1
|
Lee Z, Heston WD, Wang X, Basilion JP. GCP III is not the "off-target" for urea-based PSMA ligands. Eur J Nucl Med Mol Imaging 2023; 50:2944-2946. [PMID: 37191680 PMCID: PMC10382371 DOI: 10.1007/s00259-023-06265-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Zhenghong Lee
- Radiology, School of Medicine, Case Western Reserve University, Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH, 44106, USA.
| | | | - Xinning Wang
- Radiology, School of Medicine, Case Western Reserve University, Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH, 44106, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James P Basilion
- Radiology, School of Medicine, Case Western Reserve University, Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave., Cleveland, OH, 44106, USA
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
2
|
Morath V, Brandt C, Deuschle FC, Mendler CT, Blechert B, Summer D, Barinka C, Decristoforo C, Weber WA, Schwaiger M, Skerra A. Molecular Design of 68Ga- and 89Zr-Labeled Anticalin Radioligands for PET-Imaging of PSMA-Positive Tumors. Mol Pharm 2023; 20:2490-2501. [PMID: 37068305 DOI: 10.1021/acs.molpharmaceut.2c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Anticalin proteins directed against the prostate-specific membrane antigen (PSMA), optionally having tailored plasma half-life using PASylation technology, show promise as radioligands for PET-imaging of xenograft tumors in mice. To investigate their suitability, the short-circulating unmodified Anticalin was labeled with 68Ga (τ1/2 = 68 min), using the NODAGA chelator, whereas the half-life extended PASylated Anticalin was labeled with 89Zr (τ1/2 = 78 h), using either the linear chelator deferoxamine (Dfo) or a cyclic derivative, fusarinine C (FsC). Different PSMA targeting Anticalin versions (optionally carrying the PASylation sequence) were produced carrying a single exposed N- or C-terminal Cys residue and site-specifically conjugated with the different radiochelators via maleimide chemistry. These protein conjugates were labeled with radioisotopes having distinct physical half-lives and, subsequently, applied for PET-imaging of subcutaneous LNCaP xenograft tumors in CB17 SCID mice. Uptake of the protein tracers into tumor versus healthy tissues was assessed by segmentation of PET data as well as biodistribution analyses. PET-imaging with both the 68Ga-labeled plain Anticalin and the 89Zr-labeled PASylated Anticalin allowed clear delineation of the xenograft tumor. The radioligand A3A5.1-PAS(200)-FsC·89Zr, having an extended plasma half-life, led to a higher tumor uptake 24 h p.i. compared to the 68Ga·NODAGA-Anticalin imaged 60 min p.i. (2.5% ID/g vs 1.2% ID/g). Pronounced demetallation was observed for the 89Zr·Dfo-labeled PASylated Anticalin, which was ∼50% lower in the case of the cyclic radiochelator FsC (p < 0.0001). Adjusting the plasma half-life of Anticalin radioligands using PASylation technology is a viable approach to increase radioisotope accumulation within the tumor. Furthermore, 89Zr-ImmunoPET-imaging using the FsC radiochelator is superior to that using Dfo. Our strategy for the half-life adjustment of a tumor-targeting Anticalin to match the physical half-life of the applied radioisotope illustrates the potential of small binding proteins as an alternative to antibodies for PET-imaging.
Collapse
Affiliation(s)
- Volker Morath
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
- Lehrstuhl für Biologische Chemie, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Corinna Brandt
- Lehrstuhl für Biologische Chemie, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Friedrich-Christian Deuschle
- Lehrstuhl für Biologische Chemie, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Claudia T Mendler
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Birgit Blechert
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
3
|
Yarahmadi A, Sohan R, McAllister B, Caromile LA. Therapeutic potential of targeting mirnas to prostate cancer tumors: using psma as an active target. Mol Cell Oncol 2022; 9:2136476. [PMID: 36313480 PMCID: PMC9601542 DOI: 10.1080/23723556.2022.2136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
Prostate cancer (PC) is a commonly diagnosed malignancy in men and is associated with high mortality rates. Current treatments for PC include surgery, chemotherapy, and radiation therapy. However, recent advances in targeted delivery systems have yielded promising new approaches to PC treatment. As PC epithelial cells express high levels of prostate-specific membrane antigen (PSMA) on the cell surface, new drug conjugates focused on PSMA targeting have been developed. microRNAs (miRNAs) are small noncoding RNAs that regulate posttranscriptional gene expression in cells and show excellent possibilities for use in developing new therapeutics for PC. PSMA-targeted therapies based on a miRNA payload and that selectively target PC cells enhances therapeutic efficacy without eliciting damage to normal surrounding tissue. This review discusses the rationale for utilizing miRNAs to target PSMA, revealing their potential in therapeutic approaches to PC treatment. Different delivery systems for miRNAs and challenges to miRNA therapy are also explored.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Romoye Sohan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brenna McAllister
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Leslie A. Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
4
|
Nakajima K, Miyazaki F, Terada K, Takakura H, Suzuki M, Ogawa M. Comparison of low-molecular-weight ligand and whole antibody in prostate-specific membrane antigen targeted near-infrared photoimmunotherapy. Int J Pharm 2021; 609:121135. [PMID: 34571072 DOI: 10.1016/j.ijpharm.2021.121135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cancer phototherapy that uses antibody-IR700 conjugate (Ab-IR700) and NIR light. Ab-IR700 forms aggregates on the plasma membranes of targeted cancer cells after light exposure, inducing lethal physical damage within the membrane. Low-molecular-weight (LMW) ligands are candidate targeting moieties instead of antibodies, but whether LMW-IR700 conjugates induce cell death by aggregation, the same mechanism as Ab-IR700, is unknown. Thus, we investigated differences in cytotoxicity and mechanisms between LMW-IR700 and Ab-IR700 targeting prostate-specific membrane antigen (PSMA). Both conjugates decreased cell viability to the same degree after light irradiation, but different morphological changes were observed in PSMA-positive LNCaP cells by microscopy. Cell swelling and bleb formation were induced by Ab-IR700, but only swelling was observed in cells treated with LMW-IR700, suggesting the cells were damaged via different cytotoxic mechanisms. However, LMW-IR700 induced bleb formation, a hallmark of NIR-PIT with Ab-IR700, when singlet oxygen was quenched or LMW-IR700 was localized only on the plasma membrane. Moreover, the water-soluble axial ligands of LMW-IR700 were cleaved, consistent with previous reports on Ab-IR700. Thus, the main cytotoxic mechanisms of Ab-IR700 and LMW-IR700 differ, although LMW-IR700 on the plasma membrane can cause aggregation-mediated cytotoxicity as well as Ab-IR700.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuka Miyazaki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuki Terada
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
5
|
Zekri L, Vogt F, Osburg L, Müller S, Kauer J, Manz T, Pflügler M, Maurer A, Heitmann JS, Hagelstein I, Märklin M, Hörner S, Todenhöfer T, Calaminus C, Stenzl A, Pichler B, la Fougère C, Schneider MA, Rammensee H, Zender L, Sipos B, Salih HR, Jung G. An IgG-based bispecific antibody for improved dual targeting in PSMA-positive cancer. EMBO Mol Med 2021; 13:e11902. [PMID: 33372710 PMCID: PMC7863392 DOI: 10.15252/emmm.201911902] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The prostate-specific membrane antigen (PSMA) has been demonstrated in numerous studies to be expressed specifically on prostate carcinoma cells and on the neovasculature of several other cancer entities. However, the simultaneous expression of PSMA on both, tumor cells as well as tumor vessels remains unclear, even if such "dual" expression would constitute an important asset to facilitate sufficient influx of effector cells to a given tumor site. We report here on the generation of a PSMA antibody, termed 10B3, which exerts superior dual reactivity on sections of prostate carcinoma and squamous cell carcinoma of the lung. 10B3 was used for the construction of T-cell recruiting bispecific PSMAxCD3 antibodies in Fab- and IgG-based formats, designated Fabsc and IgGsc, respectively. In vitro, both molecules exhibited comparable activity. In contrast, only the larger IgGsc molecule induced complete and durable elimination of established tumors in humanized mice due to favorable pharmacokinetic properties. Upon treatment of three patients with metastasized prostate carcinoma with the IgGsc reagent, marked activation of T cells and rapid reduction of elevated PSA levels were observed.
Collapse
|
6
|
Ptacek J, Zhang D, Qiu L, Kruspe S, Motlova L, Kolenko P, Novakova Z, Shubham S, Havlinova B, Baranova P, Chen SJ, Zou X, Giangrande P, Barinka C. Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer. Nucleic Acids Res 2020; 48:11130-11145. [PMID: 32525981 PMCID: PMC7641732 DOI: 10.1093/nar/gkaa494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a well-characterized tumor marker associated with prostate cancer and neovasculature of most solid tumors. PSMA-specific ligands are thus being developed to deliver imaging or therapeutic agents to cancer cells. Here, we report on a crystal structure of human PSMA in complex with A9g, a 43-bp PSMA-specific RNA aptamer, that was determined to the 2.2 Å resolution limit. The analysis of the PSMA/aptamer interface allows for identification of key interactions critical for nanomolar binding affinity and high selectivity of A9g for human PSMA. Combined with in silico modeling, site-directed mutagenesis, inhibition experiments and cell-based assays, the structure also provides an insight into structural changes of the aptamer and PSMA upon complex formation, mechanistic explanation for inhibition of the PSMA enzymatic activity by A9g as well as its ligand-selective competition with small molecules targeting the internal pocket of the enzyme. Additionally, comparison with published protein-RNA aptamer structures pointed toward more general features governing protein-aptamer interactions. Finally, our findings can be exploited for the structure-assisted design of future A9g-based derivatives with improved binding and stability characteristics.
Collapse
Affiliation(s)
- Jakub Ptacek
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Dong Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Sven Kruspe
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lucia Motlova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Petr Kolenko
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic.,Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 11519, Czech Republic
| | - Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Shambhavi Shubham
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Barbora Havlinova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Petra Baranova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiaoqin Zou
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Paloma Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|
7
|
Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, Lankoff A. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3875. [PMID: 32887308 PMCID: PMC7504699 DOI: 10.3390/ma13173875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide. Unfortunately, current therapies often lead to the onset of metastatic castration-resistant prostate cancer (mCRPC), causing significant mortality. Therefore, there is an urgent need for new and targeted therapies that are advantageous over the current ones. Recently, the PSMA-targeted radioligand therapy of mCRPC has shown very promising results. In line with this, we described the synthesis of a new radioimmunoconjugate, 223RaA-silane-PEG-D2B, for targeted mCRPC therapy. The new compound consists of a NaA zeolite nanocarrier loaded with the α-particle emitting Ra-223 radionuclide, functionalized with the anti-PSMA D2B antibody. Physicochemical properties of the synthesized compound were characterized by standard methods (HR-SEM, TEM, XRD, FTIR, EDS, NTA, DLS, BET, TGA). The targeting selectivity, the extent of internalization, and cytotoxicity were determined in LNCaP C4-2 (PSMA+) and DU-145 (PSMA-) cells. Our results supported the 223RaA-silane-PEG-D2B synthesis and revealed that the final product had a diameter ca. 120 nm and specific activity 0.65 MBq/1mg. The product was characterized by a high yield of stability (>95% up to 12 days). The conjugation reaction resulted in approximately 50 antibodies/nanoparticle. The obtained radioimmunoconjugate bound specifically and internalized into PSMA-expressing LNCaP C4-2 cells, but not into PSMA-negative DU-145 cells. 223RaA-silane-PEG-D2B demonstrated also potent cytotoxicity in LNCaP C4-2 cells. These promising results require further in vivo evaluation of 223RaA-silane-PEG-D2B with regard to its toxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Giulio Fracasso
- Department of Medicine, University of Verona, Piazzale LA Scuro 10, 37134 Verona, Italy;
| | - Marek Pruszyński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland
| |
Collapse
|
8
|
Czerwińska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules 2020; 25:E1743. [PMID: 32290196 PMCID: PMC7181060 DOI: 10.3390/molecules25071743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related deaths in Western civilization. Although localized prostate cancer can be treated effectively in different ways, almost all patients progress to the incurable metastatic castration-resistant prostate cancer. Due to the significant mortality and morbidity rate associated with the progression of this disease, there is an urgent need for new and targeted treatments. In this review, we summarize the recent advances in research on identification of prostate tissue-specific antigens for targeted therapy, generation of highly specific and selective molecules targeting these antigens, availability of therapeutic radionuclides for widespread medical applications, and recent achievements in the development of new-generation small-molecule inhibitors and antibody-based strategies for targeted prostate cancer therapy with alpha-, beta-, and Auger electron-emitting radionuclides.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aneta Wegierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| |
Collapse
|
9
|
Jiang W, Fang H, Liu F, Zhou X, Zhao H, He X, Guo D. PEG-coated and Gd-loaded fluorescent silica nanoparticles for targeted prostate cancer magnetic resonance imaging and fluorescence imaging. Int J Nanomedicine 2019; 14:5611-5622. [PMID: 31413566 PMCID: PMC6662520 DOI: 10.2147/ijn.s207098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Multimodal imaging probes have become a powerful tool for improving detection sensitivity and accuracy, which are important in disease diagnosis and treatment. Methods: In this study, novel bifunctional magnetic resonance imaging (MRI)/fluorescence probes were prepared by loading gadodiamide into fluorescent silica nanoparticles (NPs) (Gd@Cy5.5@SiO2-PEG-Ab NPs) for targeting of prostate cancer (PCa). The physicochemical characteristics, biosafety and PCa cell targeting ability of the Gd@Cy5.5@SiO2-PEG-Ab NPs were studied in vitro and in vivo. Results: The Gd@Cy5.5@SiO2-PEG-Ab NPs had a spherical morphology with a relatively uniform size distribution and demonstrated high efficiency for Gd loading. In vitro and in vivo cell-targeting experiments demonstrated a high potential for the synthesized NPs to target prostate-specific membrane antigen (PSMA) receptor-positive PCa cells, enabling MRI and fluorescence imaging. In vitro cytotoxicity assays and in vivo hematological and pathological assays showed that the prepared NPs exhibited good biological safety. Conclusion: Our study demonstrates that the synthesized Gd@Cy5.5@SiO2-PEG-Ab NPs have great potential as MRI/fluorescence contrast agents for specific identification of PSMA receptor-positive PCa cells.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Huiying Fang
- Department of Breast Diseases, Chongqing University Cancer Hospital, Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Fengqiu Liu
- Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xue Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Hongyun Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xiaojing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
10
|
Wu J, Han D, Shi S, Zhang Q, Zheng G, Wei M, Han Y, Li G, Yang F, Jiao D, Xie P, Zhang L, Yang AG, Zhao A, Qin W, Wen W. A Novel Fully Human Antibody targeting Extracellular Domain of PSMA Inhibits Tumor Growth in Prostate Cancer. Mol Cancer Ther 2019; 18:1289-1301. [PMID: 31048359 DOI: 10.1158/1535-7163.mct-18-1078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related death. It is of vital importance to develop new strategies for prostate cancer therapy. PSMA (prostate-specific membrane antigen) is specifically expressed in prostate cancer and the neovasculature of certain cancer types, thus is considered to be an ideal target for cancer therapy. In our previous study, we have obtained a PSMA-specific single-chain variable fragment (scFv), named gy1, from a large yeast display naïve human scFv library. In this study, we reconstructed the PSMA scFv into a fully human antibody (named PSMAb) and evaluated its characterization both in vitro and in vivo We showed that PSMAb can specifically bind with and internalize into PSMA+ cells. The binding affinity of PSMAb is measured to be at nanomolar level, and PSMAb has very good thermostability. In vivo study showed that near IR dye-labeled PSMAb can specifically localize at PSMA+ tumors, and the application of PSMAb in vivo significantly inhibited the growth of PSMA+ tumors, but not PSMA- tumors. At the studied doses, no obvious toxicity was observed when applied in vivo, as shown by the relative normal liver and kidney function and normal structure of important organs, shown by hematoxylin and eosin staining. In addition, PSMAb may inhibit tumor growth through antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity mechanisms. Our results indicated that the novel fully human antibody, PSMAb, deserve further study for PSMA-targeted diagnosis and therapy for prostate cancer and other cancer types with vascular PSMA expression.
Collapse
Affiliation(s)
- Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengjia Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Zhang
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Guoxu Zheng
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Ming Wei
- Department of Urology, 150th Central Hospital of PLA, Luoyang, China
| | | | | | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pin Xie
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | | | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Vorlová B, Sedlák F, Kašpárek P, Šrámková K, Malý M, Zámečník J, Šácha P, Konvalinka J. A novel PSMA/GCPII-deficient mouse model shows enlarged seminal vesicles upon aging. Prostate 2019; 79:126-139. [PMID: 30256431 DOI: 10.1002/pros.23717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is an important diagnostic and therapeutic target in prostate cancer. PSMA/GCPII is also expressed in many healthy tissues, but its function has only been established in the brain and small intestine. Several research groups have attempted to produce PSMA/GCPII-deficient mice to study the physiological role of PSMA/GCPII in detail. The outcomes of these studies differ dramatically, ranging from embryonic lethality to production of viable PSMA/GCPII-deficient mice without any obvious phenotype. METHODS We produced PSMA/GCPII-deficient mice (hereafter also referred as Folh1-/- mice) by TALEN-mediated mutagenesis on a C57BL/6NCrl background. Using Western blot and an enzyme activity assay, we confirmed the absence of PSMA/GCPII in our Folh1-/- mice. We performed anatomical and histopathological examination of selected tissues with a focus on urogenital system. We also examined the PSMA/GCPII expression profile within the mouse urogenital system using an enzyme activity assay and confirmed the presence of PSMA/GCPII in selected tissues by immunohistochemistry. RESULTS Our Folh1-/- mice are viable, breed normally, and do not show any obvious phenotype. Nevertheless, aged Folh1-/- mice of 69-72 weeks exhibit seminal vesicle dilation, which is caused by accumulation of luminal fluid. This phenotype was also observed in Folh1+/- mice; the overall difference between our three cohorts (Folh1-/- , Folh1+/- , and Folh1+/+ ) was highly significant (P < 0.002). Of all studied tissues of the mouse urogenital system, only the epididymis appeared to have a physiologically relevant level of PSMA/GCPII expression. Additional experiments demonstrated that PSMA/GCPII is also present in the human epididymis. CONCLUSIONS In this study, we provide the first evidence characterizing the reproductive tissue phenotype of PSMA/GCPII-deficient mice. These findings will help lay the groundwork for future studies to reveal PSMA/GCPII function in human reproduction.
Collapse
Affiliation(s)
- Barbora Vorlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Prague 2, Czech Republic
- Faculty of Science, Department of Genetics and Microbiology, Charles University, Prague 2, Czech Republic
| | - Petr Kašpárek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Karolína Šrámková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Marek Malý
- National Institute of Public Health, Prague 10, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
12
|
Šimon P, Knedlík T, Blažková K, Dvořáková P, Březinová A, Kostka L, Šubr V, Konvalinka J, Šácha P. Identification of Protein Targets of Bioactive Small Molecules Using Randomly Photomodified Probes. ACS Chem Biol 2018; 13:3333-3342. [PMID: 30489064 DOI: 10.1021/acschembio.8b00791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying protein targets of bioactive small molecules often requires complex, lengthy development of affinity probes. We present a method for stochastic modification of small molecules of interest with a photoactivatable phenyldiazirine linker. The resulting isomeric mixture is conjugated to a hydrophilic copolymer decorated with biotin and a fluorophore. We validated this approach using known inhibitors of several medicinally relevant enzymes. At least a portion of the stochastic derivatives retained their binding to the target, enabling target visualization, isolation, and identification. Moreover, the mix of stochastic probes could be separated into fractions and tested for binding affinity. The structure of the active probe could be determined and the probe resynthesized to improve binding efficiency. Our approach can thus enable rapid target isolation, identification, and visualization, while providing information required for subsequent synthesis of an optimized probe.
Collapse
Affiliation(s)
- Petr Šimon
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
| | - Tomáš Knedlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kristýna Blažková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 12843, Prague 2, Czech Republic
| | - Petra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 12843, Prague 2, Czech Republic
| | - Anna Březinová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 2, 16206, Prague 6, Czech Republic
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 2, 16206, Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
13
|
Jiang W, He X, Fang H, Zhou X, Ran H, Guo D. Novel gadopentetic acid-doped silica nanoparticles conjugated with YPSMA-1 targeting prostate cancer for MR imaging: an in vitro study. Biochem Biophys Res Commun 2018; 499:202-208. [DOI: 10.1016/j.bbrc.2018.03.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
|
14
|
Prostate-specific membrane antigen in breast cancer: a comprehensive evaluation of expression and a case report of radionuclide therapy. Breast Cancer Res Treat 2018; 169:447-455. [PMID: 29455299 DOI: 10.1007/s10549-018-4717-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA), a protein product of the folate hydrolase 1 (FOLH1) gene, is gaining increasing acceptance as a target for positron emission tomography/computer tomography (PET/CT) imaging in patients with several cancer types, including breast cancer. So far, PSMA expression in breast cancer endothelia has not been sufficiently characterized. METHODS This study comprised 315 cases of invasive carcinoma of no special type (NST) and lobular breast cancer (median follow-up time 9.0 years). PSMA expression on tumor endothelia was detected by immunohistochemistry. Further, vascular mRNA expression of the FOLH1 gene (PSMA) was investigated in a cohort of patients with invasive breast cancer provided by The Cancer Genome Atlas (TCGA). RESULTS Sixty percent of breast cancer cases exhibited PSMA-positive endothelia with higher expression rates in tumors of higher grade, NST subtype with Her2-positivity, and lack of hormone receptors. These findings were confirmed on mRNA expression levels. The highest PSMA rates were observed in triple-negative carcinomas (4.5 × higher than in other tumors). Further, a case of a patient with metastatic breast cancer showing PSMA expression in PET/CT imaging and undergoing PSMA radionuclide therapy is discussed in detail. CONCLUSIONS This study provides a rationale for the further development of PSMA-targeted imaging in breast cancer, especially in triple-negative tumors.
Collapse
|
15
|
Prostate-specific membrane antigen (PSMA) expression in breast cancer and its metastases. Clin Exp Metastasis 2018; 34:479-490. [PMID: 29426963 DOI: 10.1007/s10585-018-9878-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
The present study was undertaken to investigate the expression of prostate-specific membrane antigen (PSMA) in normal breast tissues, in cancerous breast tissues and in distant metastases from patients with breast cancer. Immunohistochemical analysis was performed to determine PSMA expression and angiogenic activity using anti-PSMA mAb and anti-CD31 mAb respectively. Immunofluorescence staining was applied to confirm the exact co-localization of PSMA and CD31. We observed different patterns of PSMA expression between normal and cancerous tissues. Normal breast tissues showed PSMA expression only in normal glandular cells. However, primary breast tumors and distant metastases showed PSMA expression in tumor cells and in tumor-associated neovasculature. PSMA score group status in primary breast tumors was significantly associated with histologic type and tumor grade (p = 0.026 and p = 0.004 respectively). Distant metastases showed higher PSMA expression in tumor-associated neovasculature comparing with primary tumors. Moreover, brain tumor-associated neovasculture had significantly higher expression of PSMA comparing with bone tumor-associated neovasculture. The localized binding of PSMA mAb to the neovasculature endothelium was confirmed with the double Immunofluorescence staining. 68Ga-PSAM imaging of a patient with metastatic breast cancer showed strong tracer uptake in all known skeletal metastases. To the best of our knowledge, this study is the second one that has assessed PSMA expression in a large number of breast cancer patients. Our findings showed that PSMA is particularly expressed in tumor-associated neovasculature of breast tumors and its distant metastases, thus enhancing the evidence on the potential usefulness of PSMA as a therapeutic vascular target.
Collapse
|
16
|
Psimadas D, Valotassiou V, Alexiou S, Tsougos I, Georgoulias P. Radiolabeled mAbs as Molecular Imaging and/or Therapy Agents Targeting PSMA. Cancer Invest 2018; 36:118-128. [DOI: 10.1080/07357907.2018.1430816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dimitrios Psimadas
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Sotiria Alexiou
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Tsougos
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
17
|
Bertorelle F, Pinto M, Zappon R, Pilot R, Litti L, Fiameni S, Conti G, Gobbo M, Toffoli G, Colombatti M, Fracasso G, Meneghetti M. Safe core-satellite magneto-plasmonic nanostructures for efficient targeting and photothermal treatment of tumor cells. NANOSCALE 2018; 10:976-984. [PMID: 29264608 DOI: 10.1039/c7nr07844g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magneto-plasmonic nanostructures functionalized with cell targeting units are of great interest for nanobiotechnology applications. Photothermal treatment of cells targeted with antibody functionalized nanostructures and followed by magnetic isolation, allows killing selected cells and hence is one of the applications of great interest. The magneto-plasmonic nanostructures reported herein were synthesized using naked gold and magnetite nanoparticles obtained through a green approach based on laser ablation of bulk materials in water. These particles do not need purifications steps for biocompatibility and are functionalized with a SERRS (surface enhanced resonance Raman scattering) active molecule for detection and with an antibody for targeting prostate tumor cells. Quantitative results for the cell targeting and selection efficiency show an overall accuracy of 94% at picomolar concentrations. The photothermal treatment efficiently kills targeted and magneto-selected cells producing a viability below 5% after 3 min of irradiation, compared with almost 100% viability of incubated and irradiated, but non targeted cells.
Collapse
Affiliation(s)
- F Bertorelle
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 31033, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lucío MI, Opri R, Pinto M, Scarsi A, Fierro JLG, Meneghetti M, Fracasso G, Prato M, Vázquez E, Herrero MA. Targeted killing of prostate cancer cells using antibody-drug conjugated carbon nanohorns. J Mater Chem B 2017; 5:8821-8832. [PMID: 32264275 DOI: 10.1039/c7tb02464a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability of carbon nanohorns (CNHs) to cross biological barriers makes them potential carriers for delivery purposes. In this work, we report the design of a new selective antibody-drug nanosystem based on CNHs for the treatment of prostate cancer (PCa). In particular, cisplatin in a prodrug form and the monoclonal antibody (Ab) D2B, selective for PSMA+ cancer cells, have been attached to CNHs due to the current application of this antigen in PCa therapy. The hybrids Ab-CNHs, cisplatin-CNHs and functionalised-CNHs have also been synthesized to be used as control systems. The efficacy and specificity of the D2B-cisplatin-CNH conjugate to selectively target and kill PSMA+ prostate cancer cells have been demonstrated in comparison with other derivatives. The developed strategy to functionalise CNHs is fascinating because it can allow the fine tuning of both drug and Ab molecules attached to the nanostructure in order to modulate the activity of the nanosystem. Finally, the herein described methodology can be used for the incorporation of almost any drugs or Abs in the platforms in order to create new targeted drugs for the treatment of different diseases.
Collapse
Affiliation(s)
- María Isabel Lucío
- Departamento de Química Orgánica, Inorgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, 13071 Ciudad Real, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Knedlík T, Vorlová B, Navrátil V, Tykvart J, Sedlák F, Vaculín Š, Franěk M, Šácha P, Konvalinka J. Mouse glutamate carboxypeptidase II (GCPII) has a similar enzyme activity and inhibition profile but a different tissue distribution to human GCPII. FEBS Open Bio 2017; 7:1362-1378. [PMID: 28904865 PMCID: PMC5586342 DOI: 10.1002/2211-5463.12276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/23/2017] [Accepted: 07/19/2017] [Indexed: 11/09/2022] Open
Abstract
Glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA) or folate hydrolase, is a metallopeptidase expressed predominantly in the human brain and prostate. GCPII expression is considerably increased in prostate carcinoma, and the enzyme also participates in glutamate excitotoxicity in the brain. Therefore, GCPII represents an important diagnostic marker of prostate cancer progression and a putative target for the treatment of both prostate cancer and neuronal disorders associated with glutamate excitotoxicity. For the development of novel therapeutics, mouse models are widely used. However, although mouse GCPII activity has been characterized, a detailed comparison of the enzymatic activity and tissue distribution of the mouse and human GCPII orthologs remains lacking. In this study, we prepared extracellular mouse GCPII and compared it with human GCPII. We found that mouse GCPII possesses lower catalytic efficiency but similar substrate specificity compared with the human protein. Using a panel of GCPII inhibitors, we discovered that inhibition constants are generally similar for mouse and human GCPII. Furthermore, we observed highest expression of GCPII protein in the mouse kidney, brain, and salivary glands. Importantly, we did not detect GCPII in the mouse prostate. Our data suggest that the differences in enzymatic activity and inhibition profile are rather small; therefore, mouse GCPII can approximate human GCPII in drug development and testing. On the other hand, significant differences in GCPII tissue expression must be taken into account when developing novel GCPII-based anticancer and therapeutic methods, including targeted anticancer drug delivery systems, and when using mice as a model organism.
Collapse
Affiliation(s)
- Tomáš Knedlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Barbora Vorlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,First Faculty of Medicine Charles University Prague Czech Republic
| | - Václav Navrátil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Jan Tykvart
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic.,Present address: Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto ON Canada
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,First Faculty of Medicine Charles University Prague Czech Republic.,Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
| | - Šimon Vaculín
- Department of Normal, Pathological and Clinical Physiology Third Faculty of Medicine Charles University Prague Czech Republic
| | - Miloslav Franěk
- Department of Normal, Pathological and Clinical Physiology Third Faculty of Medicine Charles University Prague Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic.,Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| |
Collapse
|
20
|
Comprehensive Evaluation of Prostate Specific Membrane Antigen Expression in the Vasculature of Renal Tumors: Implications for Imaging Studies and Prognostic Role. J Urol 2017; 199:370-377. [PMID: 28827104 DOI: 10.1016/j.juro.2017.08.079] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Prostate specific membrane antigen is expressed by the endothelium of many tumors. The aim of the study was to find a rationale for prostate specific membrane antigen based imaging and investigate the prognostic role of vascular prostate specific membrane antigen expression in patients with renal cell carcinoma. MATERIALS AND METHODS A total of 257 patients with renal cell carcinoma were included in study with a median followup exceeding 10.0 years. Prostate specific membrane antigen expression on tumor vessels was detected by immunohistochemistry. Vascular expression of FOLH1 gene (prostate specific membrane antigen) mRNA was investigated in clear cell carcinoma and papillary renal cell carcinoma using TCGA (The Cancer Genome Atlas) data. RESULTS Endothelial prostate specific membrane antigen protein expression was higher in clear cell than in papillary and chromophobe renal cell carcinoma. Higher grade and stage, metastatic and lethal clear cell renal cell carcinoma showed higher prostate specific membrane antigen expression in tumor vessels. On univariate and multivariate analysis the intensity of positive vs negative endothelial prostate specific membrane antigen protein expression was significantly associated with overall survival. TCGA based analyses confirmed the prognostic role of vascular expression of FOLH1 mRNA. The analyses also supported the usefulness of prostate specific membrane antigen based imaging in cases of clear cell but not papillary renal cell carcinoma. CONCLUSIONS We provide a rationale for further development of prostate specific membrane antigen targeted imaging in patients with clear cell renal cell carcinoma. The prognostic role of prostate specific membrane antigen was determined at the protein level in clear cell renal cell carcinoma and at the mRNA level in clear cell and papillary renal cell carcinoma.
Collapse
|
21
|
Gasch C, Düwel C, Kopka K, Kratochwil C, Vinsensia M, Eiber M, Maurer T, Haberkorn U, Hadaschik B, Giesel FL. [Significance of PSMA imaging in prostate cancer]. Urologe A 2017; 56:3-12. [PMID: 28005153 DOI: 10.1007/s00120-016-0293-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common malignancies of men in developed countries. To improve clinical diagnostics of PCa, 68Ga-PSMA-11 was recently introduced as a new PET tracer. 68Ga-PSMA-11 is able to specifically bind to the prostate-specific membrane antigen (PSMA), which is upregulated on the surface of prostate cancer cells in most patients. OBJECTIVES To analyse the current significance of 68Ga-PSMA-11 PET imaging in prostate cancer in relation to staging of men with initial diagnosis, biochemical recurrence and metastatic disease. MATERIALS AND METHODS Retrospective analysis of current literature (PubMed search) regarding 68Ga-PSMA-11 PET diagnostics in primary staging, in biochemical recurrence and in metastasized disease. RESULTS Compared to conventional imaging, 68Ga-PSMA-11 PET/CT reaches a higher sensitivity with an excellent specificity in the clinical diagnosis of primary staging as well as staging for recurrence and advanced, metastasized disease. In biochemical recurrence, 68Ga-PSMA-11 PET/CT shows significantly higher detection rates in comparison to choline PET/CT, especially in patients with low PSA values. In the clinical diagnosis of recurrent disease, therapy concepts were changed in more than a quarter of the patients due to the use of 68Ga-PSMA-11 PET/CT. The significance of staging with 68Ga-PSMA-11 PET/CT in advanced metastasized patients remains uncertain. CONCLUSIONS Due to the excellent results of 68Ga-PSMA-11 PET imaging, even in patients with slightly elevated PSA levels, it will continue to play an important role in clinical diagnostics of prostate cancer and, thus, its clinical utilization will become more widely spread.
Collapse
Affiliation(s)
- C Gasch
- Urologische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Düwel
- Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - K Kopka
- Abteilung Radiopharmazeutische Chemie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| | - C Kratochwil
- Abteilung Nuklearmedizin, Radiologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| | - M Vinsensia
- Abteilung Nuklearmedizin, Radiologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| | - M Eiber
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - T Maurer
- Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - U Haberkorn
- Abteilung Nuklearmedizin, Radiologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| | - B Hadaschik
- Urologische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - F L Giesel
- Abteilung Nuklearmedizin, Radiologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| |
Collapse
|
22
|
Kratochwil C, Afshar-Oromieh A, Kopka K, Haberkorn U, Giesel FL. Current Status of Prostate-Specific Membrane Antigen Targeting in Nuclear Medicine: Clinical Translation of Chelator Containing Prostate-Specific Membrane Antigen Ligands Into Diagnostics and Therapy for Prostate Cancer. Semin Nucl Med 2017; 46:405-18. [PMID: 27553466 DOI: 10.1053/j.semnuclmed.2016.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prostate-specific membrane antigen (PSMA) is expressed by approximately 90% of prostate carcinomas. The expression correlates with unfavorable prognostic factors, such as a high Gleason score, infiltrative growth, metastasis, and hormone-independence. The high specificity, especially in the undifferentiated stage, makes it an excellent target for diagnosis and therapy. Therefore, antibodies and small molecule inhibitors have been developed for imaging and therapy. In 2011 PSMA-11, a ligand that consists of the Glu-urea-motif and the chelator HBED-CC, which can be exclusively radiolabeled with (68)Ga for PET imaging, presented the clinical breakthrough for prostate cancer diagnostics. In two large diagnostic studies (n = 319 and n = 248) PET/CT with PSMA-11 successfully localized the recurrent tumor in approximately 90% of patients with biochemical relapse. Integrating PSMA-PET/CT into the planning phase of radiotherapy, the treatment concept is changed in 30%-50% of the patients. The combination of the Glu-urea-motif with DOTA, which can be labeled with several diagnostic and therapeutic radionuclides, opened new avenues for therapeutic usage of the small-molecule PSMA ligands. In the beginning of 2016, there are four confirmative reports (n = 19, n = 24, n = 30, and n = 56) from four different centers reporting a PSA response in approximately 70% of patients treated with (177)Lu-labeled PSMA ligands. In conclusion, the data available up to now indicate a widespread use of PSMA ligands for diagnostic applications with respect to staging, detection of recurrence, or metastases in patients with rising tumor markers and for therapy in case of failure of guideline-compliant treatment.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Nuclear Medicine (E060), German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Nuclear Medicine (E060), German Cancer Research Center (dkfz), Heidelberg, Germany.
| | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Zlitni A, Yin M, Janzen N, Chatterjee S, Lisok A, Gabrielson KL, Nimmagadda S, Pomper MG, Foster FS, Valliant JF. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLoS One 2017; 12:e0176958. [PMID: 28472168 PMCID: PMC5417523 DOI: 10.1371/journal.pone.0176958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/19/2017] [Indexed: 01/28/2023] Open
Abstract
Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes.
Collapse
Affiliation(s)
- Aimen Zlitni
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Yin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Samit Chatterjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Kathleen L Gabrielson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - F Stuart Foster
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada.,Centre for Probe Development and Commercialization, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Nováková Z, Foss CA, Copeland BT, Morath V, Baranová P, Havlínová B, Skerra A, Pomper MG, Barinka C. Novel Monoclonal Antibodies Recognizing Human Prostate-Specific Membrane Antigen (PSMA) as Research and Theranostic Tools. Prostate 2017; 77:749-764. [PMID: 28247415 PMCID: PMC7061361 DOI: 10.1002/pros.23311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) is a validated target for the imaging and therapy of prostate cancer. Here, we report the detailed characterization of four novel murine monoclonal antibodies (mAbs) recognizing human PSMA as well as PSMA orthologs from different species. METHODS Performance of purified mAbs was assayed using a comprehensive panel of in vitro experimental setups including Western blotting, immunofluorescence, immunohistochemistry, ELISA, flow cytometry, and surface-plasmon resonance. Furthermore, a mouse xenograft model of prostate cancer was used to compare the suitability of the mAbs for in vivo applications. RESULTS All mAbs demonstrate high specificity for PSMA as documented by the lack of cross-reactivity to unrelated human proteins. The 3F11 and 1A11 mAbs bind linear epitopes spanning residues 226-243 and 271-288 of human PSMA, respectively. 3F11 is also suitable for the detection of PSMA orthologs from mouse, pig, dog, and rat in experimental setups where the denatured form of PSMA is used. 5D3 and 5B1 mAbs recognize distinct surface-exposed conformational epitopes and are useful for targeting PSMA in its native conformation. Most importantly, using a mouse xenograft model of prostate cancer we show that both the intact 5D3 and its Fab fragment are suitable for in vivo imaging. CONCLUSIONS With apparent affinities of 0.14 and 1.2 nM as determined by ELISA and flow cytometry, respectively, 5D3 has approximately 10-fold higher affinity for PSMA than the clinically validated mAb J591 and, therefore, is a prime candidate for the development of next-generation theranostics to target PSMA. Prostate 77:749-764, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zora Nováková
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Catherine A. Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Benjamin T. Copeland
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Volker Morath
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Petra Baranová
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Barbora Havlínová
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
- Correspondence to: Dr. Cyril Barinka, Institute of Biotechnology CAS, v.v.i., Laboratory of Structural Biology, Prumyslova 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
25
|
Classification of 27 Tumor-Associated Antigens by Histochemical Analysis of 36 Freshly Resected Lung Cancer Tissues. Int J Mol Sci 2016; 17:ijms17111862. [PMID: 27834817 PMCID: PMC5133862 DOI: 10.3390/ijms17111862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
In previous studies, we identified 29 tumor-associated antigens (TAAs) and isolated 488 human monoclonal antibodies (mAbs) that specifically bind to one of the 29 TAAs. In the present study, we performed histochemical analysis of 36 freshly resected lung cancer tissues by using 60 mAbs against 27 TAAs. Comparison of the staining patterns of tumor cells, bronchial epithelial cells, and normal pulmonary alveolus cells and interalveolar septum allowed us to determine the type and location of cells that express target molecules, as well as the degree of expression. The patterns were classified into 7 categories. While multiple Abs were used against certain TAAs, the differences observed among them should be derived from differences in the binding activity and/or the epitope. Thus, such data indicate the versatility of respective clones as anti-cancer drugs. Although the information obtained was limited to the lung and bronchial tube, bronchial epithelial cells represent normal growing cells, and therefore, the data are informative. The results indicate that 9 of the 27 TAAs are suitable targets for therapeutic Abs. These 9 Ags include EGFR, HER2, TfR, and integrin α6β4. Based on our findings, a pharmaceutical company has started to develop anti-cancer drugs by using Abs to TfR and integrin α6β4. HGFR, PTP-LAR, CD147, CDCP1, and integrin αvβ3 are also appropriate targets for therapeutic purposes.
Collapse
|
26
|
Navrátil V, Schimer J, Tykvart J, Knedlík T, Vik V, Majer P, Konvalinka J, Šácha P. DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening. Nucleic Acids Res 2016; 45:e10. [PMID: 27679479 PMCID: PMC5314793 DOI: 10.1093/nar/gkw853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022] Open
Abstract
Human diseases are often diagnosed by determining levels of relevant enzymes and treated by enzyme inhibitors. We describe an assay suitable for both ultrasensitive enzyme quantification and quantitative inhibitor screening with unpurified enzymes. In the DNA-linked Inhibitor ANtibody Assay (DIANA), the target enzyme is captured by an immobilized antibody, probed with a small-molecule inhibitor attached to a reporter DNA and detected by quantitative PCR. We validate the approach using the putative cancer markers prostate-specific membrane antigen and carbonic anhydrase IX. We show that DIANA has a linear range of up to six logs and it selectively detects zeptomoles of targets in complex biological samples. DIANA's wide dynamic range permits determination of target enzyme inhibition constants using a single inhibitor concentration. DIANA also enables quantitative screening of small-molecule enzyme inhibitors using microliters of human blood serum containing picograms of target enzyme. DIANA's performance characteristics make it a superior tool for disease detection and drug discovery.
Collapse
Affiliation(s)
- Václav Navrátil
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic .,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, 128 43, Czech Republic
| | - Jiří Schimer
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, 128 43, Czech Republic
| | - Jan Tykvart
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, 128 43, Czech Republic
| | - Tomáš Knedlík
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, 128 43, Czech Republic
| | - Viktor Vik
- Department of Urology, Thomayer Hospital in Prague, Prague, 140 59, Czech Republic
| | - Pavel Majer
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic
| | - Jan Konvalinka
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic .,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, 128 43, Czech Republic
| | - Pavel Šácha
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, 166 10, Czech Republic .,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, 128 43, Czech Republic
| |
Collapse
|
27
|
Navrátil M, Tykvart J, Schimer J, Pachl P, Navrátil V, Rokob TA, Hlouchová K, Rulíšek L, Konvalinka J. Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. FEBS J 2016; 283:2528-45. [DOI: 10.1111/febs.13761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Michal Navrátil
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Biochemistry; Faculty of Natural Sciences; Charles University in Prague; Czech Republic
| | - Jan Tykvart
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Biochemistry; Faculty of Natural Sciences; Charles University in Prague; Czech Republic
| | - Jiří Schimer
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Biochemistry; Faculty of Natural Sciences; Charles University in Prague; Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Václav Navrátil
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Biochemistry; Faculty of Natural Sciences; Charles University in Prague; Czech Republic
| | - Tibor András Rokob
- Institute of Organic Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - Klára Hlouchová
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Biochemistry; Faculty of Natural Sciences; Charles University in Prague; Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry; Gilead Sciences and IOCB Research Centre; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Biochemistry; Faculty of Natural Sciences; Charles University in Prague; Czech Republic
| |
Collapse
|
28
|
A Novel Prostate-Specific Membrane-Antigen (PSMA) Targeted Micelle-Encapsulating Wogonin Inhibits Prostate Cancer Cell Proliferation via Inducing Intrinsic Apoptotic Pathway. Int J Mol Sci 2016; 17:ijms17050676. [PMID: 27196894 PMCID: PMC4881502 DOI: 10.3390/ijms17050676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is a malignant tumor for which there are no effective treatment strategies. In this study, we developed a targeted strategy for prostate-specific membrane-antigen (PSMA)-positive PCa in vitro based on 2-(3-((S)-5-amino-1-carboxypentyl)ureido) pentanedioic acid (ACUPA) modified polyethylene glycol (PEG)-Cholesterol micelles containing wogonin (WOG), which was named ACUPA-M-WOG. ACUPA-M-WOG was conventionally prepared using a self-assembling method, which produced stable particle size and ζ potential. Moreover, ACUPA-M-WOG showed good drug encapsulating capacity and drug release profiles. Fluorescence activated cell sorting (FACS) results suggested that ACUPA modified PEG-Cholesterol micelles could effectively enhance the drug uptake on PSMA(+) PCa cells, and the cytotoxicity of ACUPA-M-WOG was stronger than other controls according to in vitro cellular proliferation and apoptosis assays, separately through methyl thiazolyl tetrazolium (MTT) and Annexin V/Propidium Iodide (PI) staining. Finally, the molecular mechanisms of ACUPA-M-WOG’s effects on human PSMA(+) PCa were investigated, and were mainly the intrinsic or extrinsic apoptosis signaling pathways. The Western blot results suggested that ACUPA-M-WOG could enhance the WOG-induced apoptosis, which was mainly via the intrinsic signaling pathway rather than the extrinsic signaling pathway. In conclusion, ACUPA-M-WOG was successfully developed for WOG-selective delivery to PSMA(+) PCa cells and had stronger inhibition than free drugs, which might make it an effective strategy for PSMA(+) PCa.
Collapse
|
29
|
Tao R, Ni Z, Liu C, Zhu M, Ji X, Chen X, Shen J, Tu S. Expression, purification and identification of an immunogenic fragment in the ectodomain of prostate-specific membrane antigen. Exp Ther Med 2016; 11:747-752. [PMID: 26997988 PMCID: PMC4774373 DOI: 10.3892/etm.2016.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/25/2015] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to identify, express and purify an immunogenic fragment in the ectodomain of prostate-specific membrane antigen (PSMA) within a fusion protein. The PSMA amino acid sequence published in National Center for Biotechnology Information GenBank was used to determine sequence homology and immunogenic index analyses, additionally using BLASTN, Protean and ExPASy software to predict the polypeptide sequences of immunogenic epitopes. The gene sequence encoding the ectodomain of the polypeptide immunogenic fragments, containing the identified immunogenic epitopes, was generated using whole-gene synthesis. Prokaryotic expression vector pET-32a-r-ectodomain-PSMA was constructed and the recombinant plasmids were transformed into competent BL21 (DE3) Escherichia coli, which was followed by induction of recombinant protein expression using isopropyl-β-D-thiogalactopyranoside. Fusion proteins were isolated and purified using affinity chromatography and their immune activity was subsequently investigated using western blot analysis. Purified protein was used to immunize BALB/c mice in order to generate polyclonal antibodies, and the binding of polyclonal antibodies to prostate cancer cell lines in vitro was evaluated using flow cytometry. A total of 3 polypeptide fragments with high specificity were identified following analysis using numerous software packages, and the gene sequences encoding regions containing the 2 most immunogenic fragments were synthesized and successfully inserted into the prokaryotic expression vector pET-32a-r-ectodomain-PSMA. The recombinant PSMA protein fragment had a molecular weight of ~50 kDa and 95% purity. Western blot analysis revealed that the r-ectodomain-PSMA fusion protein specifically bound to the anti-PSMA ectodomain monoclonal antibody. Flow cytometry demonstrated that polyclonal antibodies raised against these recombinant proteins could specifically bind to PSMA-positive LNCaP cells, but not to PSMA-negative PC-3 cells. An immunogenic fragment in the ectodomain of PSMA was successfully expressed and purified. The present study, therefore, provides a basis for the preparation of an anti-PSMA small humanized monoclonal antibody.
Collapse
Affiliation(s)
- Rong Tao
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhenhua Ni
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Chong Liu
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Min Zhu
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xiaowen Ji
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xuemin Chen
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jiangfan Shen
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Shaohua Tu
- Department of Nuclear Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
30
|
Benešová M, Bauder-Wüst U, Schäfer M, Klika KD, Mier W, Haberkorn U, Kopka K, Eder M. Linker Modification Strategies To Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J Med Chem 2016; 59:1761-75. [DOI: 10.1021/acs.jmedchem.5b01210] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Martina Benešová
- Division
of Radiopharmaceutical Chemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Division
of Radiopharmaceutical Chemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Martin Schäfer
- Division
of Radiopharmaceutical Chemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Karel D. Klika
- Molecular
Structure Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Walter Mier
- Department
of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Department
of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical
Cooperation Unit Nuclear Medicine, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Division
of Radiopharmaceutical Chemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Matthias Eder
- Division
of Radiopharmaceutical Chemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection. Biosens Bioelectron 2015; 72:393-9. [DOI: 10.1016/j.bios.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 01/03/2023]
|
32
|
Tykvart J, Schimer J, Jančařík A, Bařinková J, Navrátil V, Starková J, Šrámková K, Konvalinka J, Majer P, Šácha P. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II. J Med Chem 2015; 58:4357-63. [PMID: 25923815 DOI: 10.1021/acs.jmedchem.5b00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells.
Collapse
Affiliation(s)
- Jan Tykvart
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Jiří Schimer
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Andrej Jančařík
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Jitka Bařinková
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Václav Navrátil
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Jana Starková
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Karolína Šrámková
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Jan Konvalinka
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Pavel Majer
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic
| | - Pavel Šácha
- †Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, Prague 6, 166 10, Czech Republic.,‡Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague 2, 128 43, Czech Republic
| |
Collapse
|