1
|
Tran K, Gilbert M, Vazquez BN, Ianni A, Garcia BA, Vaquero A, Berger S. SIRT7 regulates NUCKS1 chromatin binding to elicit metabolic and inflammatory gene expression in senescence and liver aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578810. [PMID: 38370824 PMCID: PMC10871251 DOI: 10.1101/2024.02.05.578810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sirtuins, a class of highly conserved histone/protein deacetylases, are heavily implicated in senescence and aging. The regulation of sirtuin proteins is tightly controlled both transcriptionally and translationally and via localization within the cell. While Sirtiun proteins are implicated with aging, how their levels are regulated during aging across cell types and eliciting tissue specific age-related cellular changes is unclear. Here, we demonstrate that SIRT7 is targeted for degradation during senescence and liver aging. To uncover the significance of SIRT7 loss, we performed proteomics analysis and identified a new SIRT7 interactor, the HMG box protein NUCKS1. We found that the NUCKS1 transcription factor is recruited onto chromatin during senescence and this is mediated by SIRT7 loss. Further, depletion of NUCKS1 delayed senescence upon DNA damage leading to reduction of inflammatory gene expression. Examination of NUCKS1 transcriptional regulation during senescence revealed gene targets of transcription factors NFKB1, RELA, and CEBPβ. Consistently, in both Sirt7 KO mouse liver and in naturally aged livers, Nucks1 was recruited to chromatin. Further, Nucks1 was bound at promoters and enhancers of age-related genes, including transcription factor Rela, and, moreover, these bound sites had increased accessibility during aging. Overall, our results uncover NUCKS1 as a novel interactor of SIRT7, and show that loss of SIRT7 during senescence and liver aging promotes NUCKS1 chromatin binding to regulate metabolic and inflammatory genes.
Collapse
|
2
|
Zhang X, Zhang X, Li X, Bao H, Li G, Li N, Li H, Dou J. NUCKS1 Acts as a Promising Novel Biomarker for the Prognosis of Patients with Hepatocellular Carcinoma. Cancer Biother Radiopharm 2023; 38:720-725. [PMID: 33601927 DOI: 10.1089/cbr.2020.4226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in some tumors, including hepatocellular carcinoma (HCC). However, its clinical significance in HCC prognosis is still unclear. The aim of this study was to explore the expression and prognostic value of NUCKS1 in HCC. Materials and Methods: Quantitative real-time polymerase chain reaction was used to detect relative expression of NUCKS1 mRNA in HCC tissues and corresponding adjacent normal tissues. The relationship between NUCKS1 expression and clinical characteristics of patients was analyzed by χ2 test. Kaplan-Meier method and Cox regression analysis were applied to estimate prognostic value of NUCKS1 in HCC. Results: Compared with normal ones, the expression of NUCKS1 mRNA was significantly upregulated in HCC tissues (p < 0.001). Besides, NUCKS1 expression was closely associated with tumor differentiation, tumor node metastasis stage, vascular invasion, and metastasis (p < 0.05). Kaplan-Meier analysis revealed that overall survival was obviously longer in HCC patients with low expression of NUCKS1 than those with high NUCKS1 expression (log rank test, p = 0.001). NUCKS1 might be an independent prognostic factor for HCC patients (HR = 1.905, 95% CI = 1.106-3.283, p = 0.020). Conclusions: NUCKS1 may be correlated with the progression of HCC and serve as a potential predictive factor for the prognosis of this disease.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Xianjun Zhang
- Department of Gynaecology, Harrison International Peace Hospital, Hengshui, China
| | - Xinguo Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Hongbing Bao
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Guang Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Ning Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Hengli Li
- Department of Hepatopancreatobiliary Surgery and Harrison International Peace Hospital, Hengshui, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zheng S, Ji R, He H, Li N, Han C, Han J, Li X, Zhang L, Wang Y, Zhao W. NUCKS1, a LINC00629-upregulated gene, facilitated osteosarcoma progression and metastasis by elevating asparagine synthesis. Cell Death Dis 2023; 14:489. [PMID: 37528150 PMCID: PMC10393983 DOI: 10.1038/s41419-023-06010-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) has been reported to play an oncogenic role in several cancers. However, the biological functions and regulatory mechanism of NUCKS1 in osteosarcoma have not been fully understood. In this study, we reported that NUCKS1 was significantly increased in osteosarcoma. Depletion of NUCKS1 decreased osteosarcoma cell proliferation and metastasis in vivo and in vitro. Overexpression of NUCKS1 accelerated osteosarcoma cell aggressiveness. Mechanistically, NUCKS1 facilitated asparagine (Asn) synthesis by transcriptionally upregulating asparagine synthetase (ASNS) expression and elevating the levels of Asn in osteosarcoma cells, leading to increased cell growth and metastasis. Inhibition of ASNS or reduction of Asn decreased osteosarcoma cell aggressiveness and impaired the promoting effects of NUCKS1 on tumorigenesis and metastasis. Furthermore, we also found that by acting as a sponge for miR-4768-3p, LINC00629 promoted NUCKS1 expression. Collectively, our findings highlight the role of NUCKS1 in regulating asparagine metabolism and reveal that LINC00629 is an important regulator of NUCKS1 that contributes to NUCKS1 upregulation in osteosarcoma.
Collapse
Affiliation(s)
- Shuo Zheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Renchen Ji
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Hongtao He
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Jian Han
- Department of Orthopedics, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, 116033, P.R. China
| | - Xiaodong Li
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Lu Zhang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Yuan Wang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Wenzhi Zhao
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| |
Collapse
|
4
|
Guo J, Zhou X, Cheng L, Gao X. Construction of a miRNA-mRNA network related to exosomes in metastatic hepatocellular carcinoma. Heliyon 2023; 9:e15428. [PMID: 37101627 PMCID: PMC10123261 DOI: 10.1016/j.heliyon.2023.e15428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Aims This study aimed to construct a miRNA-mRNA network to elucidate the molecular mechanism of exosome function in metastatic HCC. Methods We explored the Gene Expression Omnibus (GEO) database and then analyzed the RNAs of 50 samples to obtain differentially expressed miRNAs (DEMs) and mRNAs (DEGs) involved in the progression of metastatic HCC. Next, a miRNA-mRNA network related to exosomes in metastatic HCC was constructed on the basis of the identified DEMs and DEGs. Finally, the function of the miRNA-mRNA network was explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Immunohistochemistry was performed to validate expression of NUCKS1 in HCC specimens. Based on the immunohistochemistry, the score of the NUCKS1 expression was calculated, and the patients were divided into high- and low-expression patients, and the differences in survival between the two groups were compared. Results Through our analysis, 149 DEMs and 60 DEGs were identified. In addition, a miRNA-mRNA network, including 23 miRNAs and 14 mRNAs, was constructed. Low expression of NUCKS1 was validated in the majority of HCCs compared with their matched adjacent cirrhosis specimens (P < 0.001), which was consistent with our result of differential expression analyses. HCC patients with low expression of NUCKS1 had shorter overall survival than those with high NUCKS1 expression (P = 0.0441). Conclusions The novel miRNA-mRNA network will provide new insights into the underlying molecular mechanisms of exosomes in metastatic HCC. NUCKS1 might serve a potential therapeutic target to restrain the development of HCC.
Collapse
Affiliation(s)
- Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Long Cheng
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xuesong Gao
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Corresponding author. No. 8 Jingshun East Street, Chaoyang District, Beijing, China.
| |
Collapse
|
5
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
6
|
Hume S, Grou CP, Lascaux P, D'Angiolella V, Legrand AJ, Ramadan K, Dianov GL. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat Commun 2021; 12:6959. [PMID: 34845229 PMCID: PMC8630071 DOI: 10.1038/s41467-021-27124-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation.
Collapse
Affiliation(s)
- Samuel Hume
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Claudia P Grou
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Pauline Lascaux
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Vincenzo D'Angiolella
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK
| | - Arnaud J Legrand
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Kristijan Ramadan
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK.
| | - Grigory L Dianov
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7DQ, Oxford, UK.
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 10, 630090, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090, Russia.
| |
Collapse
|
7
|
Maranon DG, Sharma N, Huang Y, Selemenakis P, Wang M, Altina N, Zhao W, Wiese C. NUCKS1 promotes RAD54 activity in homologous recombination DNA repair. J Cell Biol 2021; 219:152064. [PMID: 32876692 PMCID: PMC7659731 DOI: 10.1083/jcb.201911049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
NUCKS1 (nuclear ubiquitous casein kinase and cyclin-dependent kinase substrate 1) is a chromatin-associated, vertebrate-specific, and multifunctional protein with a role in DNA damage signaling and repair. Previously, we have shown that NUCKS1 helps maintain homologous recombination (HR) DNA repair in human cells and functions as a tumor suppressor in mice. However, the mechanisms by which NUCKS1 positively impacts these processes had remained unclear. Here, we show that NUCKS1 physically and functionally interacts with the DNA motor protein RAD54. Upon exposure of human cells to DNA-damaging agents, NUCKS1 controls the resolution of RAD54 foci. In unperturbed cells, NUCKS1 prevents RAD54's inappropriate engagement with RAD51AP1. In vitro, NUCKS1 stimulates the ATPase activity of RAD54 and the RAD51-RAD54-mediated strand invasion step during displacement loop formation. Taken together, our data demonstrate that the NUCKS1 protein is an important new regulator of the spatiotemporal events in HR.
Collapse
Affiliation(s)
- David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Platon Selemenakis
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Noelia Altina
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
8
|
Yuan X, Zhang M, Ao J, Zhen Z, Gao X, Li M. NUCKS1 is a novel regulator of milk synthesis in and proliferation of mammary epithelial cells via the mTOR signaling pathway. J Cell Physiol 2019; 234:15825-15835. [PMID: 30710349 DOI: 10.1002/jcp.28240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) is a highly phosphorylated nuclear protein ubiquitously expressed in vertebrates. NUCKS1 has been reported to be a key chromatin modifier and transcriptional regulator of a number of signaling pathways, but the physiological role and detailed mechanism are still limited. In this study, we assessed the role of NUCKS1 on milk synthesis in and proliferation of mammary epithelial cells from a dairy cow. NUCKS1 was located in the nucleus of mammary epithelial cells, and the expression of NUCKS1 was stimulated by amino acids (Met and Leu) and hormones (estrogen and prolactin). Gene function study approaches detected that NUCKS1 positively regulated milk protein, milk fat, and lactose synthesis, and also increased the cell number, cell viability, and cell cycle progression. NUCKS1 mediated the stimulation of amino acids and hormones on the messenger RNA expression of the mechanistic target of rapamycin (mTOR), SREBP-1c, and Cyclin D1. The expression of NUCKS1 is dramatically higher in mouse mammary tissue of lactating period, compared with that in puberty and dry period. Taken together, these results reveal that NUCKS1 is a new mediator of milk synthesis in and proliferation of mammary epithelial cells via regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaohan Yuan
- The Key Laboratory of Dairy Science of Education Ministry, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinxia Ao
- The Key Laboratory of Dairy Science of Education Ministry, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education Ministry, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education Ministry, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Hoedt E, Zhang G, Neubert TA. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:531-539. [PMID: 31347069 DOI: 10.1007/978-3-030-15950-4_31] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
Collapse
Affiliation(s)
- Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
11
|
Shi C, Qin L, Gao H, Gu L, Yang C, Liu H, Liu T. NUCKS nuclear elevated expression indicates progression and prognosis of ovarian cancer. Tumour Biol 2017; 39:1010428317714631. [PMID: 28877654 DOI: 10.1177/1010428317714631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NUCKS (nuclear, casein kinase, and cyclin-dependent kinase substrate) is implicated in the tumorigenesis of several human malignancies, but its role in ovarian cancer remains unknown. We aim to investigate NUCKS expression and its clinical significance in ovarian cancer. The messenger RNA expression of NUCKS was determined in normal and malignant ovarian tissues using quantitative polymerase chain reaction assay. Immunohistochemistry was applied to detect the status of NUCKS protein expression in 121 ovarian cancer tissues. NUCKS protein high expression was detected in 52 (43.0%) of 121 patients. NUCKS messenger RNA expression was gradually upregulated in non-metastatic ovarian cancers ( n = 20), metastatic ovarian cancers ( n = 20), and its matched metastatic lesions ( n = 20) in comparison with that in normal ovarian tissues ( n = 10; p < 0.05). Elevated expression of NUCKS in ovarian cancer was associated significantly with the Federation of Gynecology and Obstetrics stage ( p = 0.037), histological grade ( p = 0.003), residual disease ( p = 0.013), lymph node metastasis ( p = 0.002), response to chemotherapy ( p < 0.001), and recurrence ( p = 0.013). In the multivariate Cox analysis, NUCKS expression was an independent prognostic marker for overall survival and disease-free survival in ovarian cancer with p values of <0.001 for both. Especially, NUCKS overexpression had prognostic potential for overall survival and disease-free survival ( p < 0.001 for both) in advanced ovarian cancers and only for disease-free survival in early ovarian cancers ( p = 0.017). Our data suggest that NUCKS overexpression may contribute to progression and poor prognosis in ovarian cancer especially in advanced ovarian cancer.
Collapse
Affiliation(s)
- Ce Shi
- 1 Department of Leukemia, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ling Qin
- 2 Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongyu Gao
- 3 Department of Gastroenterologic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Gu
- 4 Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Yang
- 4 Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hebing Liu
- 5 Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tianbo Liu
- 4 Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
12
|
Poon MW, Jiang D, Qin P, Zhang Y, Qiu B, Chanda S, Tergaonkar V, Li Q, Wong IY, Yu Z, Tse HF, Wong DSH, Lian Q. Inhibition of NUCKS Facilitates Corneal Recovery Following Alkali Burn. Sci Rep 2017; 7:41224. [PMID: 28106169 PMCID: PMC5247723 DOI: 10.1038/srep41224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Corneal wound healing involves a complex cascade of cytokine-controlled cellular events, including inflammatory and angiogenesis responses that are regulated by transcriptional chromatin remodeling. Nuclear Ubiquitous Casein and cyclin-dependent Kinase Substrate (NUCKS) is a key chromatin modifier and transcriptional regulator of metabolic signaling. In this study, we investigated the role of NUCKS in corneal wound healing by comparing its effects on corneal alkali burn in NUCKS knockout (NKO) and NUCKS wild-type (NWT) mice. Our data showed that following alkali-injury, inhibition of NUCKS (NKO) accelerated ocular resurfacing and suppressed neovascularization; the cytokine profile of alkali burned corneas in NKO mice showed suppressed expression of inflammation cytokines (IL1A & IL1B); upregulated expression of antiangiogenic factor (Pigment Epithelium-derived Factor; PEDF); and downregulated expression of angiogenic factor (Vascular Endothelial Growth Factor, VEGF); in vitro, following LPS-induced NFκB activation, NKO corneal cells showed reduced expression of IL6, IP10 and TNFα. In vitro, corneal epithelial cells showed reduced NF-κb activation on silencing of NUCKS and corresponding NFκB-mediated cytokine expression was reduced. Here, we illustrate that inhibition of NUCKS played a role in cytokine modulation and facilitated corneal recovery. This reveals a potential new effective strategy for ocular burn treatment.
Collapse
Affiliation(s)
- Ming-Wai Poon
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Dan Jiang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Peng Qin
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yuelin Zhang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Beiying Qiu
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Sumit Chanda
- Infectious &Inflammatory Disease Center, the Burnham Institute for Medical Research, La Jolla, California, U.S
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Qing Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Ian Y Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - David S H Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.,Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Grundt K, Thiede B, Østvold AC. Identification of kinases phosphorylating 13 sites in the nuclear, DNA-binding protein NUCKS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:359-369. [PMID: 28011258 DOI: 10.1016/j.bbapap.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
NUCKS is a vertebrate specific, nuclear and DNA-binding phospho protein. The protein is highly expressed in rapidly dividing cells, and is overexpressed in a number of cancer tissues. The phosphorylation of NUCKS is cell cycle and DNA-damage regulated, but little is known about the responsible kinases. By utilizing in vitro and in vivo phosphorylation assays using isolated NUCKS as well as synthetic NUCKS-derived peptides in combination with mass spectrometry, phosphopeptide mapping, phosphphoamino acid analyses, phosphospecific antibodies and the use of specific kinase inhibitors, we found that NUCKS is phosphorylated on 11 sites by CK2. At least 7 of the CK2 sites are phosphorylated in vivo. We also found that NUCKS is phosphorylated on two sites by ATM kinase and DNA-PK in vitro, and is phosphorylated in vivo by ATM kinase in γ-irradiated cells. All together, we identified three kinases phosphorylating 13 out of 39 in vivo phosphorylated sites in mammalian NUCKS. The identification of CK2 and PIKK kinases as kinases phosphorylating NUCKS in vivo provide further evidence for the involvement of NUCKS in cell cycle control and DNA repair.
Collapse
Affiliation(s)
- Kirsten Grundt
- University of Oslo, Institute of Basic Medical Sciences, Department of Biochemistry, P.O. Box 1112, Blindern N-0317, Oslo, Norway
| | - Bernd Thiede
- University of Oslo, Department of Biosciences, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Anne Carine Østvold
- University of Oslo, Institute of Basic Medical Sciences, Department of Biochemistry, P.O. Box 1112, Blindern N-0317, Oslo, Norway.
| |
Collapse
|
14
|
Yue Y, Leung SG, Liu Y, Huang Y, Grundt K, Østvold AC, Jen KY, Schild D, Mao JH, Wiese C. Nucks1 synergizes with Trp53 to promote radiation lymphomagenesis in mice. Oncotarget 2016; 7:61874-61889. [PMID: 27542204 PMCID: PMC5308697 DOI: 10.18632/oncotarget.11297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
NUCKS1 is a 27 kD vertebrate-specific protein, with a role in the DNA damage response. Here, we show that after 4 Gy total-body X-irradiation, Trp53+/- Nucks1+/- mice more rapidly developed tumors, particularly thymic lymphoma (TL), than Trp53+/- mice. TLs in both cohorts showed loss of heterozygosity (LOH) of the Trp53+ allele in essentially all cases. In contrast, LOH of the Nucks1+ allele was rare. Nucks1 expression correlated well with Nucks1 gene dosage in normal thymi, but was increased in the majority of TLs from Trp53+/- Nucks1+/- mice, suggesting that elevated Nucks1 message may be associated with progression towards malignancy in vivo. Trp53+/- Nucks1+/- mice frequently succumbed to CD4- CD8- TLs harboring translocations involving Igh but not Tcra/d, indicating TLs in Trp53+/- Nucks1+/- mice mostly originated prior to the double positive stage and at earlier lineage than TLs in Trp53+/- mice. Monoclonal rearrangements at Tcrb were more prevalent in TLs from Trp53+/- Nucks1+/- mice, as was infiltration of primary TL cells to distant organs (liver, kidney and spleen). We propose that, in the context of Trp53 deficiency, wild type levels of Nucks1 are required to suppress radiation-induced TL, likely through the role of the NUCKS1 protein in the DNA damage response.
Collapse
Affiliation(s)
- Yangbo Yue
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Present address: Department of Dermatology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stanley G. Leung
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yueyong Liu
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yurong Huang
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Anne-Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
| | - David Schild
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Claudia Wiese
- Department of Organismal Systems and Bioresilience, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Abstract
Nuclear, casein kinase and cyclin-dependent kinase substrate (NUCKS), a protein similar to the HMG (high-mobility group) protein family, is one of the most modified proteins in the mammalian proteome. Although very little is known about the biological roles of NUCKS, emerging clinical evidence suggests that this protein can be a biomarker and therapeutic target in various human ailments, including several types of cancer. An inverse correlation between NUCKS protein levels and body mass index in humans has also been observed. Depletion of NUCKS in mice has been reported to lead to obesity and impaired glucose homoeostasis. Genome-wide genomic and proteomic approaches have revealed that NUCKS is a chromatin regulator that affects transcription. The time is now ripe for further understanding of the role of this novel biomarker of cancer and the metabolic syndrome, and how its sundry modifications can affect its function. Such studies could reveal how NUCKS could be a link between physiological cues and human ailments.
Collapse
|
17
|
Edelmann MJ, Shack LA, Naske CD, Walters KB, Nanduri B. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles. PLoS One 2014; 9:e114390. [PMID: 25470785 PMCID: PMC4255034 DOI: 10.1371/journal.pone.0114390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/09/2014] [Indexed: 12/03/2022] Open
Abstract
Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.
Collapse
Affiliation(s)
- Mariola J. Edelmann
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
| | - Leslie A. Shack
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
| | - Caitlin D. Naske
- Department of Chemical Engineering, Mississippi State University, Mississippi, United States of America
| | - Keisha B. Walters
- Department of Chemical Engineering, Mississippi State University, Mississippi, United States of America
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kim HY, Choi BS, Kim SS, Roh TY, Park J, Yoon CH. NUCKS1, a novel Tat coactivator, plays a crucial role in HIV-1 replication by increasing Tat-mediated viral transcription on the HIV-1 LTR promoter. Retrovirology 2014; 11:67. [PMID: 25116364 PMCID: PMC4181878 DOI: 10.1186/s12977-014-0067-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) Tat protein plays an essential role in HIV gene transcription from the HIV-1 long terminal repeat (LTR) and replication. Transcriptional activity of Tat is modulated by several host factors, but the mechanism responsible for Tat regulation by host factors is not understood fully. RESULTS Using a yeast two-hybrid screening system, we identified Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) as a novel Tat-interacting partner. Here, we report its function as a positive regulator of Tat. In a coimmunoprecipitation assay, HIV-1 Tat interacted sufficiently with both endogenous and ectopically expressed NUCKS1. In a reporter assay, ectopic expression of NUCKS1 significantly increased Tat-mediated transcription of the HIV-1 LTR, whereas knockdown of NUCKS1 by small interfering RNA diminished Tat-mediated transcription of the HIV-1 LTR. We also investigated which mechanism contributes to NUCKS1-mediated Tat activation. In a chromatin immunoprecipitation assay (ChIP), knockdown of NUCKS1 interrupted the accumulation of Tat in the transactivation-responsive (TAR) region on the LTR, which then led to suppression of viral replication. However, NUCKS1 expression did not increase Tat nuclear localization and interaction with Cyclin T1. Interestingly, the NUCKS1 expression level was lower in latently HIV-1-infected cells than in uninfected parent cells. Besides, expression level of NUCKS1 was markedly induced, which then facilitated HIV-1 reactivation in latently infected cells. CONCLUSION Taken together, our data demonstrate clearly that NUCKS1 is a novel Tat coactivator that is required for Tat-mediated HIV-1 transcription and replication, and that it may contribute to HIV-1 reactivation in latently HIV-1 infected cells.
Collapse
Affiliation(s)
- Hye-Young Kim
- />Division of AIDS, Korean National Institute of Health, Chungbuk, Republic of Korea
| | - Byeong-Sun Choi
- />Division of AIDS, Korean National Institute of Health, Chungbuk, Republic of Korea
| | - Sung Soon Kim
- />Division of AIDS, Korean National Institute of Health, Chungbuk, Republic of Korea
| | - Tae-Young Roh
- />Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 Republic of Korea
| | - Jihwan Park
- />Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 Republic of Korea
| | - Cheol-Hee Yoon
- />Division of AIDS, Korean National Institute of Health, Chungbuk, Republic of Korea
| |
Collapse
|
19
|
Symonowicz K, Duś-Szachniewicz K, Woźniak M, Murawski M, Kołodziej P, Osiecka B, Jurczyszyn K, Ziółkowski P. Immunohistochemical study of nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 in invasive breast carcinoma of no special type. Exp Ther Med 2014; 8:1039-1046. [PMID: 25187794 PMCID: PMC4151634 DOI: 10.3892/etm.2014.1847] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to investigate the immunohistochemical expression of nuclear ubiquitous casein and cyclin-dependent kinases substrate 1 (NUCKS1) in invasive breast carcinoma of no special type, in association with clinicopathological characteristics, including the tumor grade, frequency of lymph node involvement and distant metastasis. In addition, associations between NUCKS1 and other tumor subtype markers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), Ki-67 and cytokeratin 5/6 (CK 5/6), were investigated. NUCKS1 expression was shown to be associated with the formation of distant metastases and lymph node involvement. Furthermore, an association between the presence of NUCKS1 and histological grading was observed. The results confirmed that the expression of NUCKS1 in low grade invasive breast carcinoma of no special type was significantly less common compared with cases of high grade carcinoma. With regard to the additional tumor subtype markers, NUCKS1 expression was demonstrated to be significantly associated with Ki-67 and CK 5/6; however, no association was identified with ER, PR and HER2. Therefore, NUCKS1 may be a novel prognostic marker in the histopathological evaluation of invasive breast carcinoma of no special type.
Collapse
Affiliation(s)
- Krzysztof Symonowicz
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | | | - Marta Woźniak
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Marek Murawski
- Department of Gynecology and Obstetrics, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Paweł Kołodziej
- Division of Pathology, Sokołowski Regional Hospital, Wałbrzych, Lower Silesia 58-309, Poland
| | - Beata Osiecka
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Kamil Jurczyszyn
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Wrocław, Lower Silesia 50-368, Poland
| |
Collapse
|
20
|
Qiu B, Shi X, Wong ET, Lim J, Bezzi M, Low D, Zhou Q, Akıncılar SC, Lakshmanan M, Swa HLF, Tham JML, Gunaratne J, Cheng KKY, Hong W, Lam KSL, Ikawa M, Guccione E, Xu A, Han W, Tergaonkar V. NUCKS is a positive transcriptional regulator of insulin signaling. Cell Rep 2014; 7:1876-86. [PMID: 24931609 DOI: 10.1016/j.celrep.2014.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 03/17/2014] [Accepted: 05/14/2014] [Indexed: 12/24/2022] Open
Abstract
Although much is known about the molecular players in insulin signaling, there is scant information about transcriptional regulation of its key components. We now find that NUCKS is a transcriptional regulator of the insulin signaling components, including the insulin receptor (IR). Knockdown of NUCKS leads to impaired insulin signaling in endocrine cells. NUCKS knockout mice exhibit decreased insulin signaling and increased body weight/fat mass along with impaired glucose tolerance and reduced insulin sensitivity, all of which are further exacerbated by a high-fat diet (HFD). Genome-wide ChIP-seq identifies metabolism and insulin signaling as NUCKS targets. Importantly, NUCKS is downregulated in individuals with a high body mass index and in HFD-fed mice, and conversely, its levels increase upon starvation. Altogether, NUCKS is a physiological regulator of energy homeostasis and glucose metabolism that works by regulating chromatin accessibility and RNA polymerase II recruitment to the promoters of IR and other insulin pathway modulators.
Collapse
Affiliation(s)
- Beiying Qiu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Xiaohe Shi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138667, Singapore
| | - Ee Tsin Wong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Joy Lim
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138667, Singapore
| | - Marco Bezzi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Qiling Zhou
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Semih Can Akıncılar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Hannah L F Swa
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Jill Mae Lan Tham
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Kenneth K Y Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Hong Kong, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, Hong Kong, China
| | | | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138667, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
21
|
Yang M, Wang X, Zhao Q, Liu T, Yao G, Chen W, Li Z, Huang X, Zhang Y. Combined evaluation of the expression of NUCKS and Ki-67 proteins as independent prognostic factors for patients with gastric adenocarcinoma. Tumour Biol 2014; 35:7505-12. [DOI: 10.1007/s13277-014-1880-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022] Open
|
22
|
Soliman NA, Zineldeen DH, El-Khadrawy OH. Effect of NUCKS-1 Overexpression on Cytokine Profiling in Obese Women with Breast Cancer. Asian Pac J Cancer Prev 2014; 15:837-45. [DOI: 10.7314/apjcp.2014.15.2.837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Hoedt E, Zhang G, Neubert TA. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:93-106. [PMID: 24952180 DOI: 10.1007/978-3-319-06068-2_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
Collapse
Affiliation(s)
- Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | | | | |
Collapse
|
24
|
Drosos Y, Kouloukoussa M, Ostvold AC, Havaki S, Katsantoni E, Marinos E, Aleporou-Marinou V. Dynamic expression of the vertebrate-specific protein Nucks during rodent embryonic development. Gene Expr Patterns 2013; 14:19-29. [PMID: 24140890 DOI: 10.1016/j.gep.2013.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/15/2022]
Abstract
The nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS) is a highly phosphorylated nuclear protein that is overexpressed in many types of cancer. The flexibility of NUCKS and its extensive posttranslational modifications indicate that it is multifunctional, and its expression in most cell types suggests a housekeeping function. However, spatiotemporal expression of the Nucks protein during rodent development has not been reported. Thus, we investigated the expression of both the Nucks mRNA and protein during rat and mouse development by immunohistochemistry, in situ hybridization, Western immunoblotting, and reverse-transcription PCR analysis. We also used BLAST analysis against expressed sequence tag databases to determine whether a NUCKS homologue is expressed in invertebrate organisms. We found that Nucks expression increased during the initial stages of embryonic development, and then gradually decreased until birth in all tissues except the nervous tissue and muscle fibers. Interestingly, the expression of Nucks was very strong in migrating neural crest cells at E13.5 and ectoderm-derived tissues. In most tissues analyzed, the levels of Nucks correlated with the levels of Bax and activated caspase-3, which are indicative of apoptosis. Moreover, Nucks was upregulated very early during neuronal apoptosis in vitro. Expression analysis revealed that no transcript with close homology to the Nucks gene was present in invertebrates. The expression of Nucks in both proliferating and quiescent cells and its correlation with Bax levels and apoptosis strongly suggest that Nucks plays complex roles in cell homeostasis. Furthermore, the lack of homology in invertebrate organisms indicates a specific role for Nucks in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece.
| | - Mirsini Kouloukoussa
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Anne Carine Ostvold
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Sophia Havaki
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Eleni Katsantoni
- Hematology/Oncology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelos Marinos
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 Mikras Asias Str., 11527 Goudi, Greece
| | - Vassiliki Aleporou-Marinou
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece
| |
Collapse
|
25
|
Kurono S, Kaneko Y, Niwayama S. Quantitative protein analysis using (13)C7-labeled iodoacetanilide and d5-labeled N-ethylmaleimide by nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry. Bioorg Med Chem Lett 2013; 23:3111-8. [PMID: 23562245 DOI: 10.1016/j.bmcl.2013.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
We have developed a methodology for quantitative analysis and concurrent identification of proteins by the modification of cysteine residues with a combination of iodoacetanilide (IAA, 1) and (13)C7-labeled iodoacetanilide ((13)C7-IAA, 2), or N-ethylmaleimide (NEM, 3) and d5-labeled N-ethylmaleimide (d5-NEM, 4), followed by mass spectrometric analysis using nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry (nano LC/nano-ESI-IT-MS). The combinations of these stable isotope-labeled and unlabeled modifiers coupled with LC separation and ESI mass spectrometric analysis allow accurate quantitative analysis and identification of proteins, and therefore are expected to be a useful tool for proteomics research.
Collapse
Affiliation(s)
- Sadamu Kurono
- Joint Research Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
26
|
Immunocytochemical studies on the nuclear ubiquitous casein and cyclin-dependent kinases substrate following 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 cells. Photodiagnosis Photodyn Ther 2013; 10:518-25. [PMID: 24284105 DOI: 10.1016/j.pdpdt.2013.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent data indicates that nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) may play role in tumor growth. In present study authors examined whether photodynamic therapy with 5-aminolevulinic acid (5-ALA) induces NUCKS expression in breast cancer cell line, MCF-7. METHODS In the experiment concentration of 5-ALA was 6.5mM. Excitation wavelength was 630 ± 20 nm, total light dose of light 5 or 10 J/cm(2) and irradiance 60 mW/cm(2) was used. Cells were collected at established time points and Western blot and immunocytochemical studies were performed using antibody against NUCKS. RESULTS Studies proved strong cytotoxic effects in cells following PDT with 6.5mM of precursor and 10 J/cm(2). Western blot analysis revealed the strongest expression of NUCKS at 7h after PDT. At next time points, 18 and 24h, expression of NUCKS decreased and became similar to that of control group. Further immunocytochemical studies showed very strong expression of NUCKS following PDT with 5-ALA and light irradiation of 5 J/cm(2). Early, at 0 h, that expression was predominantly seen in nuclei, while at 7h expression of NUCKS was observed in disseminated manner within entire cells in both nuclei and cytoplasm, with prevalence of cytoplasmic staining. CONCLUSIONS Authors suggest that NUCKS is involved in cellular responses following PDT, and since parallel induction of NUCKS and proapoptotic marker Bax and inhibition of anti-apoptotic Bcl-2 was observed, this protein might also be involved in induction of apoptosis following PDT.
Collapse
|
27
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. Dissecting the roles of tyrosines 490 and 785 of TrkA protein in the induction of downstream protein phosphorylation using chimeric receptors. J Biol Chem 2013; 288:16606-16618. [PMID: 23589303 DOI: 10.1074/jbc.m113.475285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Receptor tyrosine kinases generally act by forming phosphotyrosine-docking sites on their own endodomains that propagate signals through cascades of post-translational modifications driven by the binding of adaptor/effector proteins. The pathways that are stimulated in any given receptor tyrosine kinase are a function of the initial docking sites that are activated and the availability of downstream participants. In the case of the Trk receptors, which are activated by nerve growth factor, there are only two established phosphotyrosine-docking sites (Tyr-490 and Tyr-785 on TrkA) that are known to be directly involved in signal transduction. Taking advantage of this limited repertoire of docking sites and the availability of PC12 cell lines stably transfected with chimeric receptors composed of the extracellular domain of the PDGF receptor and the transmembrane and intracellular domains of TrkA, the downstream TrkA-induced phosphoproteome was assessed for the "native" receptor and mutants lacking Tyr-490 or both Tyr-490 and Tyr-785. Basal phosphorylation levels were compared with those formed after 20 min of stimulation with PDGF. Several thousand phosphopeptides were identified after TiO2 enrichment, and many were up- or down-regulated by receptor activation. The modified proteins in the native sample contained many of the well established participants in TrkA signaling. The results from the mutant receptors allowed grouping of these downstream targets by their dependence on the two characterized docking site(s). A clear subset that was not dependent on either Tyr-490 or Tyr-785 emerged, providing direct evidence that there are other sites on TrkA that are involved in downstream signaling.
Collapse
Affiliation(s)
- Jordane Biarc
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158.
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Ralph A Bradshaw
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; Department of Physiology and Biophysics, University of California, Irvine, California 92697
| |
Collapse
|
28
|
Piechura H, Oeljeklaus S, Warscheid B. SILAC for the study of mammalian cell lines and yeast protein complexes. Methods Mol Biol 2012; 893:201-221. [PMID: 22665303 DOI: 10.1007/978-1-61779-885-6_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Through crucial advancements in quantitative mass spectrometry (MS), proteomics has evolved from taking mere "snapshots" of proteomes to thoroughly studying dynamic changes in entire proteomes and characterizing intricate protein-protein interaction or signaling networks. Thus, quantitative MS-based proteomics offers the unique potential to place proteins into their functional context and, moreover, to improve our understanding of the molecular processes involved in the development, survival, or pathology of cells and organisms. Among the vast variety of techniques developed for the accurate quantification of proteins via MS, stable isotope labeling by amino acids in cell culture (SILAC) arguably represents the most elegant method. In this chapter, we provide a detailed protocol for the establishment of SILAC for mammalian cell culture systems. In addition, to exemplify the high versatility of SILAC for addressing different biological questions, we describe the successful "pairing" of SILAC with conventional affinity purification (AP)-MS approaches allowing for accurately characterizing protein complexes.
Collapse
Affiliation(s)
- Heike Piechura
- Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
29
|
Ali NA, Molloy MP. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Proteomics 2011; 11:3390-401. [PMID: 21751366 DOI: 10.1002/pmic.201100036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF-β signaling pathway; however, reports suggest that TGF-β can activate other cellular pathways independent of Smad4. By investigating the TGF-β-regulated phosphoproteome, we aimed to uncover new functions controlled by TGF-β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)-labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF-β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF-β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin-dependent kinases substrate, hepatoma-derived growth factor and cell division kinases amongst others were induced following TGF-β stimulation, while the phosphorylation of TRAF2 and NCK-interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF-β-modulated phosphorylation responses in colon carcinoma cells.
Collapse
Affiliation(s)
- Naveid A Ali
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | |
Collapse
|
30
|
Zougman A, Mann M, Wiśniewski JR. Identification and characterization of a novel ubiquitous nucleolar protein 'NARR' encoded by a gene overlapping the rab34 oncogene. Nucleic Acids Res 2011; 39:7103-13. [PMID: 21586586 PMCID: PMC3167632 DOI: 10.1093/nar/gkr273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 01/08/2023] Open
Abstract
There are only few reports on protein products originating from overlapping mammalian genes even though computational predictions suggest that an appreciable fraction of mammalian genes could potentially overlap. Mass spectrometry-based proteomics has now acquired the tools to probe proteins in an unbiased manner, providing direct evidence of the output of the genomic and gene expression machinery. In particular, proteomics can refine gene predictions and discover novel gene-processing events and gene arrangements. Here, we report the mass spectrometric discovery and biochemical validation of the novel protein encoded by a gene overlapping rab34 oncogene. The novel protein is highly conserved in mammals. In humans, it contains 13 distinct Nine-Amino acid Residue-Repeats (NARR) with the consensus sequence PRVIV(S/T)PR in which the serine or threonine residues are phosphorylated during M-phase. NARR is ubiquitously expressed and resides in nucleoli where it colocalizes with ribosomal DNA (rDNA) gene clusters. Its distribution only partially overlaps with upstream binding factor, one of the main regulators of RNA Polymerase I activity, and is entirely uncoupled from it in mitotic cells and upon inhibition of transcription. NARR only partially colocalizes with fibrillarin, the pre-ribosomal RNA-processing protein, positioning NARR in a separate niche within the rDNA cluster.
Collapse
Affiliation(s)
- Alexandre Zougman
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Trasduction, Am Klopferspitz 18, Martinsried D 82152, Germany and Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Matthias Mann
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Trasduction, Am Klopferspitz 18, Martinsried D 82152, Germany and Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jacek R. Wiśniewski
- Max Planck Institute for Biochemistry, Department of Proteomics and Signal Trasduction, Am Klopferspitz 18, Martinsried D 82152, Germany and Cancer Research UK Clinical Centre, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
31
|
Yan Y, Tian J, Mo X, Zhao G, Yin X, Pu J, Zhang B. Genetic Variants in the RAB7L1 and SLC41A1 Genes of the PARK16 Locus in Chinese Parkinson's Disease Patients. Int J Neurosci 2011; 121:632-6. [DOI: 10.3109/00207454.2011.598983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Xu G, Paige JS, Jaffrey SR. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 2010; 28:868-73. [PMID: 20639865 PMCID: PMC2946519 DOI: 10.1038/nbt.1654] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/11/2010] [Indexed: 11/09/2022]
Abstract
Protein ubiquitination is a post-translational modification (PTM) that regulates various aspects of protein function by different mechanisms. Characterization of ubiquitination has lagged behind that of smaller PTMs, such as phosphorylation, largely because of the difficulty of isolating and identifying peptides derived from the ubiquitinated portion of proteins. To address this issue, we generated a monoclonal antibody that enriches for peptides containing lysine residues modified by diglycine, an adduct left at sites of ubiquitination after trypsin digestion. We use mass spectrometry to identify 374 diglycine-modified lysines on 236 ubiquitinated proteins from HEK293 cells, including 80 proteins containing multiple sites of ubiquitination. Seventy-two percent of these proteins and 92% of the ubiquitination sites do not appear to have been reported previously. Ubiquitin remnant profiling of the multi-ubiquitinated proteins proliferating cell nuclear antigen (PCNA) and tubulin alpha-1A reveals differential regulation of ubiquitination at specific sites by microtubule inhibitors, demonstrating the effectiveness of our method to characterize the dynamics of lysine ubiquitination.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | | | | |
Collapse
|
33
|
Young NL, Plazas-Mayorca MD, Garcia BA. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev Proteomics 2010; 7:79-92. [PMID: 20121478 DOI: 10.1586/epr.09.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein post-translational modifications (PTMs) have been widely shown to influence protein-protein interactions, direct subcellular location and transduce a variety of both internal and externally generated signals into cellular/phenotypic outcomes. Mass spectrometry has been a key tool for the elucidation of several types of PTMs in both qualitative and quantitative manners. As large datasets on the proteome-wide level are now being generated on a daily basis, the identification of combinatorial PTM patterns has become feasible. A survey of the recent literature in this area shows that many proteins undergo multiple modifications and that sequential or hierarchal patterns exist on many proteins; the biology of these modification patterns is only starting to be unraveled. This review will outline combinatorial PTM examples in biology, and the mass spectrometry-based techniques and applications utilized in the investigations of these combinatorial PTMs.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
34
|
Immunohistochemical and proteomic evaluation of nuclear ubiquitous casein and cyclin-dependent kinases substrate in invasive ductal carcinoma of the breast. J Biomed Biotechnol 2009; 2009:919645. [PMID: 20069058 PMCID: PMC2801467 DOI: 10.1155/2009/919645] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 08/05/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022] Open
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is 27 kDa chromosomal protein of unknown function. Its amino acid composition as well as structure of its DNA binding domain resembles that of high-mobility group A, HMGA proteins. HMGA proteins are associated with various malignancies. Since changes in expression of HMGA are considered as marker of tumor progression, it is possible that similar changes in expression of NUCKS could be useful tool in diagnosis and prognosis of breast cancer. For identification and analysis of NUCKS we used proteomic and histochemical methods. Analysis of patient-matched samples of normal and breast cancer by mass spectrometry revealed elevated levels of NUCKS in protein extracts from ductal breast cancers. We elicited specific antibodies against NUCKS and used them for immunohistochemistry in invasive ductal carcinoma of breast. We found high expression of NUCKS in 84.3% of cancer cells. We suggest that such overexpression of NUCKS can play significant role in breast cancer biology.
Collapse
|
35
|
Drosos Y, Kouloukoussa M, Østvold AC, Grundt K, Goutas N, Vlachodimitropoulos D, Havaki S, Kollia P, Kittas C, Marinos E, Aleporou-Marinou V. NUCKS overexpression in breast cancer. Cancer Cell Int 2009; 9:19. [PMID: 19664271 PMCID: PMC2743642 DOI: 10.1186/1475-2867-9-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 08/10/2009] [Indexed: 12/15/2022] Open
Abstract
Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate) is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR), real-time PCR (qRT-PCR) and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS). It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non malignant breast lesions and cancerous tissues. In particular, the NUCKS overexpression in ADH and DCIS indicates a significant role of this protein in neoplastic progression.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimioupoli, 15701 Ilissia, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abu-Farha M, Elisma F, Zhou H, Tian R, Zhou H, Asmer MS, Figeys D. Proteomics: From Technology Developments to Biological Applications. Anal Chem 2009; 81:4585-99. [PMID: 19371061 DOI: 10.1021/ac900735j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohamed Abu-Farha
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fred Elisma
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Houjiang Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruijun Tian
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mehmet Selim Asmer
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|