression and castration resistance.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Correspondence: (D.P.L.); (F.B.)
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (D.P.L.); (F.B.)
| |
Collapse
|
8
|
Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in Cancer: Friends or Enemies? A Special Focus on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14081902. [PMID: 35454809 PMCID: PMC9024587 DOI: 10.3390/cancers14081902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Proteoglycans affect multiple molecular and cellular processes during the progression of solid tumors with a highly desmoplastic stroma, such as HCC. Due to their role in enhancing or limiting the traits of cancer cells underlying their aggressiveness, such as proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and stemness, these macromolecules could be exploited as molecular targets or therapeutic agents. Proteoglycans, such as biglycan, versican, syndecan-1, glypican-3, and agrin, promote HCC cell proliferation, EMT, and angiogenesis, while endostatin and proteoglycan 4 were shown to impair cancer neovascularization or to enhance the sensitivity of HCC cells to drugs, such as sorafenib and regorafenib. Based on this evidence, interventional strategies involving the use of humanized monoclonal antibodies, T cells engineered with chimeric antigen receptors, or recombinant proteins mimicking potentially curative proteoglycans, are being employed or may be adopted in the near future for the treatment of HCC. Abstract Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
- Correspondence:
| | - Gianluigi Gigante
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Rosanna Scialpi
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Serena Mancarella
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBEREHD and University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Gianluigi Giannelli
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| |
Collapse
|
9
|
Akcora-Yildiz D, Yukselten Y, Sunguroglu M, Ugur HC, Sunguroglu A. IL-33 induces ADAMTS5 expression and cell migration in glioblastoma multiforme. Med Oncol 2022; 39:22. [PMID: 34982269 DOI: 10.1007/s12032-021-01590-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme (GBM), characterized by a high rate of proliferation and migration capacity, is an incurable brain tumor in adults. Interleukin-33 (IL-33), a member of the IL-1 cytokine superfamily, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), a family of zinc dependent metalloproteinases, are known to have essential roles in GBM migration and invasion. Previous studies have separately revealed elevated expressions of IL-33 and ADAMTS5 in GBM; however, the interaction between IL-33 and ADAMTS5 in GBM remains unclear. Here, using publically available GlioVis and GEPIA programs, we showed that mRNA expressions of IL-33 and ADAMTS5 are significantly high in GBM cells, and a positive correlation between IL-33 and ADAMTS5 was also determined in these cells. In parallel with the mRNA data of IL-33 and ADAMTS5, by Western blot analysis, protein levels were found to be elevated in GBM tissues and increased gradually with the disease progression. Primary GBM cells and low-grade glioma cells were then treated with IL-33 to examine its stimulating effect on ADAMTS5 expression. Exposure to IL-33 raised ADAMTS5 protein levels in a dose-dependent manner. Finally, the wound-healing method was performed to confirm the impact of IL-33 on migration in primary GBM cells. IL-33 promoted migration of primary GBM cells three times higher than untreated GBM cells. Thus, the current study suggests for the first time that IL-33 might have a role in playing a part in GBM progression through induction of ADAMTS5 expression and promotion of migration in GBM cells.
Collapse
Affiliation(s)
- Dilara Akcora-Yildiz
- Department of Biology, Science & Art Faculty, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Yunus Yukselten
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.,Research Laboratories for Health Science, Y Gen Biotechnology Company Ltd., Ankara, Turkey
| | - Merve Sunguroglu
- Department of Medical Biology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Caglar Ugur
- Department of Neurosurgery, School of Medicine, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
10
|
Fox E, Jones R, Samanta R, Summers C. Characterising the transcriptome of hypersegmented human neutrophils. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.17440.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Mature human neutrophils are characterised by their multilobed nuclear morphology. Neutrophil hypersegmentation, a pathologic nuclear phenotype, has been described in the alveolar compartment of patients with acute respiratory distress syndrome and in several other contexts. This study aimed to characterise the transcriptional changes associated with neutrophil hypersegmentation. Methods: A model of hypersegmentation was established by exposing healthy peripheral blood neutrophils to the angiotensin converting enzyme inhibitor (ACEi) captopril. Laser capture microdissection (LCM) was then adapted to isolate a population of hypersegmented neutrophils. Transcriptomic analysis of microdissected hypersegmented neutrophils was undertaken using ribonucleic acid (RNA) sequencing. Differential gene expression (DEG) and enrichment pathway analysis were conducted to investigate the mechanisms underlying hypersegmentation. Results: RNA-Seq analysis revealed the transcriptomic signature of hypersegmented neutrophils, with five genes differentially expressed. VCAN, PADI4 and DUSP4 were downregulated, while LTF and PSMC4 were upregulated. Modulated pathways included histone modification, protein-DNA complex assembly and antimicrobial humoral response. The role of PADI4 was further validated using the small molecule inhibitor, Cl-amidine. Conclusions: Hypersegmented neutrophils display a marked transcriptomic signature, characterised by the differential expression of five genes. This study provides insights into the mechanisms underlying neutrophil hypersegmentation and describes a novel method to isolate and sequence neutrophils based on their morphologic subtype.
Collapse
|
11
|
The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review. Int J Mol Sci 2021; 22:ijms22073608. [PMID: 33808504 PMCID: PMC8036576 DOI: 10.3390/ijms22073608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related morbidity in men. Potentially important regulators of prostate cancer progression are members of the metzincin superfamily of proteases, principally through their regulation of the extracellular matrix. It is therefore timely to review the role of the metzincin superfamily in prostate cancer and its progression to better understand their involvement in this disease. A systematic-like search strategy was conducted. Articles that investigated the roles of members of the metzincin superfamily and their key regulators in prostate cancer were included. The extracted articles were synthesized and data presented in tabular and narrative forms. Two hundred and five studies met the inclusion criteria. Of these, 138 investigated the role of the Matrix Metalloproteinase (MMP) subgroup, 34 the Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroup, 22 the A Disintegrin and Metalloproteinase (ADAM) subgroup, 8 the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroup and 53 the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators, noting that several studies investigated multiple family members. There was clear evidence that specific members of the metzincin superfamily are involved in prostate cancer progression, which can be either in a positive or negative manner. However, further understanding of their mechanisms of action and how they may be used as prognostic indicators or molecular targets is required.
Collapse
|
12
|
Zhu Z, Xu J, Wu X, Lin S, Li L, Ye W, Huang Z. In Silico Identification of Contradictory Role of ADAMTS5 in Hepatocellular Carcinoma. Technol Cancer Res Treat 2021; 20:1533033820986826. [PMID: 33522433 PMCID: PMC7871357 DOI: 10.1177/1533033820986826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: ADAMTS5 has different roles in multiple types of cancers
and participates in various molecular mechanisms. However, the prognostic
value of ADAMTS5 in patients with hepatocellular carcinoma
(HCC) still remains unclear. We carried the study to evaluate the prognostic
value and identified underlying molecular mechanisms in HCC. Methods: Firstly, the association of ADAMTS5 expression and
clinicopathological parameters was evaluated by in GSE14520. Next,
ADAMTS5 expression in HCC was performed using GSE14520,
GSE36376, GSE76427 and The Cancer Genome Atlas (TCGA) profile. Furthermore,
Kaplan-Meier analysis, Univariate and Multivariate Cox regression analysis,
subgroup analysis was performed to evaluate the prognostic value of
ADAMTS5 in HCC. Finally, GO enrichment analysis, gene set
enrichment analysis (GSEA) and weighted gene co-expression network analysis
(WGCNA) were performed to revealed underlying molecular mechanisms. Result: The expression of ADAMTS5 was positively correlated with the
development of HCC. Next, high ADAMTS5 expression was
significantly associated with poorer survival (all P <
0.05) and the impact of ADAMTS5 on all overall survival
(OS), disease-free survival (DFS), relapse-free survival (RFS), disease
specific survival (DSS) and progression free interval (PFI) was specific for
HCC among other 29 cancer types. Subgroup analysis showed that
ADAMTS5 overexpression was significantly associated
with poorer OS in patients with HCC. Finally, ADAMTS5 might
participate in the status conversion from metabolic-dominant to
extracellular matrix-dominant, and the activation of ECM-related biological
process might contribute to high higher mortality risk for patients with
HCC. Conclusion: ADAMTS5 may play an important role in the progression of
HCC, and may be considered as a novel and effective biomarker for predicting
prognosis for patients with HCC.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jiuhua Xu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaofang Wu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Sihao Lin
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Weipeng Ye
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China.,Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
13
|
Chen Z, Ge M. Discovering pathways in benign prostate hyperplasia: A functional genomics pilot study. Exp Ther Med 2021; 21:242. [PMID: 33603850 PMCID: PMC7851599 DOI: 10.3892/etm.2021.9673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is one of the well-known urological neoplasms common in males with an increasing number of associated deaths in aging males. It causes uncomfortable urinary symptoms, including urine flow blockage, and may cause bladder, urinary tract or kidney problems. The histopathological and clinical knowledge regarding BPH is limited. In the present study, an in silico approach was applied that uses genome-scale microarray expression data to discover a wide range of protein-protein interactions in addition to focusing on specific genes responsible for BPH to develop prognostic biomarkers. Various genes that were differentially expressed in BPH were identified. Gene and functional annotation clusters were determined and an interaction analysis with disease phenotypes of BPH was performed, as well as an RNA tissue specificity analysis. Furthermore, a molecular docking study of certain short-listed gene biomarkers, namely anterior gradient 2 (AGR2; PDB ID: 2LNT), steroid 5α-reductase 2 (PDB ID: 6OQX), zinc finger protein 3 (PDB ID: 5T00) and collagen type XII α1 chain (PDB ID: 1U5M), was performed in order to identify alternative Chinese herbal agents for the treatment of BPH. Data from the present study revealed that AGR2 receptor (PDB ID: 2LNT) and berberine (Huang Bo) form the most stable complex and therefore may be assessed in further pharmacological studies for the treatment of BPH.
Collapse
Affiliation(s)
- Zheling Chen
- Department of Traditional Chinese Medicine, Zhenxin Community Health Service Center, Shanghai 201824, P.R. China
| | - Minyao Ge
- Department of Urology Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
14
|
Dituri F, Scialpi R, Schmidt TA, Frusciante M, Mancarella S, Lupo LG, Villa E, Giannelli G. Proteoglycan-4 is correlated with longer survival in HCC patients and enhances sorafenib and regorafenib effectiveness via CD44 in vitro. Cell Death Dis 2020; 11:984. [PMID: 33199679 PMCID: PMC7669886 DOI: 10.1038/s41419-020-03180-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Sorafenib and regorafenib administration is among the preferential approaches to treat hepatocellular carcinoma (HCC), but does not provide satisfactory benefits. Intensive crosstalk occurring between cancer cells and other multiple non-cancerous cell subsets present in the surrounding microenvironment is assumed to affect tumor progression. This interplay is mediated by a number of soluble and structural extracellular matrix (ECM) proteins enriching the stromal milieu. Here we assess the HCC tumor expression of the ECM protein proteoglycan 4 (PRG4) and its potential pharmacologic activity either alone, or in combination with sorafenib and regorafenib. PRG4 mRNA levels resulted strongly correlated with increased survival rate of HCC patients (p = 0.000) in a prospective study involving 78 HCC subjects. We next showed that transforming growth factor beta stimulates PRG4 expression and secretion by primary human HCC cancer-associated fibroblasts, non-invasive HCC cell lines, and ex vivo specimens. By functional tests we found that recombinant human PRG4 (rhPRG4) impairs HCC cell migration. More importantly, the treatment of HCC cells expressing CD44 (the main PRG4 receptor) with rhPRG4 dramatically enhances the growth-limiting capacity of sorafenib and regorafenib, whereas not significantly affecting cell proliferation per se. Conversely, rhPRG4 only poorly potentiates drug effectiveness on low CD44-expressing or stably CD44-silenced HCC cells. Overall, these data suggest that the physiologically-produced compound PRG4 may function as a novel tumor-suppressive agent by strengthening sorafenib and regorafenib effects in the treatment of HCC.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy.
| | - Rosanna Scialpi
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Centre, Farmington, CT, USA
| | - Martina Frusciante
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| | - Luigi Giovanni Lupo
- University of Bari, Department of General Surgery and Liver Transplantation, Policlinico - piazza Giulio Cesare 14, 70125, Bari, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| |
Collapse
|
15
|
Zeng T, Gan J, Liu Y, Shi L, Lu Z, Xue Y, Xiong R, Liu L, Yang Z, Lin Y, Yuan J. ADAMTS-5 Decreases in Aortas and Plasma From Aortic Dissection Patients and Alleviates Angiotensin II-Induced Smooth Muscle-Cell Apoptosis. Front Cardiovasc Med 2020; 7:136. [PMID: 32923459 PMCID: PMC7456925 DOI: 10.3389/fcvm.2020.00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Acute aortic dissection (AAD) is associated with degeneration of the aortic media and accompanied by vascular extracellular matrix (ECM) remodeling. Recently, a disintegrin and metalloproteinase with thrombospondin type 1 motifs-5 (ADAMTS-5) has been reported to be involved in ECM remodeling and vascular diseases. The aim of this study was to examine ADAMTS-5 levels in AAD patients and investigate the underlying mechanisms. Methods: Aortic tissue samples were collected from normal donors and AAD patients, and the expression of ADAMTS-5 was analyzed in all aortic tissues. In addition, plasma levels of ADAMTS-5, matrix metalloproteinase (MMP)-2 and MMP-9, and tumor necrosis factor-α (TNF-α) were measured in repeated samples from AAD patients and compared to the non-AAD (NAD) group. In addition, we investigated the effects of ADAMTS-5 in smooth muscle cell (SMC) apoptosis. Results: The results showed that ADAMTS-5 expression was significantly reduced in the aortas of AAD patients and that SMCs were the main source of ADAMTS-5. In addition, the plasma ADAMTS-5 level was lower, but plasma MMP-2, MMP-9, and TNF-α levels were increased in the AAD patients. Multivariate linear regression analyses showed that a decreased ADAMTS-5 level in patients was independently associated with an increased risk of AAD. Furthermore, recombinant human ADAMTS-5 significantly ameliorated angiotensin (Ang II)-evoked SMC apoptosis. Conclusions: ADAMTS-5 shows promise as a novel potential biomarker for AAD, and regulation of SMC is a possible mechanism for the effects of ADAMTS-5.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianting Gan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yan Xue
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rixin Xiong
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zicong Yang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Yuan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
16
|
ADAMTS-15 Has a Tumor Suppressor Role in Prostate Cancer. Biomolecules 2020; 10:biom10050682. [PMID: 32354091 PMCID: PMC7277637 DOI: 10.3390/biom10050682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular matrix remodeling has emerged as an important factor in many cancers. Proteoglycans, including versican (VCAN), are regulated via cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alterations in the balance between Proteoglycans and ADAMTS enzymes have been proposed to contribute to cancer progression. Here, we analyzed the expression of ADAMTS-15 in human prostate cancer, and investigated the effects of enforced expression in prostate cancer cell lines. ADAMTS-15 was found to be expressed in human prostate cancer biopsies with evidence of co-localization with VCAN and its bioactive cleavage fragment versikine. Enforced expression of ADAMTS-15, but not a catalytically-inactive version, decreased cell proliferation and migration of the ‘castrate-resistant’ PC3 prostate cancer cell line in vitro, with survival increased. Analysis of ‘androgen-responsive’ LNCaP prostate cancer cells in vivo in NOD/SCID mice revealed that ADAMTS-15 expression caused slower growing tumors, which resulted in increased survival. This was not observed in castrated mice or with cells expressing catalytically-inactive ADAMTS-15. Collectively, this research identifies the enzymatic function of ADAMTS-15 as having a tumor suppressor role in prostate cancer, possibly in concert with androgens, and that VCAN represents a likely key substrate, highlighting potential new options for the clinic.
Collapse
|
17
|
Santamaria S. ADAMTS-5: A difficult teenager turning 20. Int J Exp Pathol 2020; 101:4-20. [PMID: 32219922 DOI: 10.1111/iep.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 was identified in 1999 as one of the enzymes responsible for cleaving aggrecan, the major proteoglycan in articular cartilage. Studies in vitro, ex vivo and in vivo have validated ADAMTS-5 as a target in osteoarthritis (OA), a disease characterized by extensive degradation of aggrecan. For this reason, it attracted the interest of many research groups aiming to develop a therapeutic treatment for OA patients. However, ADAMTS-5 proteoglycanase activity is not only involved in the dysregulated aggrecan proteolysis, which occurs in OA, but also in the physiological turnover of other related proteoglycans. In particular, versican, a major ADAMTS-5 substrate, plays an important structural role in heart and blood vessels and its proteolytic processing by ADAMTS-5 must be tightly regulated. On the occasion of the 20th anniversary of the discovery of ADAMTS-5, this review looks at the evidence for its detrimental role in OA, as well as its physiological turnover of cardiovascular proteoglycans. Moreover, the other potential functions of this enzyme are highlighted. Finally, challenges and emerging trends in ADAMTS-5 research are discussed.
Collapse
|
18
|
Mohamedi Y, Fontanil T, Cobo T, Cal S, Obaya AJ. New Insights into ADAMTS Metalloproteases in the Central Nervous System. Biomolecules 2020; 10:biom10030403. [PMID: 32150898 PMCID: PMC7175268 DOI: 10.3390/biom10030403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Components of the extracellular matrix (ECM) are key players in regulating cellular functions throughout the whole organism. In fact, ECM components not only participate in tissue organization but also contribute to processes such as cellular maintenance, proliferation, and migration, as well as to support for various signaling pathways. In the central nervous system (CNS), proteoglycans of the lectican family, such as versican, aggrecan, brevican, and neurocan, are important constituents of the ECM. In recent years, members of this family have been found to be involved in the maintenance of CNS homeostasis and to participate directly in processes such as the organization of perineural nets, the regulation of brain plasticity, CNS development, brain injury repair, axonal guidance, and even the altering of synaptic responses. ADAMTSs are a family of “A disintegrin and metalloproteinase with thrombospondin motifs” proteins that have been found to be involved in a multitude of processes through the degradation of lecticans and other proteoglycans. Recently, alterations in ADAMTS expression and activity have been found to be involved in neuronal disorders such as stroke, neurodegeneration, schizophrenia, and even Alzheimer’s disease, which in turn may suggest their potential use as therapeutic targets. Herein, we summarize the different roles of ADAMTSs in regulating CNS events through interactions and the degradation of ECM components (more specifically, the lectican family of proteoglycans).
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Asturias, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
19
|
Lu W, He Z, Shi J, Wang Z, Wu W, Liu J, Kang H, Li F, Liang S. AMD3100 Attenuates Post-Traumatic Osteoarthritis by Maintaining Transforming Growth Factor-β1-Induced Expression of Tissue Inhibitor of Metalloproteinase-3 via the Phosphatidylinositol 3-Kinase/Akt Pathway. Front Pharmacol 2020; 10:1554. [PMID: 32038242 PMCID: PMC6987846 DOI: 10.3389/fphar.2019.01554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
AMD3100 is a small-molecule inhibitor of the C-X-C motif chemokine ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) axis, while its role in aggrecan metabolism is unclear. We hypothesized that the AMD3100 modulates the transforming growth factor-β1 (TGF-β1)-induced expression of tissue inhibitor of metalloproteinase-3 (TIMP-3) in chondrocytes. We evaluated expression of CXCL12/CXCR4 and TIMP-3 in the knee joints of rats with and without osteoarthritis (OA) by immunohistochemistry, immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay (ELISA). The rats were divided into sham control, destabilization of the medial meniscus/AMD3100-treated (DMM/AMD3100-treated), and DMM/phosphate-buffered saline (PBS)-treated groups. After 6 weeks, the rats were euthanized and subjected to histological and immunohistochemical analyses. Also, interleukin (IL)-1-pretreated primary chondrocytes were cultured in the presence of empty control (−, −), CXCL12a (+,−), CXCL12a + small interfering RNA (siRNA) CXCR4 (+,+), or CXCL12a + siNC (+NC), and the expression levels of target markers were evaluated by Western blotting and real-time reverse transcription PCR (RT-PCR). The CXCL12/CXCR4 levels were higher, and the expression of TIMP-3 was lower, in the OA rats compared to the healthy control rats. The rats in the DMM/AMD3100-treated group revealed a markedly decreased immunological response and mild pathology. Treatment with CXCL12a increased expression of aggrecan and disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) and suppressed that of TIMP-3 in IL-1-pretreated primary chondrocytes. TGF-β1 increased expression of TIMP-3, and this increase was reversed by CXCL12a via the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Moreover, these effects were inhibited by the CXCR4 antagonist AMD3100 and the PI3K inhibitor LY303511. In conclusion, inhibition of the CXCL12a/CXCR4 signaling axis maintained TIMP-3 expression via the PI3K/Akt pathway. Our findings provide insight into the mechanism by which AMD3100 prevents OA.
Collapse
Affiliation(s)
- Weiwei Lu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Liang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Xiong Y, Wu S, Yu H, Wu J, Wang Y, Li H, Huang H, Zhang H. miR-190 promotes HCC proliferation and metastasis by targeting PHLPP1. Exp Cell Res 2018; 371:185-195. [PMID: 30092222 DOI: 10.1016/j.yexcr.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
miRNAs regulate gene expression and enable clinicians to distinguish between benign and malignant tissues in cancers. PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1) is known to be a tumour suppressor. A lentiviral overexpression system was used to stably express miR-190, leading to the enhancement of hepatocellular carcinoma (HCC) proliferation and metastasis as a result of inhibited PHLPP1 expression. The results showed that stable miR-190 expression increased the expression of EMT-related proteins (Snail and TCF8/ZEB1) as well as the phosphorylation of Akt at Ser473 and the expression of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). However, restoring PHLPP1 expression counteracted the effects of miR-190 on HCC proliferation, migration and invasion. The results of the animal experiments showed that miR-190 improved the HepG2 cell tumour formation and lung metastasis ability. Stable miR-190 overexpression leads to the downregulation of PHLPP1 protein expression. miR-190 has potential as a target in the treatment and diagnosis of HCC.
Collapse
Affiliation(s)
- Yuzhen Xiong
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yajun Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huimin Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
21
|
Renganathan B, Durairaj V, Kirman DC, Esubonteng PKA, Ang SK, Ge R. Recombinant TSR1 of ADAMTS5 Suppresses Melanoma Growth in Mice via an Anti-angiogenic Mechanism. Cancers (Basel) 2018; 10:cancers10060192. [PMID: 29891754 PMCID: PMC6025205 DOI: 10.3390/cancers10060192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/17/2022] Open
Abstract
Inhibiting tumor angiogenesis is a well-established approach for anticancer therapeutic development. A Disintegrin-like and Metalloproteinase with ThromboSpondin Motifs 5 (ADAMTS5) is a secreted matrix metalloproteinase in the ADAMTS family that also functions as an anti-angiogenic/anti-tumorigenic molecule. Its anti-angiogenic/anti-tumorigenic function is independent from its proteinase activity, but requires its first thrombospondin type 1 repeat (TSR1). However, it is not known if recombinant TSR1 (rTSR1) can function as an anticancer therapeutic. In this report, we expressed and purified a 75-residue recombinant TSR1 polypeptide from E. coli and investigated its ability to function as an anticancer therapeutic in mice. We demonstrate that rTSR1 is present in the blood circulation as well as in the tumor tissue at 15 min post intraperitoneal injection. Intraperitoneal delivery of rTSR1 potently suppressed subcutaneous B16F10 melanoma growth as a single agent, accompanied by diminished tumor angiogenesis, increased apoptosis, and reduced cell proliferation in the tumor tissue. Consistently, rTSR1 dose-dependently induced the apoptosis of cultured human umbilical vein endothelial cells (HUVECs) in a caspase-dependent manner. This work indicates that rTSR1 of ADAMTS5 can function as a potent anticancer therapy in mice. It thus has the potential to be further developed into an anticancer drug.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Vinoth Durairaj
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Dogan Can Kirman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Paa Kow A Esubonteng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Swee Kim Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
22
|
Aydos OS, Yukselten Y, Ozkavukcu S, Sunguroglu A, Aydos K. ADAMTS1 and ADAMTS5 metalloproteases produced by Sertoli cells: a potential diagnostic marker in azoospermia. Syst Biol Reprod Med 2018; 65:29-38. [PMID: 29737873 DOI: 10.1080/19396368.2018.1467512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, our aim was to detect protein levels of A Disintegrin and Metalloproteinase with Thrombospondin Motifs 1 and 5 (ADAMTS1 and ADAMTS5) proteases and to examine the effect of in vitro FSH supplementation on protease production in cultured Sertoli cells. The expression of metalloproteases, ADAMTS1, and ADAMTS5 were investigated in Sertoli cell cultures as well as in ejaculate of azoospermic men which then were compared with ejaculates of the fertile control group. A total of 15 azoospermic men, diagnosed as obstructive (OA, n = 5) and nonobstructive (NOA, n = 10) azoospermia were included in the study. ADAMTS1, ADAMTS5 and FSH receptors (FSHR) were found to be expressed 2.56, 2.10, and 2.66-fold less in Sertoli cells of NOA patients, than those of OA (p < 0.05). After rFSH was added onto Sertoli cell cultures of NOA patients, their expression did not increase significantly and did not reach to levels of control group. Evaluation of ejaculates revealed that the expression of ADAMTS1 and ADAMTS5 were insignificantly 1.03 and 1.1-fold higher in OA group (p > 0.05), respectively; however, in the NOA group, their expression were 1.70 and 1.96-fold lower, respectively, when compared with the fertile control group (p < 0.05) which was statistically significant. As a conclusion, the present study has revealed that insufficiency of ADAMTS1 and ADAMTS5 expression in Sertoli cells may have an important role in the etiology of male infertility. As expected due to low FSHR expression, rFSH response is impaired in NOA patients with relatively low ADAMTS expression response; therefore, such patients might hardly benefit from rFSH treatment. Further studies with larger cohorts may reveal ADAMTSs' potential use as a predictive marker for positive sperm retrieval in azoospermic patients who are scheduled to undergo testicular sperm extraction. Abbreviations: ADAM: A Disintegrin and Metalloproteinase; ADAMTS1 and ADAMTS5: A Disintegrin and Metalloproteinase with 10 Thrombospondin Motifs 1 and 5; ADAMTS: A Disintegrin and Metalloproteinase with Thrombospondin; ABP: androgen binding protein; CAMs: cell adhesion molecules; ECM: extracellular matrix; FSH: follicle stimulating hormone; FSHR: FSH receptors; HRP: horseradish peroxidase; MMP: matrix metalloproteinases; MP: metalloproteinases; NOA: nonobstructive azoospermia; OA: obstructive azoospermia; TIMP-1: tissue inhibitor of metalloproteinase-1.
Collapse
Affiliation(s)
- Oya Sena Aydos
- a Department of Medical Biology , School of Medicine, Ankara University , Ankara , Turkey
| | - Yunus Yukselten
- a Department of Medical Biology , School of Medicine, Ankara University , Ankara , Turkey
| | - Sinan Ozkavukcu
- b Center for Assisted Reproduction, Department of Obstetrics and Gynecology , Ankara University School of Medicine , Ankara , Turkey
| | - Asuman Sunguroglu
- a Department of Medical Biology , School of Medicine, Ankara University , Ankara , Turkey
| | - Kaan Aydos
- c Department of Urology , School of Medicine, Ankara University , Ankara , Turkey
| |
Collapse
|
23
|
Dave JM, Mirabella T, Weatherbee SD, Greif DM. Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain. Dev Cell 2018; 44:665-678.e6. [PMID: 29456135 DOI: 10.1016/j.devcel.2018.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). The germinal matrix (GM) is a highly vascularized structure rich in neuronal and glial precursors. We show that GM microvessels of mutants display abnormal dilation, reduced PC coverage, EC hyperproliferation, reduced basement membrane collagen, and enhanced perivascular matrix metalloproteinase activity. Furthermore, ALK5-depleted PCs downregulate tissue inhibitor of matrix metalloproteinase 3 (TIMP3), and TIMP3 administration to mutants improves endothelial morphogenesis and attenuates GMH-IVH. Overall, our findings reveal a key role for PC ALK5 in regulating brain endothelial morphogenesis and a substantial therapeutic potential for TIMP3 during GMH-IVH.
Collapse
Affiliation(s)
- Jui M Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Teodelinda Mirabella
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Scott D Weatherbee
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Li J, Liao Y, Huang J, Sun Y, Chen H, Chen C, Li S, Yang Z. Epigenetic silencing of ADAMTS5 is associated with increased invasiveness and poor survival in patients with colorectal cancer. J Cancer Res Clin Oncol 2018; 144:215-227. [PMID: 29143120 DOI: 10.1007/s00432-017-2545-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE A disintegrin and metalloprotease with motif 5(ADAMTS5) has been involved in colorectal cancer (CRC) with hypermethylation in the promoter. However, its role in CRC remains unclear. The aim of this study was to explore the clinical significance and biological effect of ADAMTS5 on colorectal carcinogenesis. Through MSP, qRT-PCR, WB and IHC analysis, followed by a variety of in vitro assays, we report the function of ADAMTS5 in CRC. ADAMTS5 was markedly hypermethylaed and downregulated in tumor tissues compared with non-tumor tissues (p < 0.001). Negative expression of ADAMTS5 was much more common in tumor tissues than that in normal tissues (p < 0.001) and correlated with histologic types (p = 0.002), poor OS (p = 0.029) and DFS (p = 0.018). In vitro assay revealed that overexpression of ADAMTS5 inhibited the capabilities of migration and invasion of CRC cells, and no effect on cell growth, cell cycle and apoptosis. ADAMTS5 is hypermethylated and inhibits cancer cells invasion and migration in colorectal cancer, and correlates with OS and DFS, indicating that ADAMTS5 might be a useful biomarker in colorectal cancer therapy.
Collapse
Affiliation(s)
- Jizhen Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Department of General Surgery, The Zhuhai People's Hospital, 79 Kangning Road, Zhuhai, 519000, People's Republic of China
| | - Yi Liao
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China
| | - Jintuan Huang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China
| | - Yi Sun
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China
| | - Hao Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China
| | - Chunyu Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China
| | - Senmao Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China
| | - Zuli Yang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, People's Republic of China.
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangzhou, People's Republic of China.
| |
Collapse
|
25
|
Glucocorticoids Improve Myogenic Differentiation In Vitro by Suppressing the Synthesis of Versican, a Transitional Matrix Protein Overexpressed in Dystrophic Skeletal Muscles. Int J Mol Sci 2017; 18:ijms18122629. [PMID: 29211034 PMCID: PMC5751232 DOI: 10.3390/ijms18122629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), a dysregulated extracellular matrix (ECM) directly exacerbates pathology. Glucocorticoids are beneficial therapeutics in DMD, and have pleiotropic effects on the composition and processing of ECM proteins in other biological contexts. The synthesis and remodelling of a transitional versican-rich matrix is necessary for myogenesis; whether glucocorticoids modulate this transitional matrix is not known. Here, versican expression and processing were examined in hindlimb and diaphragm muscles from mdx dystrophin-deficient mice and C57BL/10 wild type mice. V0/V1 versican (Vcan) mRNA transcripts and protein levels were upregulated in dystrophic compared to wild type muscles, especially in the more severely affected mdx diaphragm. Processed versican (versikine) was detected in wild type and dystrophic muscles, and immunoreactivity was highly associated with newly regenerated myofibres. Glucocorticoids enhanced C2C12 myoblast fusion by modulating the expression of genes regulating transitional matrix synthesis and processing. Specifically, Tgfβ1, Vcan and hyaluronan synthase-2 (Has2) mRNA transcripts were decreased by 50% and Adamts1 mRNA transcripts were increased three-fold by glucocorticoid treatment. The addition of exogenous versican impaired myoblast fusion, whilst glucocorticoids alleviated this inhibition in fusion. In dystrophic mdx muscles, versican upregulation correlated with pathology. We propose that versican is a novel and relevant target gene in DMD, given its suppression by glucocorticoids and that in excess it impairs myoblast fusion, a process key for muscle regeneration.
Collapse
|
26
|
Hope C, Emmerich PB, Papadas A, Pagenkopf A, Matkowskyj KA, Van De Hey DR, Payne SN, Clipson L, Callander NS, Hematti P, Miyamoto S, Johnson MG, Deming DA, Asimakopoulos F. Versican-Derived Matrikines Regulate Batf3-Dendritic Cell Differentiation and Promote T Cell Infiltration in Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2017; 199:1933-1941. [PMID: 28754680 DOI: 10.4049/jimmunol.1700529] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Colorectal cancer originates within immunologically complex microenvironments. To date, the benefits of immunotherapy have been modest, except in neoantigen-laden mismatch repair-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. In this article, we report that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) strongly correlated with CD8+ T cell infiltration in colorectal cancer, regardless of mismatch repair status. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10-fold) CD8+ T cell infiltration. Tumor-intrinsic WNT pathway activation was associated with CD8+ T cell exclusion and VCAN accumulation. In addition to regulating VCAN levels at the tumor site, VCAN proteolysis results in the generation of bioactive fragments with novel functions (VCAN-derived matrikines). Versikine, a VCAN-derived matrikine, enhanced the generation of CD103+CD11chiMHCIIhi conventional dendritic cells (cDCs) from Flt3L-mobilized primary bone marrow-derived progenitors, suggesting that VCAN proteolysis may promote differentiation of tumor-seeding DC precursors toward IRF8- and BATF3-expressing cDCs. Intratumoral BATF3-dependent DCs are critical determinants for T cell antitumor immunity, effector T cell trafficking to the tumor site, and response to immunotherapies. Our findings provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker and VCAN-derived matrikines as novel immunotherapy agents.
Collapse
Affiliation(s)
- Chelsea Hope
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Philip B Emmerich
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Athanasios Papadas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Adam Pagenkopf
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and
| | - Dana R Van De Hey
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Susan N Payne
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Natalie S Callander
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and
| | - Peiman Hematti
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Michael G Johnson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Dustin A Deming
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and.,McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Fotis Asimakopoulos
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| |
Collapse
|
27
|
Haraguchi N, Ohara N, Koseki J, Takahashi H, Nishimura J, Hata T, Mizushima T, Yamamoto H, Ishii H, Doki Y, Mori M. High expression of ADAMTS5 is a potent marker for lymphatic invasion and lymph node metastasis in colorectal cancer. Mol Clin Oncol 2016; 6:130-134. [PMID: 28123746 DOI: 10.3892/mco.2016.1088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022] Open
Abstract
Members of the ADAMTS family contain propeptide, metalloproteinase and disintegrin domains and serve key roles for cancer cell proliferation, progression and metastasis. Although overexpression of ADAMTS5 has been reported in glioblastoma, and head and neck cancer, little has been demonstrated in colorectal cancer types. The present study aimed to clarify the significance of ADAMTS5 for clinicopathological factors and prognosis in colorectal cancer. The mRNA expression of ADAMTS5 was measured in 143 colorectal cancer specimens. ADAMTS5 expression was increased as the pathological stage increased. The expression of ADAMTS5 in stage III-IV colorectal cancer was significantly greater compared with that of stage 0-II colorectal cancer (P=0.0003). The median expression of ADAMTS5 was used to divide the ADAMTS5 higher expressing group and the ADAMTS5 lower expressing group to assess the correlation of ADAMTS5 expression with clinicopathological factors and prognosis. The proportions of lymphatic invasion and lymph node metastasis were significantly greater in the ADAMTS5 higher expressing group (P=0.0214 and P=0.0289 respectively). Overall survival and disease-free survival were assessed by the Kaplan-Meier curve with calculation of significance by the log-rank test; however, no significant difference was observed between the ADAMTS5 higher expressing group and the ADAMTS5 lower expressing group (P=0.7490 and P=0.9455, respectively). The present study confirmed high expression of ADAMTS5 as a potent marker for lymphatic invasion and lymphnode metastasis in colorectal cancer. To clarify the function of ADAMTS5 in colorectal cancer, further molecular investigations are required.
Collapse
Affiliation(s)
- Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Nobuyoshi Ohara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Jun Koseki
- Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward AC. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 2016; 385:55-64. [PMID: 27838414 DOI: 10.1016/j.canlet.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Marley J Binder
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Scott McCoombe
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland 4000, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
29
|
Dai L, Trillo-Tinoco J, Chen Y, Bonstaff K, Del Valle L, Parsons C, Ochoa AC, Zabaleta J, Toole BP, Qin Z. CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi's sarcoma-associated herpesvirus infected endothelial cells. Oncotarget 2016; 7:3806-18. [PMID: 26675551 PMCID: PMC4826171 DOI: 10.18632/oncotarget.6584] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/25/2015] [Indexed: 01/09/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi's sarcoma (KS), which preferentially arise in immunocompromised patients and lack effective therapeutic options. We have previously shown that KSHV or viral protein LANA up-regulates the glycoprotein CD147, thereby inducing primary endothelial cell invasiveness. In the current study, we identify the global network controlled by CD147 in KSHV-infected endothelial cells using Illumina microarray analysis. Among downstream genes, two specific metalloproteases, ADAMTS1 and 9, are strongly expressed in AIDS-KS tissues and contribute to KSHV-infected endothelial cell invasiveness through up-regulation of IL-6 and VEGF. By using a KS-like nude mouse model, we found that targeting CD147 and downstream ADAMTSs significantly suppressed KSHV-induced tumorigenesis in vivo. Taken together, targeting CD147 and associated proteins may represent a promising therapeutic strategy against these KSHV-related malignancies.
Collapse
Affiliation(s)
- Lu Dai
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Jimena Trillo-Tinoco
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Yihan Chen
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Karlie Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Department of Pathology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Chris Parsons
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Augusto C Ochoa
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Bryan P Toole
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina and Hollings Cancer Center, Charleston, SC 29425, USA
| | - Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Departments of Microbiology/Immunology/Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Haddock G, Cross AK, Plumb J, Surr J, Buttle DJ, Bunning RAD, Woodroofe MN. Expression of ADAMTS-1, -4, -5 and TIMP-3 in normal and multiple sclerosis CNS white matter. Mult Scler 2016; 12:386-96. [PMID: 16900752 DOI: 10.1191/135248506ms1300oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) -1, -4 and -5 proteases have been identified in the CNS at the mRNA level. These glutamyl endopeptidases, inhibited by tissue inhibitor of metalloproteinases (TIMP)-3, are key enzymes in the degradation of the aggregating chondroitin sulphate proteoglycans (CSPGs), and may therefore play a role in CNS extracellular matrix (ECM) changes in multiple sclerosis (MS). We have investigated ADAMTS and TIMP-3 expression in normal and MS CNS white matter by real-time RT-PCR, western blotting and immunohistochemistry. We report for the first time the presence of ADAMTS-1, -4 and -5 in normal and MS white matter. Levels of ADAMTS-1 and -5 mRNA were decreased in MS compared to normal tissue, with no significant change in ADAMTS-4 mRNA levels. Protein levels of ADAMTS-4 were significantly higher in MS tissue compared to normal tissue. Immunohistochemical studies demonstrated that ADAMTS-4 was associated predominantly with astrocytes with increased expression within MS lesions. TIMP-3 mRNA was significantly decreased in MS compared to controls. These studies suggest a role for ADAMTS-4 in the pathogenesis of MS. Further studies on the activity of ADAMTS-4 will enable a better understanding of its role in the turnover of the ECM of white matter in MS.
Collapse
Affiliation(s)
- G Haddock
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lima MA, dos Santos L, Turri JA, Nonogaki S, Buim M, Lima JF, de Jesus Viana Pinheiro J, Bueno de Toledo Osório CA, Soares FA, Freitas VM. Prognostic Value of ADAMTS Proteases and Their Substrates in Epithelial Ovarian Cancer. Pathobiology 2016; 83:316-26. [DOI: 10.1159/000446244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
|
32
|
Huang XY, Yao JG, Huang BC, Ma Y, Xia Q, Long XD. Polymorphisms of a Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 and Aflatoxin B1-Related Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2016; 25:334-343. [PMID: 26677209 DOI: 10.1158/1055-9965.epi-15-0774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Altered expression of a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) is observed in hepatocellular carcinoma. The genetic polymorphisms of this gene in aflatoxin B1 (AFB1)-related hepatocellular carcinoma have not yet been elucidated. METHODS We conducted a hospital-based case-control study, including 1,706 hepatocellular carcinoma cases and 2,270 controls without any liver diseases or tumors, to assess the association between 74 polymorphisms in ADAMTS5 and AFB1-related hepatocellular carcinoma risk and prognosis. Genotype, mRNA levels, and TP53 gene mutation (TP53M) related to AFB1 exposure were tested using TaqMan-PCR or sequencing technique. ADAMTS5 protein level and microvessel density were analyzed by IHC. RESULTS Among these 74 polymorphisms, only rs2830581 affected hepatocellular carcinoma risk. Compared with the homozygote of rs2830581 G alleles (rs2830581-GG), the genotypes of rs2830581 A alleles (rs2830581-GA or -AA) increased hepatocellular carcinoma risk (OR: 1.85 and 4.40; 95% CI: 1.57-2.19 and 3.43-5.64, respectively). Significant interactive effects between risk genotypes and AFB1 exposure status were also observed in the joint effects analysis. Furthermore, the rs2830581 polymorphism modified the tumor recurrence-free survival and overall survival of patients. This polymorphism not only affected pathologic features of hepatocellular carcinoma such as tumor dedifferentiation and microvessel density, but also modified ADAMTS5 expression and the effects of transarterial chemoembolization treatment on hepatocellular carcinoma. CONCLUSIONS These results suggest ADAMTS5 polymorphisms may be risk and prognostic biomarkers of AFB1-related hepatocellular carcinoma, and rs2830581 is a potential candidate. IMPACT Our findings support the hypothesis that ADAMTS5 rs2830581 polymorphism modifies AFB1-related hepatocellular carcinoma risk and prognosis.
Collapse
Affiliation(s)
- Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Bing-Chen Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Yun Ma
- Department of Pathology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China. Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Baghy K, Tátrai P, Regős E, Kovalszky I. Proteoglycans in liver cancer. World J Gastroenterol 2016; 22:379-393. [PMID: 26755884 PMCID: PMC4698501 DOI: 10.3748/wjg.v22.i1.379] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects.
Collapse
|
34
|
Gorski DJ, Xiao W, Li J, Luo W, Lauer M, Kisiday J, Plaas A, Sandy J. Deletion of ADAMTS5 does not affect aggrecan or versican degradation but promotes glucose uptake and proteoglycan synthesis in murine adipose derived stromal cells. Matrix Biol 2015; 47:66-84. [DOI: 10.1016/j.matbio.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/22/2023]
|
35
|
Li C, Xiong Y, Zhong Z, Zhang S, Peng Y, Wang L, Dai N, Li M, Ren T, Gan L, Wang D. Association Between a Variant in ADAMTS5 and the Susceptibility to Hepatocellular Carcinoma in a Chinese Han Population. Cell Biochem Biophys 2015; 72:221-225. [PMID: 25519309 DOI: 10.1007/s12013-014-0441-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) is considered to be an important anti-angiogenic protein, in which the first TSR domain is crucial for its anti-angiogenic activity. Previous study showed that ADAMTS5 plays a role in suppression of hepatocellular carcinoma (HCC) progression through its anti-angiogenic activity. The rs2380585 G>A single-nucleotide polymorphism (SNP) is a missense mutation, located in the ADAMTS5 first TSR domain coding sequence (CDS). In this study, we investigated the impacts of ADAMTS5 rs2380585 polymorphism on the risk and progress of hepatocellular carcinoma. A total of 220 HCC patients and 220 controls in a Chinese Han population were enrolled and genotyped. The associations between SNPs and HCC incidence and progression were analyzed with logistic regression model. We found that individuals with the ADAMTS5 rs2380585 A allele was significantly associated with decreased HCC risk (OR = 0.348, 95 % CI 0.236-0.512; p = 0.000). Individuals having the ADAMTS5 rs2380585 polymorphic genotype (GA+AA) had an OR of 0.348 (95 % CI 0.201-0.600; p = 0.000) for developing HCC, compared with individuals having the ADAMTS5 rs2380585 ancestral genotype. However, stratified analyses did not find any evident gene-covariates interaction. The SNP of rs2380585 was irrelevant to the frequencies of clinicopathological characteristics. Our results for the first time indicate that ADAMTS5 rs2380585 polymorphism contributes to HCC susceptibility.
Collapse
Affiliation(s)
- Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, 400042, China
| | - Yanli Xiong
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Yu Peng
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Lin'ang Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China
| | - Lixia Gan
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, 400042, China.
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
36
|
Li C, Xiong Y, Yang X, Wang L, Zhang S, Dai N, Li M, Ren T, Yang Y, Zhou SF, Gan L, Wang D. Lost expression of ADAMTS5 protein associates with progression and poor prognosis of hepatocellular carcinoma. Drug Des Devel Ther 2015; 9:1773-1783. [PMID: 25848214 PMCID: PMC4378293 DOI: 10.2147/dddt.s77069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Altered expression of ADAMTS5 is associated with human carcinogenesis and tumor progression. However, the role of ADAMTS5 in hepatocellular carcinoma (HCC) is unclear. This study analyzed ADAMTS5 expression in HCC tissues and tested for association with clinicopathological and survival data from HCC patients and then explored the role of ADAMTS5 in HCC cells in vitro. Paraffin blocks from 48 HCC patients were used to detect ADAMTS5 and vascular endothelial growth factor (VEGF) expression and microvessel density (MVD). A normal liver cell line and HCC cell lines were used to detect ADAMTS5 expression and for ADAMTS5 manipulation. ADAMTS5 cDNA was stably transfected into HCC cells and ADAMTS5 expression assessed by Western blot analysis. Tumor cell-conditioned growth medium was used to assess human umbilical vein endothelial cell migration and Matrigel tube formation. Xenograft assay was performed to determine the role of ADAMTS5 in vivo. The data showed that the expression of ADAMTS5 was reduced in HCC, which was inversely associated with VEGF expression, MVD, and tumor size and associated with poor overall survival of HCC patients. Lentivirus-mediated ADAMTS5 expression significantly inhibited tumor angiogenesis by downregulating in vitro expression of VEGF and inhibiting migration and tube formations, and also inhibited tumor growth and VEGF expression and reduced MVD in vivo in a mouse xenograft model. Taken together, these results suggest that ADAMTS5 plays a role in suppression of HCC progression, which could be further studied as a promising novel therapeutic target and a potential prognostic marker in HCC.
Collapse
Affiliation(s)
- Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Yanli Xiong
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Xueqin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Lin’ang Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuxin Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Lixia Gan
- Department of Biochemistry and Molecular Biology, The Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
37
|
Filou S, Korpetinou A, Kyriakopoulou D, Bounias D, Stavropoulos M, Ravazoula P, Papachristou DJ, Theocharis AD, Vynios DH. ADAMTS expression in colorectal cancer. PLoS One 2015; 10:e0121209. [PMID: 25786261 PMCID: PMC4364768 DOI: 10.1371/journal.pone.0121209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/02/2015] [Indexed: 12/15/2022] Open
Abstract
ADAMTSs are a family of secreted proteinases that share the metalloproteinase domain with matrix metalloproteinases (MMPs). By acting on a large panel of extracellular substrates, they control several cell functions such as fusion, adhesion, proliferation and migration. Through their thrombospondin motifs they also possess anti-angiogenic properties. We investigated whether ADAMTSs participate in colorectal cancer progression and invasion. Their expression was investigated at both mRNA and protein levels. Using RT-PCR, the expression of ADAMTS-1, -4, -5 and ADAMTS-20 was estimated in colorectal tumors of different cancer stage and anatomic site and 3 cell lines of different aggressiveness. An overexpression of ADAMTS-4 and -5 was observed, especially in tissue samples, whereas ADAMTS-1 and -20 were found to be down-regulated. Western blot analysis further supported the RT-PCR findings, revealing in addition the degradation of ADAMTS-1 and -20 in cancer. In situ expression and localization of ADAMTS-1, -4, -5 and -20 was also investigated by immunohistochemical analysis. Our data suggest a positive correlation between ADAMTS-4 and -5 expression and cancer progression, in contrast with the anti-angiogenic members of the family, ADAMTS-1 and -20, which were found to be down-regulated. Our findings support the notion that overexpression of ADAMTS-4 and ADAMTS-5 in colorectal cancer might be a possible invasive mechanism of cancer cells in order to degrade proteoglycans of ECM.
Collapse
Affiliation(s)
- Serafula Filou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Aggeliki Korpetinou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dora Kyriakopoulou
- Department of Surgery, School of Health Sciences and University Hospital of Patras, Patras, Greece
| | - Dimitrios Bounias
- Department of Surgery, School of Health Sciences and University Hospital of Patras, Patras, Greece
| | - Michael Stavropoulos
- Department of Surgery, School of Health Sciences and University Hospital of Patras, Patras, Greece
| | | | - Dionysios J. Papachristou
- Anatomy, Histology and Embryology laboratory, Department of Medicine, University of Patras, Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H. Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
38
|
Arichi N, Mitsui Y, Hiraki M, Nakamura S, Hiraoka T, Sumura M, Hirata H, Tanaka Y, Dahiya R, Yasumoto H, Shiina H. Versican is a potential therapeutic target in docetaxel-resistant prostate cancer. Oncoscience 2015; 2:193-204. [PMID: 25859560 PMCID: PMC4381710 DOI: 10.18632/oncoscience.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/27/2015] [Indexed: 01/18/2023] Open
Abstract
In the current study, we investigated a combination of docetaxel and thalidomide (DT therapy) in castration-resistant prostate cancer (CRPC) patients. We identified marker genes that predict the effect of DT therapy. Using an androgen-insensitive PC3 cell line, we established a docetaxel-resistant PC-3 cell line (DR-PC3). In DR-PC3 cells, DT therapy stronger inhibited proliferation/viability than docetaxel alone. Based on gene ontology analysis, we found versican as a selective gene. This result with the findings of cDNA microarray and validated by quantitative RT-PCR. In addition, the effect of DT therapy on cell viability was the same as the effect of docetaxel plus versican siRNA. In other words, silencing of versican can substitute for thalidomide. In the clinical setting, versican expression in prostate biopsy samples (before DT therapy) correlated with PSA reduction after DT therapy (p<0.05). Thus targeting versican is a potential therapeutic strategy in docetaxel-resistant prostate cancer.
Collapse
Affiliation(s)
- Naoko Arichi
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Yozo Mitsui
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan ; Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Miho Hiraki
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Sigenobu Nakamura
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Takeo Hiraoka
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Masahiro Sumura
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - Hiroaki Yasumoto
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hiroaki Shiina
- Departments of Urology, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
39
|
Iu J, Santerre JP, Kandel RA. Inner and Outer Annulus Fibrosus Cells Exhibit Differentiated Phenotypes and Yield Changes in Extracellular Matrix Protein Composition In Vitro on a Polycarbonate Urethane Scaffold. Tissue Eng Part A 2014; 20:3261-9. [DOI: 10.1089/ten.tea.2013.0777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonathan Iu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- BioEngineering of Skeletal Tissues Team, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Transcriptional control of PAX4-regulated miR-144/451 modulates metastasis by suppressing ADAMs expression. Oncogene 2014; 34:3283-95. [PMID: 25151965 DOI: 10.1038/onc.2014.259] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
Abstract
Paired box gene 4 (PAX4) is a transcriptional modulator located on chromosome 7q32, and its expression is dysregulated in a variety of human cancers, suggesting that PAX4 may be important in multiple tumors as a driver gene. Here, we show that PAX4 promoted migration and invasion in human epithelial cancers by decreasing miR-144 and miR-451 (miR-144/451) expression levels. Accordingly, miR-144/451 suppressed the migratory and invasive phenotypes, even in PAX4-expressing cells. Mechanistically, miR-144/451 inhibits cancer metastasis by targeting the A disintegrin and metalloproteinase (ADAM) protein family members ADAMTS5 and ADAM10. Their dysregulation is associated with increased tumor invasiveness and metastasis, then reduced patient prognosis in certain epithelial cancers. This discovery suggests that a PAX4-miR-144/451-ADAMs axis regulates human epithelial cancer metastasis, thus opening up therapeutic possibilities and predicting prognosis for those cancer types.
Collapse
|
41
|
Oktem G, Sercan O, Guven U, Uslu R, Uysal A, Goksel G, Ayla S, Bilir A. Cancer stem cell differentiation: TGFβ1 and versican may trigger molecules for the organization of tumor spheroids. Oncol Rep 2014; 32:641-9. [PMID: 24927163 DOI: 10.3892/or.2014.3252] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/26/2014] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) have the ability to self-renew similar to normal stem cells. This process is linked with metastasis and resistance to chemotherapy and radiotherapy. In the present study, we constructed an in vitro differentiation model for CSCs. CSCs isolated and proliferated for one passage were maintained as monolayers or spheroid-forming cells with serum included media for differentiation process. Differentiation of adhesion molecules and cellular ultrastructural properties were investigated and compared in both monolayer and spheroid cultures. CD133+/CD44+ cancer-initiating cells were isolated from DU-145 human prostate cancer cell line monolayer cultures and propagated as tumor spheroids and compared with the remaining heterogeneous cancer cell bulk population. Microarray-based gene expression analysis was applied to determine genes with differential expression and protein expression levels of candidates were analyzed by immunohistochemistry. Electron microscopy showed detailed analysis of morphology. TGFβ1 was found to be significantly upregulated in monolayer CSCs. High expression levels of VCAN, COL7A1, ITGβ3, MMP16, RPL13A, COL4A2 and TIMP1 and low expression levels of THBS1, MMP1 and MMP14 were detected when CSCs were maintained as serum-grown prostate CSC spheroids. Immunohistochemistry supported increased immunoreactivity of TGFβ1 in monolayer cultures and VCAN in spheroids. CSCs were found to possess multipotential differentiation capabilities through upregulation and/or downregulation of their markers. TGFβ1 is a triggering molecule, it stimulates versican, Col7A1, ITGβ3 and, most importantly, the upregulation of versican was only detected in CSCs. Our data support a model where CSCs must be engaged by one or more signaling cascades to differentiate and initiate tumor formation. This mechanism occurs with intracellular and extracellular signals and it is possible that CSCc themselves may be a source for extracellular signaling. These molecules functioning in tumor progression and differentiation may help develop targeted therapy.
Collapse
Affiliation(s)
- G Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - O Sercan
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Narlidere 35340, Izmir, Turkey
| | - U Guven
- Department of Stem Cell, Ege University Institute of Health Science, Bornova 35100, Izmir, Turkey
| | - R Uslu
- Department of Medical Oncology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - A Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - G Goksel
- Department of Medical Oncology, Faculty of Medicine, Celal Bayar University, Manisa 45030, Turkey
| | - S Ayla
- Department of Obstetrics and Gynecology, Zeynep Kamil Gynecology and Maternity Training and Research Hospital, Istanbul 34668, Turkey
| | - A Bilir
- Department of Histology and Embryology, Emine-Bahaeddin Nakiboglu Medical Faculty, Zirve University, Gaziantep 27100, Turkey
| |
Collapse
|
42
|
Dancevic CM, Fraser FW, Smith AD, Stupka N, Ward AC, McCulloch DR. Biosynthesis and expression of a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats-15: a novel versican-cleaving proteoglycanase. J Biol Chem 2013; 288:37267-76. [PMID: 24220035 DOI: 10.1074/jbc.m112.418624] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR(212)↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position (441)E↓A(442). In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican.
Collapse
Affiliation(s)
- Carolyn M Dancevic
- From the School of Medicine, Faculty of Health, and Molecular and Medical Research SRC, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Przemyslaw L, Boguslaw HA, Elzbieta S, Malgorzata SM. ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis. BMB Rep 2013; 46:139-50. [PMID: 23527857 PMCID: PMC4133867 DOI: 10.5483/bmbrep.2013.46.3.176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ADAM and ADAMTS families, also called adamalysins belong to an important group of extracellular matrix proteins. The ADAMs family belong to both the transmembrane and secreted proteins, while ADAMTS family only contains secreted forms. Adamalysins play an important role in the cell phenotype regulation via their activities in signaling pathways, cell adhesion and migration. The human proteome contains 21 ADAM, and 19 ADAMTS proteins, which are involved in extracellular matrix remodeling, shedding of various substrates such as: adhesion ligands, growth factors, their receptors and diverse cytokines. Recent studies provide evidence that adamalysins play a crucial role in colorectal cancer (CRC) etiopathogenesis. It seems possible that adamalysins might be used as CRC prediction markers or potential pharmaceutical targets. [BMB Reports 2013; 46(3): 139-150]
Collapse
|
44
|
Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2596-2607. [PMID: 23830915 PMCID: PMC3898605 DOI: 10.1016/j.bbamcr.2013.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. Mechanical strain regulates multiple protease and matrix genes at the mRNA level. Changes in mRNA level are analogous to those induced by TGFβ stimulation. The inhibition of the TGFβ signalling pathway abrogated the strain-induced changes. A SMAD activatory soluble factor is increased in activity in response to mechanical load.
Collapse
Affiliation(s)
- Eleanor R Jones
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Gavin C Jones
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kirsten Legerlotz
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Graham P Riley
- Soft Tissue Research Group, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
45
|
Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN ONCOLOGY 2013; 2013:680136. [PMID: 23691363 PMCID: PMC3654277 DOI: 10.1155/2013/680136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 01/13/2023]
Abstract
Proteoglycans (PGs) are expressed on the cell surface and extracellular matrix of all mammalian cells and tissues, playing an important role in cell-cell and cell-matrix interactions and signaling. Changes in the expression and functional properties of individual PGs in prostate cancer are shown, although common patterns of PGs expression in normal and tumour prostate tissues remain unknown. In this study, expression of cell surface and stromal proteoglycans (glypican-1, perlecan, syndecan-1, aggrecan, versican, NG2, brevican, decorin, and lumican) in normal tissue and prostate tumours was determined by RT-PCR analysis and immunostaining with core protein- and GAG-specific antibodies. In normal human prostate tissue, versican, decorin, and biglycan were predominant proteoglycans localised in tissue stroma, and syndecan-1 and glypican-1 were expressed mainly by epithelial cells. In prostate tumours, complex changes in proteoglycans occur, with a common trend towards decrease of decorin and lumican expression, overall increase of syndecan-1 and glypican-1 expression in tumour stroma along with its disappearance in tumour epithelial cells, and aggrecan and NG2 expressions in some prostate tumours. All the changes result in the highly individual proteoglycan expression patterns in different prostate tumours, which may be potentially useful as molecular markers for prostate cancer personalised diagnosis and treatment.
Collapse
|
46
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
47
|
Kumar S, Rao N, Ge R. Emerging Roles of ADAMTSs in Angiogenesis and Cancer. Cancers (Basel) 2012; 4:1252-99. [PMID: 24213506 PMCID: PMC3712723 DOI: 10.3390/cancers4041252] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 12/18/2022] Open
Abstract
A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | | | | |
Collapse
|
48
|
Wang L, Pawlak E, Johnson PJ, Belknap JK, Alfandari D, Black SJ. Effects of cleavage by a disintegrin and metalloproteinase with thrombospondin motifs-4 on gene expression and protein content of versican and aggrecan in the digital laminae of horses with starch gruel-induced laminitis. Am J Vet Res 2012; 73:1047-56. [PMID: 22738057 DOI: 10.2460/ajvr.73.7.1047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine whether increased gene expression of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) in laminae of horses with starch gruel-induced laminitis was accompanied by increased enzyme activity and substrate degradation. SAMPLE Laminae from the forelimb hooves of 8 healthy horses and 17 horses with starch gruel-induced laminitis (6 at onset of fever, 6 at onset of Obel grade 1 lameness, and 5 at onset of Obel grade 3 lameness). PROCEDURES Gene expression was determined by use of cDNA and real-time quantitative PCR assay. Protein expression and processing were determined via SDS-PAGE and quantitative western blotting. Protein distribution and abundance were determined via quantitative immunofluorescent staining. RESULTS ADAMTS-4 gene expression was increased and that of versican decreased in laminitic laminae, compared with expression in healthy laminae. Catalytically active ADAMTS-4 also was increased in the tissue, as were ADAMTS-4-cleavage fragments of versican. Immunofluorescent analyses indicated that versican was depleted from the basal epithelia of laminae of horses at onset of Obel grade 3 lameness, compared with results for healthy laminae, and this was accompanied by regional separation of basal epithelial cells from the basement membrane. Aggrecan gene and protein expression were not significantly affected. CONCLUSIONS AND CLINICAL RELEVANCE Changes in gene and protein expression of ADAMTS-4 and versican in the basal epithelium of laminitic laminae indicated a fundamental change in the physiology of basal epithelial cells. This was accompanied by and may have caused detachment of these cells from the basement membrane.
Collapse
Affiliation(s)
- Le Wang
- Department of Veterinary and Animal Sciences, College of Natural Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
49
|
ADAMTS5: A New Player in the Vascular Field. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:743-5. [PMID: 22824241 DOI: 10.1016/j.ajpath.2012.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
This Commentary highlights the article by Kumar et al, showing that ADAMTS5 suppresses tumor growth by down-regulating other angiogenesis-inducing factors in addition to VEGF and that the central TSR1 domain of ADAMTS5 is required in this function.
Collapse
|
50
|
|