1
|
Bontreger LJ, Gallo AD, Moon J, Silinski P, Monson EE, Franz KJ. Intramolecular Histidine Cross-Links Formed via Copper-Catalyzed Oxidation of Histatin Peptides. J Am Chem Soc 2025; 147:12749-12765. [PMID: 40197000 DOI: 10.1021/jacs.5c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Histidine is a versatile amino acid with metal-binding, nucleophilic, and basic properties that endow many peptides and proteins with biological activity. However, histidine itself is susceptible to oxidative modifications via post-translational modifications, photo-oxidation, and metal-catalyzed oxidation. Despite multiple investigations into these different oxidation systems, the varied attributions and differential outcomes point to significant gaps in our understanding of the coordination requirements, spectral features, and reaction products that accompany the Cu-catalyzed oxidation of histidine-containing peptides. Here, we use model peptides of Histatin-5, a salivary peptide with Cu-potentiated antifungal activity that relies on its histidine residues, to characterize the complex mixture resulting from the reaction with Cu under physiologically relevant reducing and oxidizing conditions. Characterization via LC-MS, MS/MS, UV-vis, and NMR revealed that adjacent histidine residues of the bis-His site are the main target of Cu-catalyzed oxidation, with predominant modifications being 2-oxo-His and His-His cross-links that give rise to distinctive electronic absorption features between 300-400 nm. Doubly- and triply-oxygenated peptides, intramolecular His-His cross-links, and multimers in the case of a shorter model peptide were also observed. The configuration of the bis-His motif may enable Cu reactivity not available in systems where His residues are not adjacent in sequence or space. These results expand the possibilities of oxidative modifications available to other proteins and peptides containing multiple histidines.
Collapse
Affiliation(s)
- Leah J Bontreger
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annastassia D Gallo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jaewon Moon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Peter Silinski
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Eric E Monson
- Center for Data and Visualization Sciences, Duke University Libraries, Durham, North Carolina 27708, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Dzień E, Wątły J, Hecel A, Mikołajczyk A, Matera-Witkiewicz A, Adrover M, Barceló-Oliver M, Domínguez-Martín A, Rowińska-Żyrek M. Zn(II) coordination influences the secondary structure, but not antimicrobial activity of the N-terminal histatin 3 hydrolysis product. Dalton Trans 2024; 53:19202-19213. [PMID: 39508362 DOI: 10.1039/d4dt02274b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The relationship between the coordination chemistry and antimicrobial activity of Zn(II) and Cu(II)-bound histatins, salivary antimicrobial peptides, remains enigmatic. We focus on metal complexes of histatin 3 and its two products of hydrolysis: histatin 4 and its N-terminal fragment (histatin 3-4). The thermodynamic stability of these complexes is quite expected - the binding of Cu(II) via the ATCUN motif results in the formation of very stable complexes. In histatin-Zn(II) complexes, the {2Nim} type of coordination dominates, with polymorphic binding sites observed for histatin 3-4 and 5-8, resulting in their low thermodynamic stability compared to the complexes of histatin 3, 4, 5 and 8 with Zn(II), in which we observe a {2Nim, O-} type of coordination. Histatin 3, 3-4 and 4 have greater activity against Gram-positive bacteria than against Gram-negative ones, and Cu(II) or Zn(II) binding can, in some cases, moderately increase the antimicrobial activity of the native histatin 3 and 4, but not the remaining 3-4 fragment. The most probable reason for the metal-enhanced antimicrobial activity is, in this case, a local change of charge, while the chemically fascinating metal binding induced structural changes do not result in a change of biological activity. Neither histatin 3-4, the N-terminal fragment of histatin 3, which remains in solution after cleavage, nor its metal complexes have any antimicrobial activity, but histatin 3-4 presents intriguing Zn(II)-induced structural behavior, changing its secondary structure, with a tendency to form an α-helix.
Collapse
Affiliation(s)
- Emilia Dzień
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Aleksandra Mikołajczyk
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical Univeristy Biobank, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical Univeristy Biobank, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Miquel Adrover
- Department of Chemistry, University of Balearic Islands, Cra. de Valldemossa, km 7.7, 07122 Palma de Mallorca, Spain
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Spain
- Institut de Recerca en Ciències de la Salut (IdISBa), Spain
| | - Miquel Barceló-Oliver
- Department of Chemistry, University of Balearic Islands, Cra. de Valldemossa, km 7.7, 07122 Palma de Mallorca, Spain
| | - Alicia Domínguez-Martín
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain
| | | |
Collapse
|
3
|
de Oliveira Silva YR, Zheng D, Peters SC, Fisher OS. Stabilization of a Cu-binding site by a highly conserved tryptophan residue. J Inorg Biochem 2024; 253:112501. [PMID: 38342077 DOI: 10.1016/j.jinorgbio.2024.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Copper serves as an essential cofactor for nearly all living organisms. There are still many gaps remaining in our knowledge of how Gram-positive bacteria import copper and maintain homeostasis. To obtain a better understanding of how these processes work, here we focus on the ycnKJI operon responsible for regulating copper levels in the Gram-positive bacterium Bacillus subtilis. This operon encodes three Cu-related proteins: a copper-dependent transcriptional repressor (YcnK), a putative copper importer (YcnJ), and a copper-binding protein of unknown function (YcnI). We previously found that YcnI's extracellular Domain of Unknown Function 1775 (DUF1775) houses a monohistidine brace motif that coordinates a single Cu(II) ion. The Cu(II) binding site includes a highly conserved tryptophan residue. Here, we investigate the role of that tryptophan and the ability of the protein to interact with other oxidation states of Cu. We find that YcnI exhibits strong preference for binding Cu in the oxidized Cu(II) state, and that the conserved tryptophan residue is not essential for the interaction. We determine the structure of a tryptophan variant to 1.95 Å resolution that indicates that the tryptophan is needed to stabilize the metal binding interaction, and find that this variant has weaker affinity for Cu(II) than the wild-type protein. Together, these data provide further insights into the DUF1775 domain family and reveal the role of the conserved tryptophan residue.
Collapse
Affiliation(s)
| | - Dia Zheng
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA 18015, USA
| | - Stephen C Peters
- Department of Earth and Environmental Sciences, Lehigh University, 1 W Packer Ave, Bethlehem, PA 18015, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
4
|
Shin MK, Park HR, Hwang IW, Bu KB, Jang BY, Lee SH, Oh JW, Yoo JS, Sung JS. In Silico-Based Design of a Hybrid Peptide with Antimicrobial Activity against Multidrug-Resistant Pseudomonas aeruginosa Using a Spider Toxin Peptide. Toxins (Basel) 2023; 15:668. [PMID: 38133172 PMCID: PMC10747792 DOI: 10.3390/toxins15120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The escalating prevalence of antibiotic-resistant bacteria poses an immediate and grave threat to public health. Antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional antibiotics. Animal venom comprises a diverse array of bioactive compounds, which can be a rich source for identifying new functional peptides. In this study, we identified a toxin peptide, Lycotoxin-Pa1a (Lytx-Pa1a), from the transcriptome of the Pardosa astrigera spider venom gland. To enhance its functional properties, we employed an in silico approach to design a novel hybrid peptide, KFH-Pa1a, by predicting antibacterial and cytotoxic functionalities and incorporating the amino-terminal Cu(II)- and Ni(II) (ATCUN)-binding motif. KFH-Pa1a demonstrated markedly superior antimicrobial efficacy against pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, compared to Lytx-Pa1a. Notably, KFH-Pa1a exerted several distinct mechanisms, including the disruption of the bacterial cytoplasmic membrane, the generation of intracellular ROS, and the cleavage and inhibition of bacterial DNA. Additionally, the hybrid peptide showed synergistic activity when combined with conventional antibiotics. Our research not only identified a novel toxin peptide from spider venom but demonstrated in silico-based design of hybrid AMP with strong antimicrobial activity that can contribute to combating MDR pathogens, broadening the utilization of biological resources by incorporating computational approaches.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Hye-Ran Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Seung-Ho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea;
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.S.); (H.-R.P.); (I.-W.H.); (K.-B.B.); (B.-Y.J.); (S.-H.L.); (J.W.O.)
| |
Collapse
|
5
|
Roshid MHO, Moraskie M, O’Connor G, Dikici E, Zingg JM, Deo S, Bachas LG, Daunert S. A Portable, Encapsulated Microbial Whole-Cell Biosensing System for the Detection of Bioavailable Copper (II) in Soil. Microchem J 2023; 193:109088. [PMID: 37982106 PMCID: PMC10655828 DOI: 10.1016/j.microc.2023.109088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A portable, field deployable whole-cell biosensor was developed that can withstand the complex matrices of soil and requires minimal to no sample preparation to monitor bioavailable concentrations of the essential micronutrient copper (II). Conventional measurement of micronutrients is often complex, laboratory-based, and not suitable for monitoring their bioavailable concentration. To address this need, we developed a fluorescence based microbial whole-cell biosensing (MWCB) system encoding for a Cu2+-responsive protein capable of generating a signal upon binding to Cu2+. The sensing-reporting protein was designed by performing circular permutation on the green fluorescent protein (GFP) followed by insertion of a Cu2+ binding motif into the structure of GFP. The design included insertion of several binding motifs and creating plasmids that encoded the corresponding sensing proteins. The signal generated by the sensing-reporting protein is directly proportional to the concentration of Cu2+ in the sample. Evaluation of the resulting biosensing systems carrying these plasmids was performed prior to selection of the optimal fluorescence emitting Cu2+-binding protein. The resulting optimized biosensing system was encapsulated in polyacrylate-alginate beads and embedded in soil for detection of the analyte. Once exposed to the soil, the beads were interrogated to measure the fluorescence signal emitted by the sensing-reporting protein using a portable imaging device. The biosensor was optimized for detection of Cu2+ in terms of selectivity, sensitivity, matrix effects, detection limits, and reproducibility in both liquid and soil matrices. The limit of detection (LoD) of the optimized encapsulated biosensor was calculated as 0.27 mg/L and 1.26 mg/kg of Cu2+ for Cu2+ in solution and soil, respectively. Validation of the portable imaging tools as a potential biosensing device in the field was performed.
Collapse
Affiliation(s)
- Md Harun Or Roshid
- Department of Chemistry, University of Miami, Miami, FL 33146
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Michael Moraskie
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Gregory O’Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Leonidas G. Bachas
- Department of Chemistry, University of Miami, Miami, FL 33146
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM, University of Miami, Miami, FL 33136
- The Miami Clinical and Translational Science Institute, University of Miami, Miami, FL 33146
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146
| |
Collapse
|
6
|
Dreab A, Bayse CA. The effect of metalation on antimicrobial piscidins imbedded in normal and oxidized lipid bilayers. RSC Chem Biol 2023; 4:573-586. [PMID: 37547452 PMCID: PMC10398361 DOI: 10.1039/d3cb00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Metalation of the N-terminal Amino Terminal Cu(ii)- and Ni(ii)-binding (ATCUN) motif may enhance the antimicrobial properties of piscidins. Molecular dynamics simulations of free and nickelated piscidins 1 and 3 (P1 and P3) were performed in 3 : 1 POPC/POPG and 2.6 : 1 : 0.4 POPC/POPG/aldo-PC bilayers (POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; aldo-PC, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine) bilayer models. Nickel(ii) binding decreases the conformation dynamics of the ATCUN motif and lowers the charge of the N-terminus to allow it to embed deeper in the bilayer without significantly changing the overall depth due to interactions of the charged half-helix of the peptide with the headgroups. Phe1⋯Ni2+ cation-π and Phe2-Phe1 CH-π interactions contribute to a small fraction of structures within the nickelated P1 simulations and may partially protect a bound metal from metal-centered chemical activity. The substitution of Phe2 for Ile2 in P3 sterically blocks conformations with cation-π interactions offering less protection to the metal. This difference between metalated P1 and P3 may indicate a mechanism by which peptide sequence can influence antimicrobial properties. Any loss of bilayer integrity due to chain reversal of the oxidized phospholipid chains of aldo-PC may be enhanced in the presence of metalated piscidins.
Collapse
Affiliation(s)
- Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University Norfolk VA 23529 USA
| |
Collapse
|
7
|
Tovar-Ramírez ME, Schuth N, Rodríguez O, Kroll T, Saab-Rincon G, Costas M, Lampi K, Quintanar L. ATCUN-like Copper Site in βB2-Crystallin Plays a Protective Role in Cataract-Associated Aggregation. Inorg Chem 2023; 62:10592-10604. [PMID: 37379524 PMCID: PMC11156493 DOI: 10.1021/acs.inorgchem.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Cataract is the leading cause of blindness worldwide, and it is caused by crystallin damage and aggregation. Senile cataractous lenses have relatively high levels of metals, while some metal ions can directly induce the aggregation of human γ-crystallins. Here, we evaluated the impact of divalent metal ions in the aggregation of human βB2-crystallin, one of the most abundant crystallins in the lens. Turbidity assays showed that Pb2+, Hg2+, Cu2+, and Zn2+ ions induce the aggregation of βB2-crystallin. Metal-induced aggregation is partially reverted by a chelating agent, indicating the formation of metal-bridged species. Our study focused on the mechanism of copper-induced aggregation of βB2-crystallin, finding that it involves metal-bridging, disulfide-bridging, and loss of protein stability. Circular dichroism and electron paramagnetic resonance (EPR) revealed the presence of at least three Cu2+ binding sites in βB2-crystallin, one of them with spectroscopic features typical for Cu2+ bound to an amino-terminal copper and nickel (ATCUN) binding motif, which is found in Cu transport proteins. The ATCUN-like Cu binding site is located at the unstructured N-terminus of βB2-crystallin, and it could be modeled by a peptide with the first six residues in the protein sequence (NH2-ASDHQF-). Isothermal titration calorimetry indicates a nanomolar Cu2+ binding affinity for the ATCUN-like site. An N-truncated form of βB2-crystallin is more susceptible to Cu-induced aggregation and is less thermally stable, indicating a protective role for the ATCUN-like site. EPR and X-ray absorption spectroscopy studies reveal the presence of a copper redox active site in βB2-crystallin that is associated with metal-induced aggregation and formation of disulfide-bridged oligomers. Our study demonstrates metal-induced aggregation of βB2-crystallin and the presence of putative copper binding sites in the protein. Whether the copper-transport ATCUN-like site in βB2-crystallin plays a functional/protective role or constitutes a vestige from its evolution as a lens structural protein remains to be elucidated.
Collapse
Affiliation(s)
- Martin E. Tovar-Ramírez
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, 07360, Mexico
| | - Nils Schuth
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, 07360, Mexico
| | - Oscar Rodríguez
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, 94025, CA, USA
| | - Gloria Saab-Rincon
- Department of Biocatalysis and Cellular Engineering, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, 62210, Mexico
| | - Miguel Costas
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Kirsten Lampi
- Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, 97239, United States
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, 07360, Mexico
| |
Collapse
|
8
|
Zhu W, Yang DT, Gronenborn AM. Ligand-Capped Cobalt(II) Multiplies the Value of the Double-Histidine Motif for PCS NMR Studies. J Am Chem Soc 2023; 145:4564-4569. [PMID: 36786809 PMCID: PMC10032564 DOI: 10.1021/jacs.2c12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 02/15/2023]
Abstract
In structural studies by NMR, pseudocontact shifts (PCSs) provide both angular and distance information. For proteins, incorporation of a di-histidine (diHis) motif, coordinated to Co2+, has emerged as an important tool to measure PCS. Here, we show that using different Co(II)-chelating ligands, such as nitrilotriacetic acid (NTA) and iminodiacetic acid (IDA), resolves the isosurface ambiguity of Co2+-diHis and yields orthogonal PCS data sets with different Δχ-tensors for the same diHis-bearing protein. Importantly, such capping ligands effectively eliminate undesired intermolecular interactions, which can be detrimental to PCS studies. Devising and employing ligand-capping strategies afford versatile and powerful means to obtain multiple orthogonal PCS data sets, significantly extending the use of the diHis motif for structural studies by NMR.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh,
School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Darian T. Yang
- Department
of Structural Biology, University of Pittsburgh,
School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemistry, University of Pittsburgh,
Dietrich School of Arts and Sciences, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh,
School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemistry, University of Pittsburgh,
Dietrich School of Arts and Sciences, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Szczerba K, Stokowa-Soltys K. What Is the Correlation between Preeclampsia and Cancer? The Important Role of Tachykinins and Transition Metal Ions. Pharmaceuticals (Basel) 2023; 16:366. [PMID: 36986466 PMCID: PMC10058266 DOI: 10.3390/ph16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Metal ions are irreplaceable in many biological processes. They are components of numerous metalloproteins and serve as cofactors or structural elements for enzymes. Interestingly, iron, copper and zinc play important roles in accelerating or preventing neoplastic cell transformation. Noteworthily, a lot of proliferative and invasive mechanisms are exploited by both malignant tumors and pregnancy. Cancer cells, as well as developing placenta cells, create a microenvironment supportive of immunologic privilege and angiogenesis. Therefore, pregnancy and cancer progression share many similarities. Moreover, during preeclampsia and cancer, significant changes in relevant trace element concentrations, tachykinin levels, expressions of neurokinin receptors, oxidative stress and angiogenic imbalance are observed. This sheds a new light on the role of metal ions and tachykinins in cancer progression and pregnancy, especially in preeclamptic women.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Soltys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
10
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
11
|
McConnell KD, Fitzkee NC, Emerson JP. Metal Ion Binding Induces Local Protein Unfolding and Destabilizes Human Carbonic Anhydrase II. Inorg Chem 2022; 61:1249-1253. [PMID: 34989562 PMCID: PMC8919859 DOI: 10.1021/acs.inorgchem.1c03271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human carbonic anhydrase II (HCA) is a robust metalloprotein and an excellent biological model system to study the thermodynamics of metal ion coordination. Apo-HCA binds one zinc ion or two copper ions. We studied these binding processes at five temperatures (15-35 °C) using isothermal titration calorimetry, yielding thermodynamic parameters corrected for pH and buffer effects. We then sought to identify binding-induced structural changes. Our data suggest that binding at the active site organizes 6-8 residues; however, copper binding near the N-terminus results in a net unfolding of 6-7 residues. This surprising destabilization was confirmed using circular dichroism and protein stability measurements. Metal binding induced unfolding may represent an important regulatory mechanism, but it may be easily missed by NMR and X-ray crystallography. Thus, in addition to highlighting a highly novel binding-induced unfolding event, we demonstrate the value of calorimetry for studying the structural implications of metal binding.
Collapse
Affiliation(s)
- Kayla D. McConnell
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
12
|
Okafor M, Gonzalez P, Ronot P, El Masoudi I, Boos A, Ory S, Chasserot-Golaz S, Gasman S, Raibaut L, Hureau C, Vitale N, Faller P. Development of Cu( ii)-specific peptide shuttles capable of preventing Cu–amyloid beta toxicity and importing bioavailable Cu into cells. Chem Sci 2022; 13:11829-11840. [PMID: 36320914 PMCID: PMC9580518 DOI: 10.1039/d2sc02593k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aβ). In vitro, Cu–Aβ is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu–Aβ is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aβ and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aβ1–16 peptide and consequently inhibited the Cu-Aβ based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD. The synthetic peptide AKH-αR5W4NBD was designed as a shuttle to counteract copper imbalance in Alzheimer’s disease. In vitro, this shuttle is able to abstract Cu(ii) selectively from amyloid-β and transport it into cells in a bioavailable form.![]()
Collapse
Affiliation(s)
- Michael Okafor
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Paulina Gonzalez
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Pascale Ronot
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Islah El Masoudi
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Anne Boos
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Laurent Raibaut
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | | | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Peter Faller
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
13
|
Stokowa-Soltys K, Szczerba K, Pacewicz M, Wieczorek R, Wezynfeld NE, Bal W. Interactions of neurokinin B with copper(II) ions and their potential biological consequences. Dalton Trans 2022; 51:14267-14276. [DOI: 10.1039/d2dt02033e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a blood pressure disorder associated with significant proteinuria. Hypertensive women have increased levels of neurokinin B (NKB) and Cu(II) ions in blood plasma during pregnancy. NKB bears the...
Collapse
|
14
|
Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies. Pharm Res 2021; 38:1387-1395. [PMID: 34382142 DOI: 10.1007/s11095-021-03089-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the physical and chemical degradation of monoclonal antibodies in the presence of Zn2+. METHODS A full length IgG1 monoclonal antibody (mAb1) was formulated with various amounts of Zn2+. The resulting mixture was incubated for several weeks at room temperature and analyzed using a variety of biochemical techniques to look for various physical (e.g. aggregation) and chemical (e.g. fragmentation) degradation pathways. RESULTS mAb1 of the IgG1 subclass undergoes aggregation in the presence of Zn2+ in a concentration dependent manner. Up to hexamers were characterized using SEC-MALS. No fragmentation was noticed in the presence of Zn2+ as opposed to that found in our previous report when IgG1 mAbs were incubated in the presence of Cu2+ ions. Site directed mutagenesis indicated the involvement of Fc histidine (His 310) in Zn2+ mediated aggregation. CONCLUSIONS A novel metal ion mediated isodesmic aggregation mechanism was found in IgG1 class of monoclonal antibodies. Histidine residues in the Fc region were determined to be the binding site and implicated in Zn2+ mediated aggregation.
Collapse
|
15
|
Comert F, Heinrich F, Chowdhury A, Schoeneck M, Darling C, Anderson KW, Libardo MDJ, Angeles-Boza AM, Silin V, Cotten ML, Mihailescu M. Copper-binding anticancer peptides from the piscidin family: an expanded mechanism that encompasses physical and chemical bilayer disruption. Sci Rep 2021; 11:12620. [PMID: 34135370 PMCID: PMC8208971 DOI: 10.1038/s41598-021-91670-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
In the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu2+ is an effective chemical strategy to improve their cytotoxicity on cancer cells. Mechanistically, we find that prepared as Cu2+-complexes, the peptides not only physically but also chemically damage lipid membranes. Our testing ground features piscidins 1 and 3 (P1/3), two amphipathic, histidine-rich, membrane-interacting, and cell-penetrating HDPs that are α-helical bound to membranes. To investigate their membrane location, permeabilization effects, and lipid-oxidation capability, we employ neutron reflectometry, impedance spectroscopy, neutron diffraction, and UV spectroscopy. While P1-apo is more potent than P3-apo, metallation boosts their cytotoxicities by up to two- and seven-fold, respectively. Remarkably, P3-Cu2+ is particularly effective at inserting in bilayers, causing water crevices in the hydrocarbon region and placing Cu2+ near the double bonds of the acyl chains, as needed to oxidize them. This study points at a new paradigm where complexing HDPs with Cu2+ to expand their mechanistic reach could be explored to design more potent peptide-based anticancer therapeutics.
Collapse
Affiliation(s)
- Fatih Comert
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Mason Schoeneck
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Caitlin Darling
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Kyle W Anderson
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - M Daben J Libardo
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Alfredo M Angeles-Boza
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Vitalii Silin
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Myriam L Cotten
- Department of Applied Science, William and Mary, Williamsburg, VA, 23185, USA.
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
16
|
Moulahoum H, Ghorbani Zamani F, Timur S, Zihnioglu F. Metal Binding Antimicrobial Peptides in Nanoparticle Bio-functionalization: New Heights in Drug Delivery and Therapy. Probiotics Antimicrob Proteins 2021; 12:48-63. [PMID: 31001788 DOI: 10.1007/s12602-019-09546-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides are considered very important due to the diversity expressed through their amino acid sequence, structure variation, large spectrum, and their essential role in biological systems. Antimicrobial peptides (AMPs) emerged as a potent tool in therapy owing to their antimicrobial properties but also their ability to trespass the membranes, specificity, and low toxicity. They comprise a variety of peptides from which specific amino acid-rich peptides are of interest to the current review due to their features in metal interaction and cell penetration. Histidine-rich peptides such as Histatins belong to the metal binding salivary residing peptides with efficient antibacterial, antifungal, and wound-healing activities. Furthermore, their ability to activate in acidic environment attracted the attention to their potential in therapy. The current review covers the current knowledge about AMPs and critically assess the potential of associating with metal ions both structurally and functionally. This review provides interesting hints for the advantages provided by AMPs and metal ions in biomedicine, making use of their direct properties in brain diseases therapy or in the creation of new bio-functionalized nanoparticles for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Faezeh Ghorbani Zamani
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
17
|
Fu R, Rooney MT, Zhang R, Cotten ML. Coordination of Redox Ions within a Membrane-Binding Peptide: A Tale of Aromatic Rings. J Phys Chem Lett 2021; 12:4392-4399. [PMID: 33939920 DOI: 10.1021/acs.jpclett.1c00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The amino-terminal-copper-and-nickel-binding (ATCUN) motif, a tripeptide sequence ending with a histidine, confers important functions to proteins and peptides. Few high-resolution studies have been performed on the ATCUN motifs of membrane-associated proteins and peptides, limiting our understanding of how they stabilize Cu2+/Ni2+ in membranes. Here, we leverage solid-state NMR to investigate metal-binding to piscidin-1 (P1), a host-defense peptide featuring F1F2H3 as its ATCUN motif. Bound to redox ions, P1 chemically and physically damages pathogenic cell membranes. We design 13C/15N correlation experiments to detect and assign the deprotonated nitrogens produced and/or shifted by Ni2+-binding. Occupying multiple chemical states in P1-apo, H3 and the neighboring H4 respond to metalation by populating only the τ-tautomer. H3, as a proximal histidine, directly coordinates the metal, compared to the distal H4. Density functional theory calculations reflect this noncanonical arrangement and point toward cation-π interactions between the F1/F2/H4 aromatic rings and metal. These structural findings, which are relevant to other ATCUN-containing membrane peptides, could help design new therapeutics and materials for use in the areas of drug-resistant bacteria, neurological disorders, and biomedical imaging.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mary T Rooney
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rongfu Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
18
|
Ben-Shushan S, Miller Y. Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. J Phys Chem B 2021; 125:2796-2811. [PMID: 33570949 PMCID: PMC8389909 DOI: 10.1021/acs.jpcb.0c11151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by deposits of amyloid proteins. The homeostasis of metal ions is crucial for the normal biological functions in the brain. However, in AD and PD, the imbalance of metal ions leads to formation of amyloid deposits. In the past four decades, there has been extensive effort to design compound agents than can chelate metal ions with the aim of preventing the formation of the amyloid deposits. Unfortunately, the compounds to date that were designed were not successful candidates to be used in clinical trials. Neuropeptides are small molecules that are produced and released by neurons. It has been shown that neuropeptides have neuroprotective effects in the brain and reduce the formation of amyloid deposits. This Review Article is focused on the function of neuropeptides as metal chelators. Experimental and computational studies demonstrated that neuropeptides could bind metal ions, such as Cu2+ and Zn2+. This Review Article provides perspectives and initiates future studies to investigate the role of neuropeptides as metal chelators in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shira Ben-Shushan
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
19
|
Rehm FBH, Tyler TJ, Yap K, Durek T, Craik DJ. Improved Asparaginyl‐Ligase‐Catalyzed Transpeptidation via Selective Nucleophile Quenching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian B. H. Rehm
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Tristan J. Tyler
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Kuok Yap
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Durek
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David J. Craik
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
20
|
Rehm FBH, Tyler TJ, Yap K, Durek T, Craik DJ. Improved Asparaginyl‐Ligase‐Catalyzed Transpeptidation via Selective Nucleophile Quenching. Angew Chem Int Ed Engl 2020; 60:4004-4008. [DOI: 10.1002/anie.202013584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Fabian B. H. Rehm
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Tristan J. Tyler
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Kuok Yap
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Durek
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David J. Craik
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
21
|
Maiti BK, Govil N, Kundu T, Moura JJ. Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine. iScience 2020; 23:101792. [PMID: 33294799 PMCID: PMC7701195 DOI: 10.1016/j.isci.2020.101792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The designed "ATCUN" motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-β toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.
Collapse
Affiliation(s)
- Biplab K. Maiti
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Nidhi Govil
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Taraknath Kundu
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - José J.G. Moura
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Plaza-Garrido M, Salinas-García MC, Martínez JC, Cámara-Artigas A. The effect of an engineered ATCUN motif on the structure and biophysical properties of the SH3 domain of c-Src tyrosine kinase. J Biol Inorg Chem 2020; 25:621-634. [PMID: 32279137 DOI: 10.1007/s00775-020-01785-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Metal binding to sites engineered in proteins can provide an increase in their stability and facilitate new functions. Besides the sites introduced in purpose, sometimes they are present accidentally as a consequence of the expression system used to produce the protein. This happens with the copper- and nickel-binding (ATCUN) motif generated by the amino-terminal residues Gly-Ser-His. This ATCUN motif is fortuitously present in many proteins, but how it affects the structural and biophysical characterization of the proteins has not been studied. In this work, we have compared the structure and biophysical properties of a small modular domain, the SH3 domain of the c-Src tyrosine kinase, cloned with and without an ATCUN motif at the N terminus. At pH 7.0, the SH3 domain with the ATCUN motif binds nickel with a binding constant Ka = 28.0 ± 3.0 mM-1. The formation of the nickel complex increases the thermal and chemical stability of the SH3 domain. A comparison of the crystal structures of the SH3 domain with and without the ATCUN motif shows that the binding of nickel does not affect the overall structure of the SH3 domain. In all crystal structures analyzed, residues Gly-Ser-His in complex with Ni2+ show a square planar geometry. The CD visible spectrum of the nickel complex shows that this geometry is also present in the solution. Therefore, our results not only show that the ATCUN motif might influence the biophysical properties of the protein, but also points to an advantageous stabilization of the protein with potential biotechnological applications.
Collapse
Affiliation(s)
- Marina Plaza-Garrido
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain
| | - Mª Carmen Salinas-García
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain
| | - José C Martínez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence ceiA3 and CIAMBITAL, 04120, Almería, Spain.
| |
Collapse
|
23
|
Yu Z, Cowan JA. Design and applications of catalytic metallodrugs containing the ATCUN motif. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Al-Madhagi LH, Callear SK, Schroeder SLM. Hydrophilic and hydrophobic interactions in concentrated aqueous imidazole solutions: a neutron diffraction and total X-ray scattering study. Phys Chem Chem Phys 2020; 22:5105-5113. [DOI: 10.1039/c9cp05993h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of 5 M aqueous imidazole solutions combining neutron and X-ray diffraction with EPSR simulations shows dominance of hydrogen-bonding between imidazole and water and negligible hydrogen-bonding between imidazole molecules.
Collapse
Affiliation(s)
- Laila H. Al-Madhagi
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
- Diamond Light Source Ltd
| | | | - Sven L. M. Schroeder
- School of Chemical and Process Engineering
- University of Leeds
- Leeds LS2 9JT
- UK
- Diamond Light Source Ltd
| |
Collapse
|
25
|
Dolan MA, Basa PN, Zozulia O, Lengyel Z, Lebl R, Kohn EM, Bhattacharya S, Korendovych IV. Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation. ACS NANO 2019; 13:9292-9297. [PMID: 31314486 PMCID: PMC7235949 DOI: 10.1021/acsnano.9b03880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly enables formation of incredibly diverse supramolecular structures with practically important functions from simple and inexpensive building blocks. Here, we show how a semirational, bottom-up approach to create emerging properties can be extended to a design of highly enantioselective catalytic nanoassemblies. The designed peptides comprising as few as two amino acid residues spontaneously self-assemble in the presence of metal ions to form supramolecular, vesicle-like nanoassemblies that promote transfer hydrogenation of ketones in an aqueous phase with excellent conversion rates and enantioselectivities (>90% ee).
Collapse
Affiliation(s)
- Martin A Dolan
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Prem N Basa
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Oleksii Zozulia
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Zsófia Lengyel
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - René Lebl
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Eric M Kohn
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Sagar Bhattacharya
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Ivan V Korendovych
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| |
Collapse
|
26
|
Agbale CM, Sarfo JK, Galyuon IK, Juliano SA, Silva GGO, Buccini DF, Cardoso MH, Torres MDT, Angeles-Boza AM, de la Fuente-Nunez C, Franco OL. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry 2019; 58:3802-3812. [PMID: 31448597 DOI: 10.1021/acs.biochem.9b00440] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides (AMPs) represent alternative strategies to combat the global health problem of antibiotic resistance. However, naturally occurring AMPs are generally not sufficiently active for use as antibiotics. Optimized synthetic versions incorporating additional design principles are needed. Here, we engineered amino-terminal Cu(II) and Ni(II) (ATCUN) binding motifs, which can enhance biological function, into the native sequence of two AMPs, CM15 and citropin1.1. The incorporation of metal-binding motifs modulated the antimicrobial activity of synthetic peptides against a panel of carbapenem-resistant enterococci (CRE) bacteria, including carbapenem-resistant Klebsiella pneumoniae (KpC+) and Escherichia coli (KpC+). Activity modulation depended on the type of ATCUN variant utilized. Membrane permeability assays revealed that the in silico selected lead template, CM15, and its ATCUN analogs increased bacterial cell death. Mass spectrometry, circular dichroism, and molecular dynamics simulations indicated that coordinating ATCUN derivatives with Cu(II) ions did not increase the helical tendencies of the AMPs. CM15 ATCUN variants, when combined with Meropenem, streptomycin, or chloramphenicol, showed synergistic effects against E. coli (KpC+ 1812446) biofilms. Motif addition also reduced the hemolytic activity of the wild-type AMP and improved the survival rate of mice in a systemic infection model. The dependence of these bioactivities on the particular amino acids of the ATCUN motif highlights the possible use of size, charge, and hydrophobicity to fine-tune AMP biological function. Our data indicate that incorporating metal-binding motifs into peptide sequences leads to synthetic variants with modified biological properties. These principles may be applied to augment the activities of other peptide sequences.
Collapse
Affiliation(s)
- Caleb M Agbale
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Justice K Sarfo
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Isaac K Galyuon
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Samuel A Juliano
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Gislaine G O Silva
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Danieli F Buccini
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Marlon H Cardoso
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Octavio L Franco
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| |
Collapse
|
27
|
Pan W, Wang Y, Wang N. A new metal affinity NCTR 25 tag as a better alternative to the His-tag for the expression of recombinant fused proteins. Protein Expr Purif 2019; 164:105477. [PMID: 31419547 DOI: 10.1016/j.pep.2019.105477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/20/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022]
Abstract
His-tagging is commonly used in fusion protein production, but the His-tag is usually prohibited in medicinal proteins and must be removed. A fragment (NCTR25-tag) truncated from the N-terminus of human copper transporter 1 was tested for feasibility as a replacement for the His-tag in fusion proteins. The NCTR25-tag and His-tag were separately fused to the transthyretin (TTR) protein, and the expression, affinity purification, refolding and stability of the two kinds of fusions were compared. NCTR25 fusion produced a 63% higher yield of the recombinant protein, which was purified by metal affinity chromatography with an efficiency similar to that of His-tagged protein. NCTR25-tag fusion had much less impact on the foldability, kinetic and thermodynamic stability of tetrameric TTR than His-tag fusion. When the tags were individually fused to enhanced green fluorescent protein (EGFP), NCTR25 fusion yielded 29-128% more product than His-EGFP. NCTR25-EGFP could be purified by metal affinity chromatography and showed better foldability than His-EGFP. Furthermore, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) fusion with the third disulfide loop of TGF-α (TGF3L-TRAIL) fused with the NCTR25-tag retained the stability and superactivity of His-TGF3L-TRAIL. Therefore, the native tag NCTR25-tag is a feasible alternative to the His-tag in medicinal recombinant proteins.
Collapse
Affiliation(s)
- Weitong Pan
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Nan Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
28
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
29
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
30
|
Santoro A, Walke G, Vileno B, Kulkarni PP, Raibaut L, Faller P. Low catalytic activity of the Cu(ii)-binding motif (Xxx-Zzz-His; ATCUN) in reactive oxygen species production and inhibition by the Cu(i)-chelator BCS. Chem Commun (Camb) 2018; 54:11945-11948. [PMID: 30288543 DOI: 10.1039/c8cc06040a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The catalytic redox activity of Cu(ii) bound to the motif NH2-Xxx-Zzz-His (ATCUN) with ascorbate and H2O2/O2 is very low and can be stopped via Cu(i)-chelation. This impacts its application as an artificial Cu-enzyme to degrade biomolecules via production of reactive oxygen species in a Cu(i)-chelator rich environment like the cytosol.
Collapse
Affiliation(s)
- Alice Santoro
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
31
|
Streltsov VA, Ekanayake RSK, Drew SC, Chantler CT, Best SP. Structural Insight into Redox Dynamics of Copper Bound N-Truncated Amyloid-β Peptides from in Situ X-ray Absorption Spectroscopy. Inorg Chem 2018; 57:11422-11435. [PMID: 30169035 DOI: 10.1021/acs.inorgchem.8b01255] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
X-ray absorption spectroscopy of CuII amyloid-β peptide (Aβ) under in situ electrochemical control (XAS-EC) has allowed elucidation of the redox properties of CuII bound to truncated peptide forms. The Cu binding environment is significantly different for the Aβ1-16 and the N-truncated Aβ4-9, Aβ4-12, and Aβ4-16 (Aβ4-9/12/16) peptides, where the N-truncated sequence (F4R5H6) provides the high-affinity amino-terminal copper nickel (ATCUN) binding motif. Low temperature (ca. 10 K) XAS measurements show the adoption of identical CuII ATCUN-type binding sites (CuIIATCUN) by the first three amino acids (FRH) and a longer-range interaction modeled as an oxygen donor ligand, most likely water, to give a tetragonal pyramid geometry in the Aβ4-9/12/16 peptides not previously reported. Both XAS-EC and EPR measurements show that CuII:Aβ4-16 can be reduced at mildly reducing potentials, similar to that of CuII:Aβ1-16. Reduction of peptides lacking the H13H14 residues, CuII:Aβ4-9/12, require far more forcing conditions, with metallic copper the only metal-based reduction product. The observations suggest that reduction of CuIIATCUN species at mild potentials is possible, although the rate of reduction is significantly enhanced by involvement of H13H14. XAS-EC analysis reveals that, following reduction, the peptide acts as a terdentate ligand to CuI (H13, H14 together with the linking amide oxygen atom). Modeling of the EXAFS is most consistent with coordination of an additional water oxygen atom to give a quasi-tetrahedral geometry. XAS-EC analysis of oxidized CuII:Aβ4-12/16 gives structural parameters consistent with crystallographic data for a five-coordinate CuIII complex and the CuIIATCUN complex. The structural results suggest that CuII and the oxidation product are both accommodated in an ATCUN-like binding site.
Collapse
Affiliation(s)
- Victor A Streltsov
- Florey Department of Neuroscience and Mental Health , The University of Melbourne , Melbourne , Australia.,School of Physics , The University of Melbourne , Melbourne , Australia
| | | | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital) , The University of Melbourne , Melbourne , Australia
| | | | - Stephen P Best
- School of Chemistry , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
32
|
Abbas IM, Vranic M, Hoffmann H, El-Khatib AH, Montes-Bayón M, Möller HM, Weller MG. Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR. Int J Mol Sci 2018; 19:E2271. [PMID: 30072660 PMCID: PMC6121404 DOI: 10.3390/ijms19082271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 01/19/2023] Open
Abstract
Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D) model of hepcidin-25 with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.
Collapse
Affiliation(s)
- Ioana M Abbas
- Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany.
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| | - Marija Vranic
- Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany.
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
- Institute of Chemistry/Analytical Chemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Holger Hoffmann
- Federal Institute for Materials Research and Testing (BAM), Division 1.8 Environmental Analysis, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Ahmed H El-Khatib
- Federal Institute for Materials Research and Testing (BAM), Division 1.1 Inorganic Trace Analysis, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julian Claveria 8, 33006 Oviedo, Spain.
| | - Heiko M Möller
- Institute of Chemistry/Analytical Chemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany.
| |
Collapse
|
33
|
A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan–Lam Coupling. Angew Chem Int Ed Engl 2018; 57:4015-4019. [DOI: 10.1002/anie.201800828] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 11/07/2022]
|
34
|
Ohata J, Zeng Y, Segatori L, Ball ZT. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan–Lam Coupling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University Houston TX 77005 USA
| | - Yimeng Zeng
- Department of Chemical Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Laura Segatori
- Department of Chemical Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University Houston TX 77005 USA
| |
Collapse
|
35
|
Mena S, Mirats A, Caballero AB, Guirado G, Barrios LA, Teat SJ, Rodriguez-Santiago L, Sodupe M, Gamez P. Drastic Effect of the Peptide Sequence on the Copper-Binding Properties of Tripeptides and the Electrochemical Behaviour of Their Copper(II) Complexes. Chemistry 2018; 24:5153-5162. [DOI: 10.1002/chem.201704623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Silvia Mena
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona Spain
| | - Andrea Mirats
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona Spain
| | - Ana B. Caballero
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona Spain
- Departament de Química Inorgànica i Orgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Gonzalo Guirado
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona Spain
| | - Leoní A. Barrios
- Departament de Química Inorgànica i Orgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Simon J. Teat
- Advanced Light Source; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley California 94720 USA
| | - Luis Rodriguez-Santiago
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona Spain
| | - Mariona Sodupe
- Departament de Química; Universitat Autònoma de Barcelona; 08193 Bellaterra, Barcelona Spain
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
- Catalan Institution for Research and Advanced Studies; Passeig Lluís Companys 23 08010 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB); Universitat de Barcelona; 08028 Barcelona Spain
| |
Collapse
|
36
|
Gonzalez P, Vileno B, Bossak K, El Khoury Y, Hellwig P, Bal W, Hureau C, Faller P. Cu(II) Binding to the Peptide Ala-His-His, a Chimera of the Canonical Cu(II)-Binding Motifs Xxx-His and Xxx-Zzz-His. Inorg Chem 2017; 56:14870-14879. [DOI: 10.1021/acs.inorgchem.7b01996] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paulina Gonzalez
- Institut de Chimie,
UMR 7177, CNRS, Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS) 67000, Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie,
UMR 7177, CNRS, Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France
- French EPR Federation of Research (REseau NAtional de RPE interDisciplinaire (RENARD), Fédération IR-RPE CNRS #3443) 67081, Strasbourg, France
| | - Karolina Bossak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a 02-106, Warsaw, Poland
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Université de Strasbourg, 4 Rue Blaise Pascal 67000, Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Université de Strasbourg, 4 Rue Blaise Pascal 67000, Strasbourg, France
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a 02-106, Warsaw, Poland
| | - Christelle Hureau
- University of Strasbourg Institute for Advanced Study (USIAS) 67000, Strasbourg, France
- LCC
(Laboratoire de Chimie de Coordination), CNRS, 205, route de
Narbonne F-31077, Toulouse, France
- UPS, INPT, LCC, Université de Toulouse F-31077, Toulouse, France
| | - Peter Faller
- Institut de Chimie,
UMR 7177, CNRS, Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS) 67000, Strasbourg, France
| |
Collapse
|
37
|
Agbale CM, Cardoso MH, Galyuon IK, Franco OL. Designing metallodrugs with nuclease and protease activity. Metallomics 2017; 8:1159-1169. [PMID: 27714031 DOI: 10.1039/c6mt00133e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities. Unlike their classical counterparts, ATCUN-based metallodrugs exhibit low toxicity, employ novel mechanisms to irreversibly inactivate disease-associated genes or proteins providing in principle, a channel to circumvent the rapid emergence of chemoresistance. The ATCUN motif thus presents novel strategies for the treatment of many diseases including cancers, HIV and infections caused by drug-resistant bacteria at the genetic level. This review discusses their design, mechanisms of action and potential for further development to expand their scope of application.
Collapse
Affiliation(s)
- Caleb Mawuli Agbale
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana and S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Isaac Kojo Galyuon
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
38
|
Conklin SE, Bridgman EC, Su Q, Riggs-Gelasco P, Haas KL, Franz KJ. Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against Candida albicans. Biochemistry 2017; 56:4244-4255. [PMID: 28763199 DOI: 10.1021/acs.biochem.7b00348] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The histidine-rich salivary peptides of the histatin family are known to bind copper (Cu) and other metal ions in vitro; however, the details of these interactions are poorly understood, and their implications for in vivo antifungal activity have not been established. Here, we show that the availability of Cu during exposure of Candida albicans to histatin-5 (Hist-5) modulates its antifungal activity. Antifungal susceptibility testing revealed that co-treatment of Hist-5 with Cu improved the EC50 from ∼5 to ∼1 μM, whereas co-treatment with a high-affinity Cu-specific chelator abrogated antifungal activity. Spectrophotometric titrations revealed two previously unrecognized Cu(I)-binding sites with apparent Kd values at pH 7.4, ∼20 nM, and confirmed a high-affinity Cu(II)-binding site at the Hist-5 N-terminus with an apparent Kd of ∼8 pM. Evaluation of a series of His-to-Ala full-length and truncated Hist-5 peptides identified adjacent His residues (bis-His) as critical anchors for Cu(I) binding, with the presence of a third ligand revealed by X-ray absorption spectroscopy. On their own, the truncated peptides were ineffective at inhibiting the growth of C. albicans, but treatment with supplemental Cu resulted in EC50 values down to ∼5 μM, approaching that of full-length Hist-5. The efficacy of the peptides depended on an intact bis-His site and correlated with Cu(I) affinity. Together, these results establish new structure-function relationships linking specific histidine residues with Cu binding affinity and antifungal activity and provide further evidence of the involvement of metals in modulating the biological activity of these antifungal peptides.
Collapse
Affiliation(s)
- Steven E Conklin
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Emma C Bridgman
- Department of Chemistry & Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Qiang Su
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Pamela Riggs-Gelasco
- Department of Chemistry and Biochemistry, College of Charleston , Charleston, South Carolina 29424, United States
| | - Kathryn L Haas
- Department of Chemistry & Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
39
|
Comparison of metal-binding strength between methionine and cysteine residues: Implications for the design of metal-binding motifs in proteins. Biophys Chem 2017; 224:32-39. [DOI: 10.1016/j.bpc.2017.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 11/18/2022]
|
40
|
Hu HQ, Johnson RC, Merrell DS, Maroney MJ. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori. Biochemistry 2017; 56:1105-1116. [PMID: 28177601 DOI: 10.1021/acs.biochem.6b00912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.
Collapse
Affiliation(s)
- Heidi Q Hu
- Department of Chemistry and Program of Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Ryan C Johnson
- Microbiology and Immunology, Uniformed Services University of the Health Sciences , Bethesda, Maryland 20814, United States
| | - D Scott Merrell
- Microbiology and Immunology, Uniformed Services University of the Health Sciences , Bethesda, Maryland 20814, United States
| | - Michael J Maroney
- Department of Chemistry and Program of Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
41
|
N-H···N Hydrogen Bonds Involving Histidine Imidazole Nitrogen Atoms: A New Structural Role for Histidine Residues in Proteins. Biochemistry 2016; 55:3774-83. [PMID: 27305350 DOI: 10.1021/acs.biochem.6b00253] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amino acid histidine can play a significant role in the structure and function of proteins. Its various functions include enzyme catalysis, metal binding activity, and involvement in cation-π, π-π, salt-bridge, and other types of noncovalent interactions. Although histidine's imidazole nitrogens (Nδ and Nε) are known to participate in hydrogen bond (HB) interactions as an acceptor or a donor, a systematic study of N-H···N HBs with the Nδ/Nε atom as the acceptor has not been conducted. In this study, we have examined two data sets of ultra-high-resolution (data set I) and very high-resolution (data set II) protein structures and identified 28 and 4017 examples of HBs of the N-H···Nδ/Nε type from both data sets involving histidine imidazole nitrogen as the acceptor. In nearly 70% of them, the main-chain N-H bond is the HB donor, and a majority of the examples are from the N-H group separated by two residues (Ni+2-Hi+2) from histidine. Quantum chemical calculations using model compounds were performed with imidazole and N-methylacetamide, and they assumed conformations from 19 examples from data set I with N-H···Nδ/Nε HBs. Basis set superposition error-corrected interaction energies varied from -5.0 to -6.78 kcal/mol. We also found that the imidazole nitrogen of 9% of histidine residues forming N-H···Nδ/Nε interactions in data set II participate in bifurcated HBs. Natural bond orbital analyses of model compounds indicate that the strength of each HB is mutually influenced by the other. Histidine residues involved in Ni+2-Hi+2···Nδi/Nεi HBs are frequently observed in a specific N-terminal capping position giving rise to a novel helix-capping motif. Along with their predominant occurrence in loop segments, we propose a new structural role for histidines in protein structures.
Collapse
|
42
|
Abstract
Fragmentation in the hinge region of an IgG1 monoclonal antibody (mAb) can affect product stability, potentially causing changes in potency and efficacy. Metals ions, such as Cu(2+), can bind to the mAb and undergo hydrolysis or oxidation, which can lead to cleavage of the molecule. To better understand the mechanism of Cu(2+)-mediated mAb fragmentation, hinge region cleavage products and their rates of formation were studied as a function of pH with and without Cu(2+). More detailed analysis of the chemical changes was investigated using model linear and cyclic peptides (with the sequence of SCDKTHTC) derived from the upper hinge region of the mAb. Cu(2+) mediated fragmentation was determined to be predominantly via a hydrolytic pathway in solution. The sites and products of hydrolytic cleavage are pH and strain dependent. In more acidic environments, rates of Cu(2+) induced hinge fragmentation are significantly slower than at higher pH. Although the degradation reaction rates between the linear and cyclic peptides are not significantly different, the products of degradation vary. mAb fragmentation can be reduced by modifying His, which is a potential metal binding site and a known ligand in other metalloproteins. These results suggest that a charge may contribute to stabilization of a specific molecular structure involved in hydrolysis, leading to the possible formation of a copper binding pocket that causes increased susceptibility of the hinge region to degradation.
Collapse
Affiliation(s)
- Zephania Kwong Glover
- a Late Stage Pharmaceutical Development; Genentech, Inc. ; South San Francisco , CA USA
| | | | | | | | | |
Collapse
|
43
|
Schwab S, Shearer J, Conklin SE, Alies B, Haas KL. Sequence proximity between Cu(II) and Cu(I) binding sites of human copper transporter 1 model peptides defines reactivity with ascorbate and O2. J Inorg Biochem 2016; 158:70-76. [PMID: 26778425 PMCID: PMC4887339 DOI: 10.1016/j.jinorgbio.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
The critical nature of the copper transporter 1 (Ctr1) in human health has spurred investigation of Ctr1 structure and function. Ctr1 specifically transports Cu(I), the reduced form of copper, across the plasma membrane. Thus, extracellular Cu(II) must be reduced prior to transport. Unlike yeast Ctr1, mammalian Ctr1 does not rely on any known mammalian reductase. Previous spectroscopic studies of model peptides indicate that human Ctr1 could serve as both copper reductase and transporter. Ctr1 peptides bind Cu(II) at an amino terminal high-affinity Cu(II), Ni(II) ATCUN site. Ascorbate-dependent reduction of the Cu(II)-ATCUN complex is possible by virtue of an adjacent HH (bis-His), as this bis-His motif and one methionine ligand constitute a high affinity Ctr1 Cu(I) binding site. Here, we synthetically varied the distance between the ATCUN and bis-His motifs in a series of peptides based on the human Ctr1 amino terminal, with the general sequence MDHAnHHMGMSYMDS, where n=0-4. We tested the ability of each peptide to reduce Cu(II) with ascorbate and stabilize Cu(I) under ambient conditions (20% O2). This study reveals that significant differences in coordination structure and chemical behavior with ascorbate and O2 result from changes in the sequence proximity of ATCUN and bis-His. Peptides that deviate from the native Ctr1 pattern were less effective at forming stable Cu(I)-peptide complexes and/or resulted in O2-dependent oxidative damage to the peptide.
Collapse
Affiliation(s)
- Stefanie Schwab
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, IN, USA
| | - Jason Shearer
- Department of Chemistry, University of Nevada, Reno, USA
| | | | - Bruno Alies
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, IN, USA.
| |
Collapse
|
44
|
Tao L, Stich TA, Butterfield CN, Romano CA, Spiro TG, Tebo BM, Casey WH, Britt RD. Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2015; 137:10563-75. [DOI: 10.1021/jacs.5b04331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Cristina N. Butterfield
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Christine A. Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
45
|
Pushie MJ, Shaw K, Franz KJ, Shearer J, Haas KL. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1. Inorg Chem 2015; 54:8544-51. [PMID: 26258435 DOI: 10.1021/acs.inorgchem.5b01162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada.,Canadian Light Source Incorporated, Saskatoon, Saskatchewan, Canada
| | - Katharine Shaw
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada , Reno, Nevada 895030, United States
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| |
Collapse
|
46
|
Nettles WL, Song H, Farquhar ER, Fitzkee NC, Emerson JP. Characterization of the Copper(II) Binding Sites in Human Carbonic Anhydrase II. Inorg Chem 2015; 54:5671-80. [PMID: 26010488 PMCID: PMC4482258 DOI: 10.1021/acs.inorgchem.5b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human carbonic anhydrase (CA) is a well-studied, robust, mononuclear Zn-containing metalloprotein that serves as an excellent biological ligand system to study the thermodynamics associated with metal ion coordination chemistry in aqueous solution. The apo form of human carbonic anhydrase II (CA) binds 2 equiv of copper(II) with high affinity. The Cu(2+) ions bind independently forming two noncoupled type II copper centers in CA (CuA and CuB). However, the location and coordination mode of the CuA site in solution is unclear, compared to the CuB site that has been well-characterized. Using paramagnetic NMR techniques and X-ray absorption spectroscopy we identified an N-terminal Cu(2+) binding location and collected information on the coordination mode of the CuA site in CA, which is consistent with a four- to five-coordinate N-terminal Cu(2+) binding site reminiscent to a number of N-terminal copper(II) binding sites including the copper(II)-amino terminal Cu(2+) and Ni(2+) and copper(II)-β-amyloid complexes. Additionally, we report a more detailed analysis of the thermodynamics associated with copper(II) binding to CA. Although we are still unable to fully deconvolute Cu(2+) binding data to the high-affinity CuA site, we derived pH- and buffer-independent values for the thermodynamics parameters K and ΔH associated with Cu(2+) binding to the CuB site of CA to be 2 × 10(9) and -17.4 kcal/mol, respectively.
Collapse
Affiliation(s)
- Whitnee L. Nettles
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - He Song
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicholas C. Fitzkee
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - Joseph P. Emerson
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| |
Collapse
|
47
|
Alvarez CA, Guzmán F, Cárdenas C, Marshall SH, Mercado L. Antimicrobial activity of trout hepcidin. FISH & SHELLFISH IMMUNOLOGY 2014; 41:93-101. [PMID: 24794583 DOI: 10.1016/j.fsi.2014.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
Hepcidin is an antimicrobial peptide and a hormone produced mostly the liver. It is a cysteine-rich peptide with a highly conserved β-sheet structure. Recently, we described the hepcidin expression in liver of rainbow trout and its inducibility by iron overloading and lipopolysaccharide (LPS). Thus, in this work, we focused in analyzing the importance of the peptide conformation associated to its oxidative state in the antimicrobial activity. This peptide showed a α-helix conformation in reduced state and the characteristic β-sheet conformation in the oxidized state. Antimicrobial activity assays showed that the oxidized peptide is more effective than the reduced peptide against Escherichia coli and the important salmon fish pathogen Piscirickettsia salmonis. In addition, confocal analysis of P. salmonis culture exposed to trout hepcidin coupled with rhodamine revealed the intracellular location of this peptide and Sytox permeation assay showed that membrane disruption is not the mechanism of its antimicrobial action. Moreover, a conserved ATCUN motif was detected in the N-terminus of this peptide. This sequence has been described as a small metal-binding site that has been implicated in DNA cleavage. In this work we proved that this peptide is able to induce DNA hydrolysis in the presence of ascorbate and CuCl2. When the same experiments were carried out using a variant with truncated N-terminus no DNA hydrolysis was observed. Our results suggest that correct folding of hepcidin is required for its antimicrobial activity and most likely the metal-binding site (ATCUN motif) present in its N-terminus is involved in the oxidative damage to macromolecules.
Collapse
Affiliation(s)
- Claudio A Alvarez
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center For Systems Biotechnology Avenida M. Sánchez Fontecilla 310, Piso 14. Las Condes Santiago, Chile.
| | - Constanza Cárdenas
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center For Systems Biotechnology Avenida M. Sánchez Fontecilla 310, Piso 14. Las Condes Santiago, Chile.
| | - Sergio H Marshall
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center For Systems Biotechnology Avenida M. Sánchez Fontecilla 310, Piso 14. Las Condes Santiago, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
48
|
Affiliation(s)
- Katja Dralle Mjos
- Medicinal Inorganic Chemistry Group, Department of Chemistry, The University of British Columbia , 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | |
Collapse
|
49
|
Yu Y, Zhou M, Kirsch F, Xu C, Zhang L, Wang Y, Jiang Z, Wang N, Li J, Eitinger T, Yang M. Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. Cell Res 2013; 24:267-77. [PMID: 24366337 PMCID: PMC3945884 DOI: 10.1038/cr.2013.172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022] Open
Abstract
The energy-coupling factor (ECF) transporters are multi-subunit protein complexes that mediate uptake of transition-metal ions and vitamins in about 50% of the prokaryotes, including bacteria and archaea. Biological and structural studies have been focused on ECF transporters for vitamins, but the molecular mechanism by which ECF systems transport metal ions from the environment remains unknown. Here we report the first crystal structure of a NikM, TtNikM2, the substrate-binding component (S component) of an ECF-type nickel transporter from Thermoanaerobacter tengcongensis. In contrast to the structures of the vitamin-specific S proteins with six transmembrane segments (TSs), TtNikM2 possesses an additional TS at its N-terminal region, resulting in an extracellular N-terminus. The highly conserved N-terminal loop inserts into the center of TtNikM2 and occludes a region corresponding to the substrate-binding sites of the vitamin-specific S components. Nickel binds to NikM via its coordination to four nitrogen atoms, which are derived from Met1, His2 and His67 residues. These nitrogen atoms form an approximately square-planar geometry, similar to that of the metal ion-binding sites in the amino-terminal Cu(2+)- and Ni(2+)-binding (ATCUN) motif. Replacements of residues in NikM contributing to nickel coordination compromised the Ni-transport activity. Furthermore, systematic quantum chemical investigation indicated that this geometry enables NikM to also selectively recognize Co(2+). Indeed, the structure of TtNikM2 containing a bound Co(2+) ion has almost no conformational change compared to the structure that contains a nickel ion. Together, our data reveal an evolutionarily conserved mechanism underlying the metal selectivity of EcfS proteins, and provide insights into the ion-translocation process mediated by ECF transporters.
Collapse
Affiliation(s)
- You Yu
- 1] MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingze Zhou
- 1] MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Franziska Kirsch
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Congqiao Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- 1] MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Na Wang
- 1] MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Thomas Eitinger
- Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, 10115 Berlin, Germany
| | - Maojun Yang
- 1] MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Kozlowski H, Potocki S, Remelli M, Rowinska-Zyrek M, Valensin D. Specific metal ion binding sites in unstructured regions of proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|