1
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: trends from three decades of genetic variant impact predictors. Hum Genomics 2024; 18:90. [PMID: 39198917 PMCID: PMC11360829 DOI: 10.1186/s40246-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). RESULTS The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past three decades, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 190 VIPs, resulting in a total of 407 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. CONCLUSIONS VIPdb version 2 summarizes 407 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. VIPdb is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Arul S Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA
- Illumina, Foster City, CA, 94404, USA
| | - Steven E Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, 94720, USA.
- College of Computing, Data Science, and Society, University of California, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall #3102, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|
2
|
Lin YJ, Menon AS, Hu Z, Brenner SE. Variant Impact Predictor database (VIPdb), version 2: Trends from 25 years of genetic variant impact predictors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600283. [PMID: 38979289 PMCID: PMC11230257 DOI: 10.1101/2024.06.25.600283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Variant interpretation is essential for identifying patients' disease-causing genetic variants amongst the millions detected in their genomes. Hundreds of Variant Impact Predictors (VIPs), also known as Variant Effect Predictors (VEPs), have been developed for this purpose, with a variety of methodologies and goals. To facilitate the exploration of available VIP options, we have created the Variant Impact Predictor database (VIPdb). Results The Variant Impact Predictor database (VIPdb) version 2 presents a collection of VIPs developed over the past 25 years, summarizing their characteristics, ClinGen calibrated scores, CAGI assessment results, publication details, access information, and citation patterns. We previously summarized 217 VIPs and their features in VIPdb in 2019. Building upon this foundation, we identified and categorized an additional 186 VIPs, resulting in a total of 403 VIPs in VIPdb version 2. The majority of the VIPs have the capacity to predict the impacts of single nucleotide variants and nonsynonymous variants. More VIPs tailored to predict the impacts of insertions and deletions have been developed since the 2010s. In contrast, relatively few VIPs are dedicated to the prediction of splicing, structural, synonymous, and regulatory variants. The increasing rate of citations to VIPs reflects the ongoing growth in their use, and the evolving trends in citations reveal development in the field and individual methods. Conclusions VIPdb version 2 summarizes 403 VIPs and their features, potentially facilitating VIP exploration for various variant interpretation applications. Availability VIPdb version 2 is available at https://genomeinterpretation.org/vipdb.
Collapse
Affiliation(s)
- Yu-Jen Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
| | - Zhiqiang Hu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Currently at: Illumina, Foster City, California 94404, USA
| | - Steven E. Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Oriol F, Alberto M, Joachim AP, Patrick G, M BP, Ruben MF, Jaume B, Altair CH, Ferran P, Oriol G, Narcis FF, Baldo O. Structure-based learning to predict and model protein-DNA interactions and transcription-factor co-operativity in cis-regulatory elements. NAR Genom Bioinform 2024; 6:lqae068. [PMID: 38867914 PMCID: PMC11167492 DOI: 10.1093/nargab/lqae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Transcription factor (TF) binding is a key component of genomic regulation. There are numerous high-throughput experimental methods to characterize TF-DNA binding specificities. Their application, however, is both laborious and expensive, which makes profiling all TFs challenging. For instance, the binding preferences of ∼25% human TFs remain unknown; they neither have been determined experimentally nor inferred computationally. We introduce a structure-based learning approach to predict the binding preferences of TFs and the automated modelling of TF regulatory complexes. We show the advantage of using our approach over the classical nearest-neighbor prediction in the limits of remote homology. Starting from a TF sequence or structure, we predict binding preferences in the form of motifs that are then used to scan a DNA sequence for occurrences. The best matches are either profiled with a binding score or collected for their subsequent modeling into a higher-order regulatory complex with DNA. Co-operativity is modelled by: (i) the co-localization of TFs and (ii) the structural modeling of protein-protein interactions between TFs and with co-factors. We have applied our approach to automatically model the interferon-β enhanceosome and the pioneering complexes of OCT4, SOX2 (or SOX11) and KLF4 with a nucleosome, which are compared with the experimentally known structures.
Collapse
Affiliation(s)
- Fornes Oriol
- Centre for Molecular Medicine and Therapeutics. BC Children's Hospital Research Institute. Department of Medical Genetics. University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Meseguer Alberto
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | | | - Gohl Patrick
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Bota Patricia M
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Molina-Fernández Ruben
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Bonet Jaume
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
- Laboratory of Protein Design & Immunoengineering. School of Engineering. Ecole Polytechnique Federale de Lausanne. Lausanne 1015, Vaud, Switzerland
| | - Chinchilla-Hernandez Altair
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Pegenaute Ferran
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Gallego Oriol
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Fernandez-Fuentes Narcis
- Institute of Biological, Environmental and Rural Science. Aberystwyth University, SY23 3DA Aberystwyth, UK
| | - Oliva Baldo
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| |
Collapse
|
4
|
Parisi G, Piacentini R, Incocciati A, Bonamore A, Macone A, Rupert J, Zacco E, Miotto M, Milanetti E, Tartaglia GG, Ruocco G, Boffi A, Di Rienzo L. Design of protein-binding peptides with controlled binding affinity: the case of SARS-CoV-2 receptor binding domain and angiotensin-converting enzyme 2 derived peptides. Front Mol Biosci 2024; 10:1332359. [PMID: 38250735 PMCID: PMC10797010 DOI: 10.3389/fmolb.2023.1332359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The development of methods able to modulate the binding affinity between proteins and peptides is of paramount biotechnological interest in view of a vast range of applications that imply designed polypeptides capable to impair or favour Protein-Protein Interactions. Here, we applied a peptide design algorithm based on shape complementarity optimization and electrostatic compatibility and provided the first experimental in vitro proof of the efficacy of the design algorithm. Focusing on the interaction between the SARS-CoV-2 Spike Receptor-Binding Domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) receptor, we extracted a 23-residues long peptide that structurally mimics the major interacting portion of the ACE2 receptor and designed in silico five mutants of such a peptide with a modulated affinity. Remarkably, experimental KD measurements, conducted using biolayer interferometry, matched the in silico predictions. Moreover, we investigated the molecular determinants that govern the variation in binding affinity through molecular dynamics simulation, by identifying the mechanisms driving the different values of binding affinity at a single residue level. Finally, the peptide sequence with the highest affinity, in comparison with the wild type peptide, was expressed as a fusion protein with human H ferritin (HFt) 24-mer. Solution measurements performed on the latter constructs confirmed that peptides still exhibited the expected trend, thereby enhancing their efficacy in RBD binding. Altogether, these results indicate the high potentiality of this general method in developing potent high-affinity vectors for hindering/enhancing protein-protein associations.
Collapse
Affiliation(s)
- Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering (SBAI), Università“Sapienza”, Roma, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Jakob Rupert
- Department of Biology and Biotechnologies “Charles Darwin”, Università“Sapienza”, Roma, Italy
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Elsa Zacco
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Mattia Miotto
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
| | - Edoardo Milanetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
- Department of Physics, Università“Sapienza”, Roma, Italy
| | - Gian Gaetano Tartaglia
- Department of Biology and Biotechnologies “Charles Darwin”, Università“Sapienza”, Roma, Italy
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
- Department of Physics, Università“Sapienza”, Roma, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
| |
Collapse
|
5
|
Rana MM, Nguyen DD. Geometric Graph Learning to Predict Changes in Binding Free Energy and Protein Thermodynamic Stability upon Mutation. J Phys Chem Lett 2023; 14:10870-10879. [PMID: 38032742 DOI: 10.1021/acs.jpclett.3c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Accurate prediction of binding free energy changes upon mutations is vital for optimizing drugs, designing proteins, understanding genetic diseases, and cost-effective virtual screening. While machine learning methods show promise in this domain, achieving accuracy and generalization across diverse data sets remains a challenge. This study introduces Geometric Graph Learning for Protein-Protein Interactions (GGL-PPI), a novel approach integrating geometric graph representation and machine learning to forecast mutation-induced binding free energy changes. GGL-PPI leverages atom-level graph coloring and multiscale weighted colored geometric subgraphs to capture structural features of biomolecules, demonstrating superior performance on three standard data sets, namely, AB-Bind, SKEMPI 1.0, and SKEMPI 2.0 data sets. The model's efficacy extends to predicting protein thermodynamic stability in a blind test set, providing unbiased predictions for both direct and reverse mutations and showcasing notable generalization. GGL-PPI's precision in predicting changes in binding free energy and stability due to mutations enhances our comprehension of protein complexes, offering valuable insights for drug design endeavors.
Collapse
Affiliation(s)
- Md Masud Rana
- Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Duc Duy Nguyen
- Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
6
|
Lensink MF, Brysbaert G, Raouraoua N, Bates PA, Giulini M, Honorato RV, van Noort C, Teixeira JMC, Bonvin AMJJ, Kong R, Shi H, Lu X, Chang S, Liu J, Guo Z, Chen X, Morehead A, Roy RS, Wu T, Giri N, Quadir F, Chen C, Cheng J, Del Carpio CA, Ichiishi E, Rodriguez‐Lumbreras LA, Fernandez‐Recio J, Harmalkar A, Chu L, Canner S, Smanta R, Gray JJ, Li H, Lin P, He J, Tao H, Huang S, Roel‐Touris J, Jimenez‐Garcia B, Christoffer CW, Jain AJ, Kagaya Y, Kannan H, Nakamura T, Terashi G, Verburgt JC, Zhang Y, Zhang Z, Fujuta H, Sekijima M, Kihara D, Khan O, Kotelnikov S, Ghani U, Padhorny D, Beglov D, Vajda S, Kozakov D, Negi SS, Ricciardelli T, Barradas‐Bautista D, Cao Z, Chawla M, Cavallo L, Oliva R, Yin R, Cheung M, Guest JD, Lee J, Pierce BG, Shor B, Cohen T, Halfon M, Schneidman‐Duhovny D, Zhu S, Yin R, Sun Y, Shen Y, Maszota‐Zieleniak M, Bojarski KK, Lubecka EA, Marcisz M, Danielsson A, Dziadek L, Gaardlos M, Gieldon A, Liwo A, Samsonov SA, Slusarz R, Zieba K, Sieradzan AK, Czaplewski C, Kobayashi S, Miyakawa Y, Kiyota Y, Takeda‐Shitaka M, Olechnovic K, Valancauskas L, Dapkunas J, Venclovas C, et alLensink MF, Brysbaert G, Raouraoua N, Bates PA, Giulini M, Honorato RV, van Noort C, Teixeira JMC, Bonvin AMJJ, Kong R, Shi H, Lu X, Chang S, Liu J, Guo Z, Chen X, Morehead A, Roy RS, Wu T, Giri N, Quadir F, Chen C, Cheng J, Del Carpio CA, Ichiishi E, Rodriguez‐Lumbreras LA, Fernandez‐Recio J, Harmalkar A, Chu L, Canner S, Smanta R, Gray JJ, Li H, Lin P, He J, Tao H, Huang S, Roel‐Touris J, Jimenez‐Garcia B, Christoffer CW, Jain AJ, Kagaya Y, Kannan H, Nakamura T, Terashi G, Verburgt JC, Zhang Y, Zhang Z, Fujuta H, Sekijima M, Kihara D, Khan O, Kotelnikov S, Ghani U, Padhorny D, Beglov D, Vajda S, Kozakov D, Negi SS, Ricciardelli T, Barradas‐Bautista D, Cao Z, Chawla M, Cavallo L, Oliva R, Yin R, Cheung M, Guest JD, Lee J, Pierce BG, Shor B, Cohen T, Halfon M, Schneidman‐Duhovny D, Zhu S, Yin R, Sun Y, Shen Y, Maszota‐Zieleniak M, Bojarski KK, Lubecka EA, Marcisz M, Danielsson A, Dziadek L, Gaardlos M, Gieldon A, Liwo A, Samsonov SA, Slusarz R, Zieba K, Sieradzan AK, Czaplewski C, Kobayashi S, Miyakawa Y, Kiyota Y, Takeda‐Shitaka M, Olechnovic K, Valancauskas L, Dapkunas J, Venclovas C, Wallner B, Yang L, Hou C, He X, Guo S, Jiang S, Ma X, Duan R, Qui L, Xu X, Zou X, Velankar S, Wodak SJ. Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment. Proteins 2023; 91:1658-1683. [PMID: 37905971 PMCID: PMC10841881 DOI: 10.1002/prot.26609] [Show More Authors] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
Collapse
Affiliation(s)
- Marc F. Lensink
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Nessim Raouraoua
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Paul A. Bates
- Biomolecular Modeling LaboratoryThe Francis Crick InstituteLondonUK
| | - Marco Giulini
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Rodrigo V. Honorato
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Charlotte van Noort
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Joao M. C. Teixeira
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Xufeng Lu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina
| | - Jian Liu
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Zhiye Guo
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Xiao Chen
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Alex Morehead
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Raj S. Roy
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Tianqi Wu
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Nabin Giri
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Farhan Quadir
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Chen Chen
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Jianlin Cheng
- Dept. of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | | | - Eichiro Ichiishi
- International University of Health and Welfare (IUHV Hospital)Nasushiobara‐CityJapan
| | - Luis A. Rodriguez‐Lumbreras
- Instituto de Ciencias de la Vida y del Vino (ICVV)CSIC ‐ Universidad de La Rioja ‐ Gobierno de La RiojaLogronoSpain
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
| | - Juan Fernandez‐Recio
- Instituto de Ciencias de la Vida y del Vino (ICVV)CSIC ‐ Universidad de La Rioja ‐ Gobierno de La RiojaLogronoSpain
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
| | - Ameya Harmalkar
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lee‐Shin Chu
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Sam Canner
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rituparna Smanta
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jeffrey J. Gray
- Dept. of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hao Li
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Peicong Lin
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Jiahua He
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Huanyu Tao
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Sheng‐You Huang
- School of PhysicsHuazhong University of Science and TechnologyWuhanChina
| | - Jorge Roel‐Touris
- Protein Design and Modeling Lab, Dept. of Structural BiologyMolecular Biology Institute of Barcelona (IBMB‐CSIC)BarcelonaSpain
| | | | | | - Anika J. Jain
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yuki Kagaya
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Harini Kannan
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Dept. of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Tsukasa Nakamura
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Genki Terashi
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jacob C. Verburgt
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Dept. of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Zicong Zhang
- Dept. of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Hayato Fujuta
- Dept. of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | | | - Daisuke Kihara
- Dept. of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
- Dept. of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | | | | | | | | | | | | | | | - Surendra S. Negi
- Sealy Center for Structural Biology and Molecular BiophysicsUniversity of Texas Medical BranchGalvestonTexasUSA
| | | | | | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST)Saudi Arabia
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST)Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)Saudi Arabia
- Department of Chemistry and BiologyUniversity of SalernoFiscianoItaly
| | | | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Melyssa Cheung
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Chemistry and BiochemistryUniversity of MarylandCollege ParkMarylandUSA
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Jessica Lee
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Dept. of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Ben Shor
- School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Tomer Cohen
- School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Matan Halfon
- School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Shaowen Zhu
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Rujie Yin
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Yuanfei Sun
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Yang Shen
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of Computer Science and EngineeringTexas A&M UniversityCollege StationTexasUSA
- Institute of Biosciences and Technology and Department of Translational Medical SciencesTexas A&M UniversityHoustonTexasUSA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuta Miyakawa
- School of PharmacyKitasato UniversityMinato‐kuTokyoJapan
| | - Yasuomi Kiyota
- School of PharmacyKitasato UniversityMinato‐kuTokyoJapan
| | | | - Kliment Olechnovic
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Lukas Valancauskas
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Ceslovas Venclovas
- Institute of Biotechnology, Life Sciences CenterVilnius UniversityVilniusLithuania
| | - Bjorn Wallner
- Bioinformatics Division, Department of Physics, Chemistry, and BiologyLinkoping UniversityLinköpingSweden
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
- School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneyNew South WalesAustralia
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbinChina
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
- Shenzhen STRONG Advanced Materials Research Institute Col, LtdShenzhenPeople's Republic of China
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbinChina
| | - Rui Duan
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Liming Qui
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Xianjin Xu
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
- Dept. of Physics and AstronomyUniversity of MissouriColumbiaMissouriUSA
- Dept. of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Institute for Data Science and InformaticsUniversity of MissouriColumbiaMissouriUSA
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonCambridgeUK
| | | |
Collapse
|
7
|
Tsishyn M, Pucci F, Rooman M. Quantification of biases in predictions of protein-protein binding affinity changes upon mutations. Brief Bioinform 2023; 25:bbad491. [PMID: 38197311 PMCID: PMC10777193 DOI: 10.1093/bib/bbad491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Understanding the impact of mutations on protein-protein binding affinity is a key objective for a wide range of biotechnological applications and for shedding light on disease-causing mutations, which are often located at protein-protein interfaces. Over the past decade, many computational methods using physics-based and/or machine learning approaches have been developed to predict how protein binding affinity changes upon mutations. They all claim to achieve astonishing accuracy on both training and test sets, with performances on standard benchmarks such as SKEMPI 2.0 that seem overly optimistic. Here we benchmarked eight well-known and well-used predictors and identified their biases and dataset dependencies, using not only SKEMPI 2.0 as a test set but also deep mutagenesis data on the severe acute respiratory syndrome coronavirus 2 spike protein in complex with the human angiotensin-converting enzyme 2. We showed that, even though most of the tested methods reach a significant degree of robustness and accuracy, they suffer from limited generalizability properties and struggle to predict unseen mutations. Interestingly, the generalizability problems are more severe for pure machine learning approaches, while physics-based methods are less affected by this issue. Moreover, undesirable prediction biases toward specific mutation properties, the most marked being toward destabilizing mutations, are also observed and should be carefully considered by method developers. We conclude from our analyses that there is room for improvement in the prediction models and suggest ways to check, assess and improve their generalizability and robustness.
Collapse
Affiliation(s)
- Matsvei Tsishyn
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| |
Collapse
|
8
|
Islam S, Pantazes RJ. Developing similarity matrices for antibody-protein binding interactions. PLoS One 2023; 18:e0293606. [PMID: 37883504 PMCID: PMC10602319 DOI: 10.1371/journal.pone.0293606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The inventions of AlphaFold and RoseTTAFold are revolutionizing computational protein science due to their abilities to reliably predict protein structures. Their unprecedented successes are due to the parallel consideration of several types of information, one of which is protein sequence similarity information. Sequence homology has been studied for many decades and depends on similarity matrices to define how similar or different protein sequences are to one another. A natural extension of predicting protein structures is predicting the interactions between proteins, but similarity matrices for protein-protein interactions do not exist. This study conducted a mutational analysis of 384 non-redundant antibody-protein antigen complexes to calculate antibody-protein interaction similarity matrices. Every important residue in each antibody and each antigen was mutated to each of the other 19 commonly occurring amino acids and the percentage changes in interaction energies were calculated using three force fields: CHARMM, Amber, and Rosetta. The data were used to construct six interaction similarity matrices, one for antibodies and another for antigens using each force field. The matrices exhibited both commonalities, such as mutations of aromatic and charged residues being the most detrimental, and differences, such as Rosetta predicting mutations of serines to be better tolerated than either Amber or CHARMM. A comparison to nine previously published similarity matrices for protein sequences revealed that the new interaction matrices are more similar to one another than they are to any of the previous matrices. The created similarity matrices can be used in force field specific applications to help guide decisions regarding mutations in protein-protein binding interfaces.
Collapse
Affiliation(s)
- Sumaiya Islam
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, United States of America
| | - Robert J. Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
9
|
Tsuchiya Y, Yamamori Y, Tomii K. Protein-protein interaction prediction methods: from docking-based to AI-based approaches. Biophys Rev 2022; 14:1341-1348. [PMID: 36570321 PMCID: PMC9759050 DOI: 10.1007/s12551-022-01032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Protein-protein interactions (PPIs), such as protein-protein inhibitor, antibody-antigen complex, and supercomplexes play diverse and important roles in cells. Recent advances in structural analysis methods, including cryo-EM, for the determination of protein complex structures are remarkable. Nevertheless, much room remains for improvement and utilization of computational methods to predict PPIs because of the large number and great diversity of unresolved complex structures. This review introduces a wide array of computational methods, including our own, for estimating PPIs including antibody-antigen interactions, offering both historical and forward-looking perspectives.
Collapse
Affiliation(s)
- Yuko Tsuchiya
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| |
Collapse
|
10
|
Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, et alLensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, Dapkūnas J, Olechnovič K, Venclovas Č, Duan R, Qiu L, Xu X, Zhang S, Zou X, Wodak SJ. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment. Proteins 2021; 89:1800-1823. [PMID: 34453465 PMCID: PMC8616814 DOI: 10.1002/prot.26222] [Show More Authors] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
Collapse
Affiliation(s)
- Marc F Lensink
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Guillaume Brysbaert
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Théo Mauri
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Nurul Nadzirin
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Bin Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Guangbo Yang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ming Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xufeng Lu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Anna Antoniak
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Artur Giełdoń
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mateusz Kogut
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | | | | | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Patryk A Wesołowski
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Karolina Zięba
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Eiichiro Ichiishi
- International University of Health and Welfare Hospital (IUHW Hospital), Nasushiobara City, Japan
| | - Ameya Harmalkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey J Gray
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo Vargas Honorato
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Zuzana Jandova
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Siri Van Keulen
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W Van Noort
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Manon Réau
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Innopolis University, Russia
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Kathryn A Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Andrey Alekseenko
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Institute of Computer-Aided Design of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Zhuyezi Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Nasser Hashemi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Mireia Rosell
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Sergei Grudinin
- Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tsukasa Nakamura
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuya Hanazono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Ghazaleh Taherzadeh
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | | | - Zhen Cao
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Romina Oliva
- University of Naples "Parthenope", Napoli, Italy
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Shaowen Zhu
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yasuomi Kiyota
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Yoshiki Harada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Amar Singh
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Shuang Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xiaoqin Zou
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
11
|
Abstract
The biological significance of proteins attracted the scientific community in exploring their characteristics. The studies shed light on the interaction patterns and functions of proteins in a living body. Due to their practical difficulties, reliable experimental techniques pave the way for introducing computational methods in the interaction prediction. Automated methods reduced the difficulties but could not yet replace experimental studies as the field is still evolving. Interaction prediction problem being critical needs highly accurate results, but none of the existing methods could offer reliable performance that can parallel with experimental results yet. This article aims to assess the existing computational docking algorithms, their challenges, and future scope. Blind docking techniques are quite helpful when no information other than the individual structures are available. As more and more complex structures are being added to different databases, information-driven approaches can be a good alternative. Artificial intelligence, ruling over the major fields, is expected to take over this domain very shortly.
Collapse
|
12
|
Peleg Y, Vincentelli R, Collins BM, Chen KE, Livingstone EK, Weeratunga S, Leneva N, Guo Q, Remans K, Perez K, Bjerga GEK, Larsen Ø, Vaněk O, Skořepa O, Jacquemin S, Poterszman A, Kjær S, Christodoulou E, Albeck S, Dym O, Ainbinder E, Unger T, Schuetz A, Matthes S, Bader M, de Marco A, Storici P, Semrau MS, Stolt-Bergner P, Aigner C, Suppmann S, Goldenzweig A, Fleishman SJ. Community-Wide Experimental Evaluation of the PROSS Stability-Design Method. J Mol Biol 2021; 433:166964. [PMID: 33781758 DOI: 10.1016/j.jmb.2021.166964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.
Collapse
Affiliation(s)
- Yoav Peleg
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Kai-En Chen
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Emma K Livingstone
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kathryn Perez
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gro E K Bjerga
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
| | - Øivind Larsen
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Sophie Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Shira Albeck
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anja Schuetz
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Slovenia
| | - Paola Storici
- Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Marta S Semrau
- Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
| | - Christian Aigner
- Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
| | - Sabine Suppmann
- Max-Planck Institute of Biochemistry, Biochemistry Core Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Adi Goldenzweig
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
13
|
Bhasin M, Varadarajan R. Prediction of Function Determining and Buried Residues Through Analysis of Saturation Mutagenesis Datasets. Front Mol Biosci 2021; 8:635425. [PMID: 33778004 PMCID: PMC7991590 DOI: 10.3389/fmolb.2021.635425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mutational scanning can be used to probe effects of large numbers of point mutations on protein function. Positions affected by mutation are primarily at either buried or at exposed residues directly involved in function, hereafter designated as active-site residues. In the absence of prior structural information, it has not been easy to distinguish between these two categories of residues. We curated and analyzed a set of twelve published deep mutational scanning datasets. The analysis revealed differential patterns of mutational sensitivity and substitution preferences at buried and exposed positions. Prediction of buried-sites solely from the mutational sensitivity data was facilitated by incorporating predicted sequence-based accessibility values. For active-site residues we observed mean sensitivity, specificity and accuracy of 61, 90 and 88% respectively. For buried residues the corresponding figures were 59, 90 and 84% while for exposed non active-site residues these were 98, 44 and 82% respectively. We also identified positions which did not follow these general trends and might require further experimental re-validation. This analysis highlights the ability of deep mutational scans to provide important structural and functional insights, even in the absence of three-dimensional structures determined using conventional structure determination techniques, and also discuss some limitations of the methodology.
Collapse
Affiliation(s)
- Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
14
|
Huang X, Zheng W, Pearce R, Zhang Y. SSIPe: accurately estimating protein-protein binding affinity change upon mutations using evolutionary profiles in combination with an optimized physical energy function. Bioinformatics 2020; 36:2429-2437. [PMID: 31830252 DOI: 10.1093/bioinformatics/btz926] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/08/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Most proteins perform their biological functions through interactions with other proteins in cells. Amino acid mutations, especially those occurring at protein interfaces, can change the stability of protein-protein interactions (PPIs) and impact their functions, which may cause various human diseases. Quantitative estimation of the binding affinity changes (ΔΔGbind) caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses. RESULTS We present SSIPe, which combines protein interface profiles, collected from structural and sequence homology searches, with a physics-based energy function for accurate ΔΔGbind estimation. To offset the statistical limits of the PPI structure and sequence databases, amino acid-specific pseudocounts were introduced to enhance the profile accuracy. SSIPe was evaluated on large-scale experimental data containing 2204 mutations from 177 proteins, where training and test datasets were stringently separated with the sequence identity between proteins from the two datasets below 30%. The Pearson correlation coefficient between estimated and experimental ΔΔGbind was 0.61 with a root-mean-square-error of 1.93 kcal/mol, which was significantly better than the other methods. Detailed data analyses revealed that the major advantage of SSIPe over other traditional approaches lies in the novel combination of the physical energy function with the new knowledge-based interface profile. SSIPe also considerably outperformed a former profile-based method (BindProfX) due to the newly introduced sequence profiles and optimized pseudocount technique that allows for consideration of amino acid-specific prior mutation probabilities. AVAILABILITY AND IMPLEMENTATION Web-server/standalone program, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/SSIPe and https://github.com/tommyhuangthu/SSIPe. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Di Rienzo L, Milanetti E, Testi C, Montemiglio LC, Baiocco P, Boffi A, Ruocco G. A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction. Comput Struct Biotechnol J 2020; 18:2678-2686. [PMID: 33101606 PMCID: PMC7548301 DOI: 10.1016/j.csbj.2020.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | | | - Paola Baiocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Biochemical Sciences ‘A. Rossi Fanelli’ Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences ‘A. Rossi Fanelli’ Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Lensink MF, Nadzirin N, Velankar S, Wodak SJ. Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition. Proteins 2020; 88:916-938. [DOI: 10.1002/prot.25870] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle F‐59000 Lille France
| | - Nurul Nadzirin
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Cambridge UK
| | - Sameer Velankar
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Cambridge UK
| | | |
Collapse
|
17
|
Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, et alLensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, Jiménez-García B, van Noort CW, Honorato RV, Bonvin AMJJ, Wodak SJ. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment. Proteins 2019; 87:1200-1221. [PMID: 31612567 PMCID: PMC7274794 DOI: 10.1002/prot.25838] [Show More Authors] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
Collapse
Affiliation(s)
- Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Brysbaert
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nurul Nadzirin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Tereza Gerguri
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Elodie Laine
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
| | - Alessandra Carbone
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ran-Ran Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Emilia Lubecka
- Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
| | | | - Paweł Krupa
- Polish Academy of Sciences, Institute of Physics, Warsaw, Poland
| | | | - Łukasz Golon
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | | | - Guillaume Pagès
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | | | - Maria Kadukova
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | - Luis A. Rodríguez-Lumbreras
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | | | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | | | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Dima Kozakov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Kathryn Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mikhail Ignatov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sergey Kotelnikov
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Iain H. Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | - Didier Barradas-Bautista
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhen Cao
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University of Naples “Parthenope”, Napoli, Italy
| | - Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Merav Braitbard
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lirane Bitton
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Scheidman-Duhovny
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Petras J. Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Saveliy Belkin
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Devlina Chakravarty
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Varsha D. Badal
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Ilya A. Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Thom Vreven
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler Borrman
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jie Hou
- Department of Computer Science, University of Missouri, Columbia, Missouri
| | - Benjamin Ryan Merideth
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Panagiotis I. Koukos
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cunliang Geng
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jörg Schaarschmidt
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mikael E. Trellet
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Adrien S. J. Melquiond
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Li Xue
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W. van Noort
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
18
|
Jankauskaite J, Jiménez-García B, Dapkunas J, Fernández-Recio J, Moal IH. SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 2019; 35:462-469. [PMID: 30020414 PMCID: PMC6361233 DOI: 10.1093/bioinformatics/bty635] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Abstract
Motivation Understanding the relationship between the sequence, structure, binding energy, binding kinetics and binding thermodynamics of protein–protein interactions is crucial to understanding cellular signaling, the assembly and regulation of molecular complexes, the mechanisms through which mutations lead to disease, and protein engineering. Results We present SKEMPI 2.0, a major update to our database of binding free energy changes upon mutation for structurally resolved protein–protein interactions. This version now contains manually curated binding data for 7085 mutations, an increase of 133%, including changes in kinetics for 1844 mutations, enthalpy and entropy changes for 443 mutations, and 440 mutations, which abolish detectable binding. Availability and implementation The database is available as supplementary data and at https://life.bsc.es/pid/skempi2/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justina Jankauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Brian Jiménez-García
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Justas Dapkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Institut de Biologia Molecular de Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Iain H Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| |
Collapse
|
19
|
Choi Y, Furlon JM, Amos RB, Griswold KE, Bailey-Kellogg C. DisruPPI: structure-based computational redesign algorithm for protein binding disruption. Bioinformatics 2019; 34:i245-i253. [PMID: 29949961 PMCID: PMC6022686 DOI: 10.1093/bioinformatics/bty274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Motivation Disruption of protein–protein interactions can mitigate antibody recognition of therapeutic proteins, yield monomeric forms of oligomeric proteins, and elucidate signaling mechanisms, among other applications. While designing affinity-enhancing mutations remains generally quite challenging, both statistically and physically based computational methods can precisely identify affinity-reducing mutations. In order to leverage this ability to design variants of a target protein with disrupted interactions, we developed the DisruPPI protein design method (DISRUpting Protein–Protein Interactions) to optimize combinations of mutations simultaneously for both disruption and stability, so that incorporated disruptive mutations do not inadvertently affect the target protein adversely. Results Two existing methods for predicting mutational effects on binding, FoldX and INT5, were demonstrated to be quite precise in selecting disruptive mutations from the SKEMPI and AB-Bind databases of experimentally determined changes in binding free energy. DisruPPI was implemented to use an INT5-based disruption score integrated with an AMBER-based stability assessment and was applied to disrupt protein interactions in a set of different targets representing diverse applications. In retrospective evaluation with three different case studies, comparison of DisruPPI-designed variants to published experimental data showed that DisruPPI was able to identify more diverse interaction-disrupting and stability-preserving variants more efficiently and effectively than previous approaches. In prospective application to an interaction between enhanced green fluorescent protein (EGFP) and a nanobody, DisruPPI was used to design five EGFP variants, all of which were shown to have significantly reduced nanobody binding while maintaining function and thermostability. This demonstrates that DisruPPI may be readily utilized for effective removal of known epitopes of therapeutically relevant proteins. Availability and implementation DisruPPI is implemented in the EpiSweep package, freely available under an academic use license. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jacob M Furlon
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Ryan B Amos
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center at Dartmouth, Lebanon, NH, USA.,Department of Biological Sciences, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
20
|
Geng C, Xue LC, Roel‐Touris J, Bonvin AMJJ. Finding the ΔΔ
G
spot: Are predictors of binding affinity changes upon mutations in protein–protein interactions ready for it? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1410] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cunliang Geng
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| | - Li C. Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| | - Jorge Roel‐Touris
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science—Chemistry Utrecht University Utrecht The Netherlands
| |
Collapse
|
21
|
Shinobu A, Takemura K, Matubayasi N, Kitao A. Refining evERdock: Improved selection of good protein-protein complex models achieved by MD optimization and use of multiple conformations. J Chem Phys 2018; 149:195101. [PMID: 30466278 DOI: 10.1063/1.5055799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A method for evaluating binding free energy differences of protein-protein complex structures generated by protein docking was recently developed by some of us. The method, termed evERdock, combined short (2 ns) molecular dynamics (MD) simulations in explicit water and solution theory in the energy representation (ER) and succeeded in selecting the near-native complex structures from a set of decoys. In the current work, we performed longer (up to 100 ns) MD simulations before employing ER analysis in order to further refine the structures of the decoy set with improved binding free energies. Moreover, we estimated the binding free energies for each complex structure based on an average value from five individual MD snapshots. After MD simulations, all decoys exhibit a decrease in binding free energy, suggesting that proper equilibration in explicit solvent resulted in more favourably bound complexes. During the MD simulations, non-native structures tend to become unstable and in some cases dissociate, while near-native structures maintain a stable interface. The energies after the MD simulations show an improved correlation between similarity criteria (such as interface root-mean-square distance) to the native (crystal) structure and the binding free energy. In addition, calculated binding free energies show sensitivity to the number of contacts, which was demonstrated to reflect the relative stability of structures at earlier stages of the MD simulation. We therefore conclude that the additional equilibration step along with the use of multiple conformations can make the evERdock scheme more versatile under low computational cost.
Collapse
Affiliation(s)
- Ai Shinobu
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
22
|
Affinity maturation of an antibody for the UV-induced DNA lesions 6,4 pyrimidine-pyrimidones. Appl Microbiol Biotechnol 2018; 102:6409-6424. [PMID: 29749564 DOI: 10.1007/s00253-018-8998-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 10/16/2022]
Abstract
DNA lesions, associated mostly with minor changes in DNA structure, may induce permanent change in heritable coding information. Biochemically, these minor structural changes are difficult to be explored for generating high-affinity antibodies to detect specific DNA lesions in varying sequence contexts. Herein, we established a platform of bacterial display to facilitate antibodies to be matured with high affinity and high specificity against DNA lesions. To achieve this goal, we, for the first time, developed a two-round mutation/screening strategy: (1) using multiple lesion-containing DNA probes for primary maturation and (2) using single lesion-containing DNA probes for second maturation. Specifically, we capitalized on 64M-2 as a parental template to improve affinity for 6-4PP by 710-fold, compared with the model one. In addition, the matured antibody (9c3) is found to be much less dependent on the bases surrounding 6-4PPs than the model one. The mechanistic study from both computational simulation and reverse mutations revealed the critical roles of the two-round mutations in the enhanced binding affinity and independence of surrounding bases. This selection strategy opens a new way to improve affinity and specificity of antibodies for other DNA lesions.
Collapse
|
23
|
Abstract
The immune systems protect our bodies from foreign molecules or antigens, where antibodies play important roles. Antibodies evolve over time upon antigen encounter by somatically mutating their genome sequences. The end result is a series of antibodies that display higher affinities and specificities to specific antigens. This process is called affinity maturation. Recent improvements in computer hardware and modeling algorithms now enable the rational design of protein structures and functions, and several works on computer-aided antibody design have been published. In this chapter, we briefly describe computational methods for antibody affinity maturation, focusing on methods for sampling antibody conformations and for scoring designed antibody variants. We also discuss lessons learned from the successful computer-aided design of antibodies.
Collapse
Affiliation(s)
- Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Feng T, Chen F, Kang Y, Sun H, Liu H, Li D, Zhu F, Hou T. HawkRank: a new scoring function for protein-protein docking based on weighted energy terms. J Cheminform 2017; 9:66. [PMID: 29282565 PMCID: PMC5745212 DOI: 10.1186/s13321-017-0254-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 01/09/2023] Open
Abstract
Deciphering the structural determinants of protein–protein interactions (PPIs) is essential to gain a deep understanding of many important biological functions in the living cells. Computational approaches for the structural modeling of PPIs, such as protein–protein docking, are quite needed to complement existing experimental techniques. The reliability of a protein–protein docking method is dependent on the ability of the scoring function to accurately distinguish the near-native binding structures from a huge number of decoys. In this study, we developed HawkRank, a novel scoring function designed for the sampling stage of protein–protein docking by summing the contributions from several energy terms, including van der Waals potentials, electrostatic potentials and desolvation potentials. First, based on the solvation free energies predicted by the Generalized Born model for ~ 800 proteins, a SASA (solvent accessible surface area)-based solvation model was developed, which can give the aqueous solvation free energies for proteins by summing the contributions of 21 atom types. Then, the van der Waals potentials and electrostatic potentials based on the Amber ff14SB force field were computed. Finally, the HawkRank scoring function was derived by determining the most optimal weights for five energy terms based on the training set. Here, MSR (modified success rate), a novel protein–protein scoring quality index, was used to assess the performance of HawkRank and three other popular protein–protein scoring functions, including ZRANK, FireDock and dDFIRE. The results show that HawkRank outperformed the other three scoring functions according to the total number of hits and MSR. HawkRank is available at http://cadd.zju.edu.cn/programs/hawkrank.
Collapse
Affiliation(s)
- Ting Feng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
25
|
Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational Studies of Snake Venom Toxins. Toxins (Basel) 2017; 10:E8. [PMID: 29271884 PMCID: PMC5793095 DOI: 10.3390/toxins10010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
Collapse
Affiliation(s)
- Paola G Ojeda
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - David Ramírez
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
26
|
Czemeres J, Buse K, Verkhivker GM. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One 2017; 12:e0190267. [PMID: 29267381 PMCID: PMC5739471 DOI: 10.1371/journal.pone.0190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.
Collapse
Affiliation(s)
- Josh Czemeres
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Kurt Buse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lensink MF, Velankar S, Baek M, Heo L, Seok C, Wodak SJ. The challenge of modeling protein assemblies: the CASP12-CAPRI experiment. Proteins 2017; 86 Suppl 1:257-273. [PMID: 29127686 DOI: 10.1002/prot.25419] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
We present the quality assessment of 5613 models submitted by predictor groups from both CAPRI and CASP for the total of 15 most tractable targets from the second joint CASP-CAPRI protein assembly prediction experiment. These targets comprised 12 homo-oligomers and 3 hetero-complexes. The bulk of the analysis focuses on 10 targets (of CAPRI Round 37), which included all 3 hetero-complexes, and whose protein chains or the full assembly could be readily modeled from structural templates in the PDB. On average, 28 CAPRI groups and 10 CASP groups (including automatic servers), submitted models for each of these 10 targets. Additionally, about 16 groups participated in the CAPRI scoring experiments. A range of acceptable to high quality models were obtained for 6 of the 10 Round 37 targets, for which templates were available for the full assembly. Poorer results were achieved for the remaining targets due to the lower quality of the templates available for the full complex or the individual protein chains, highlighting the unmet challenge of modeling the structural adjustments of the protein components that occur upon binding or which must be accounted for in template-based modeling. On the other hand, our analysis indicated that residues in binding interfaces were correctly predicted in a sizable fraction of otherwise poorly modeled assemblies and this with higher accuracy than published methods that do not use information on the binding partner. Lastly, the strengths and weaknesses of the assessment methods are evaluated and improvements suggested.
Collapse
Affiliation(s)
- Marc F Lensink
- University Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Shoshana J Wodak
- VIB Structural Biology Research Center, VUB, Pleinlaan 2, Brussels, Belgium
| |
Collapse
|
28
|
Systematic Identification of Machine-Learning Models Aimed to Classify Critical Residues for Protein Function from Protein Structure. Molecules 2017; 22:molecules22101673. [PMID: 28991206 PMCID: PMC6151554 DOI: 10.3390/molecules22101673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/24/2017] [Accepted: 09/24/2017] [Indexed: 12/14/2022] Open
Abstract
Protein structure and protein function should be related, yet the nature of this relationship remains unsolved. Mapping the critical residues for protein function with protein structure features represents an opportunity to explore this relationship, yet two important limitations have precluded a proper analysis of the structure-function relationship of proteins: (i) the lack of a formal definition of what critical residues are and (ii) the lack of a systematic evaluation of methods and protein structure features. To address this problem, here we introduce an index to quantify the protein-function criticality of a residue based on experimental data and a strategy aimed to optimize both, descriptors of protein structure (physicochemical and centrality descriptors) and machine learning algorithms, to minimize the error in the classification of critical residues. We observed that both physicochemical and centrality descriptors of residues effectively relate protein structure and protein function, and that physicochemical descriptors better describe critical residues. We also show that critical residues are better classified when residue criticality is considered as a binary attribute (i.e., residues are considered critical or not critical). Using this binary annotation for critical residues 8 models rendered accurate and non-overlapping classification of critical residues, confirming the multi-factorial character of the structure-function relationship of proteins.
Collapse
|
29
|
Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:3-13. [PMID: 27913149 DOI: 10.1016/j.pbiomolbio.2016.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
|
30
|
Halakou F, Kilic ES, Cukuroglu E, Keskin O, Gursoy A. Enriching Traditional Protein-protein Interaction Networks with Alternative Conformations of Proteins. Sci Rep 2017; 7:7180. [PMID: 28775330 PMCID: PMC5543104 DOI: 10.1038/s41598-017-07351-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Traditional Protein-Protein Interaction (PPI) networks, which use a node and edge representation, lack some valuable information about the mechanistic details of biological processes. Mapping protein structures to these PPI networks not only provides structural details of each interaction but also helps us to find the mutual exclusive interactions. Yet it is not a comprehensive representation as it neglects the conformational changes of proteins which may lead to different interactions, functions, and downstream signalling. In this study, we proposed a new representation for structural PPI networks inspecting the alternative conformations of proteins. We performed a large-scale study by creating breast cancer metastasis network and equipped it with different conformers of proteins. Our results showed that although 88% of proteins in our network has at least two structures in Protein Data Bank (PDB), only 22% of them have alternative conformations and the remaining proteins have different regions saved in PDB. However, using even this small set of alternative conformations we observed a considerable increase in our protein docking predictions. Our protein-protein interaction predictions increased from 54% to 76% using the alternative conformations. We also showed the benefits of investigating structural data and alternative conformations of proteins through three case studies.
Collapse
Affiliation(s)
- Farideh Halakou
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey
| | - Emel Sen Kilic
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey.,Microbiology, Immunology and Cell Biology Department, West Virginia University, Morgantown, 26505, WV, USA
| | - Engin Cukuroglu
- Computational Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey.
| |
Collapse
|
31
|
Marcu O, Dodson EJ, Alam N, Sperber M, Kozakov D, Lensink MF, Schueler-Furman O. FlexPepDock lessons from CAPRI peptide-protein rounds and suggested new criteria for assessment of model quality and utility. Proteins 2017; 85:445-462. [PMID: 28002624 PMCID: PMC6618814 DOI: 10.1002/prot.25230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
CAPRI rounds 28 and 29 included, for the first time, peptide-receptor targets of three different systems, reflecting increased appreciation of the importance of peptide-protein interactions. The CAPRI rounds allowed us to objectively assess the performance of Rosetta FlexPepDock, one of the first protocols to explicitly include peptide flexibility in docking, accounting for peptide conformational changes upon binding. We discuss here successes and challenges in modeling these targets: we obtain top-performing, high-resolution models of the peptide motif for cases with known binding sites but there is a need for better modeling of flanking regions, as well as better selection criteria, in particular for unknown binding sites. These rounds have also provided us the opportunity to reassess the success criteria, to better reflect the quality of a peptide-protein complex model. Using all models submitted to CAPRI, we analyze the correlation between current classification criteria and the ability to retrieve critical interface features, such as hydrogen bonds and hotspots. We find that loosening the backbone (and ligand) RMSD threshold, together with a restriction on the side chain RMSD measure, allows us to improve the selection of high-accuracy models. We also suggest a new measure to assess interface hydrogen bond recovery, which is not assessed by the current CAPRI criteria. Finally, we find that surprisingly much can be learned from rather inaccurate models about binding hotspots, suggesting that the current status of peptide-protein docking methods, as reflected by the submitted CAPRI models, can already have a significant impact on our understanding of protein interactions. Proteins 2017; 85:445-462. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Orly Marcu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, the Hebrew University of Jerusalem, Israel
| | - Emma-Joy Dodson
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, the Hebrew University of Jerusalem, Israel
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, the Hebrew University of Jerusalem, Israel
| | - Michal Sperber
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, the Hebrew University of Jerusalem, Israel
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brooks University, Stony Brook, New York, 11794
| | - Marc F Lensink
- University of Lille, CNRS UMR8576 UGSF, Lille, 59000, France
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
32
|
Nosrati M, Solbak S, Nordesjö O, Nissbeck M, Dourado DFAR, Andersson KG, Housaindokht MR, Löfblom J, Virtanen A, Danielson UH, Flores SC. Insights from engineering the Affibody-Fc interaction with a computational-experimental method. Protein Eng Des Sel 2017; 30:593-601. [DOI: 10.1093/protein/gzx023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023] Open
|
33
|
Laszlo KJ, Munger EB, Bush MF. Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas Phase. J Phys Chem B 2017; 121:2759-2766. [PMID: 28301724 PMCID: PMC5486214 DOI: 10.1021/acs.jpcb.7b00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of each CAPTR product depends to varying extents on the original solution, the charge state of the product, and the charge state of the precursor. For example, the Ω distributions of the 6+ ions depend strongly on the original solutions conditions and to a lesser extent on the charge state of the precursor. Energy-dependent experiments suggest that very different structures are accessible to disulfide-reduced and disulfide-intact ions, but similar Ω distributions are formed at high energy for disulfide-intact ions from denaturing and from aqueous conditions. The Ω distributions of the 3+ ions are all similar but exhibit subtle differences that depend more strongly on the original solutions conditions than other factors. More generally, these results suggest that specific CAPTR products may be especially sensitive to specific elements of structure in solution.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Eleanor B. Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
34
|
Lensink MF, Velankar S, Wodak SJ. Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 2016; 85:359-377. [PMID: 27865038 DOI: 10.1002/prot.25215] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
We present the sixth report evaluating the performance of methods for predicting the atomic resolution structures of protein complexes offered as targets to the community-wide initiative on the Critical Assessment of Predicted Interactions (CAPRI). The evaluation is based on a total of 20,670 predicted models for 8 protein-peptide complexes, a novel category of targets in CAPRI, and 12 protein-protein targets in CAPRI prediction Rounds held during the years 2013-2016. For two of the protein-protein targets, the focus was on the prediction of side-chain conformation and positions of interfacial water molecules. Seven of the protein-protein targets were particularly challenging owing to their multicomponent nature, to conformational changes at the binding site, or to a combination of both. Encouragingly, the very large multiprotein complex with the nucleosome was correctly predicted, and correct models were submitted for the protein-peptide targets, but not for some of the challenging protein-protein targets. Models of acceptable quality or better were obtained for 14 of the 20 targets, including medium quality models for 13 targets and high quality models for 8 targets, indicating tangible progress of present-day computational methods in modeling protein complexes with increased accuracy. Our evaluation suggests that the progress stems from better integration of different modeling tools with docking procedures, as well as the use of more sophisticated evolutionary information to score models. Nonetheless, adequate modeling of conformational flexibility in interacting proteins remains an important area with a crucial need for improvement. Proteins 2017; 85:359-377. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marc F Lensink
- University of Lille, CNRS UMR8576 UGSF, Lille, 59000, France
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Shoshana J Wodak
- VIB Structural Biology Research Center, VUB Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
35
|
Kowalsky CA, Whitehead TA. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing. Proteins 2016; 84:1914-1928. [PMID: 27699856 DOI: 10.1002/prot.25175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
Abstract
The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caitlin A Kowalsky
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, 48824
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, 48824
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
36
|
Riley TP, Ayres CM, Hellman LM, Singh NK, Cosiano M, Cimons JM, Anderson MJ, Piepenbrink KH, Pierce BG, Weng Z, Baker BM. A generalized framework for computational design and mutational scanning of T-cell receptor binding interfaces. Protein Eng Des Sel 2016; 29:595-606. [PMID: 27624308 PMCID: PMC5181382 DOI: 10.1093/protein/gzw050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
T-cell receptors (TCRs) have emerged as a new class of therapeutics, most prominently for cancer where they are the key components of new cellular therapies as well as soluble biologics. Many studies have generated high affinity TCRs in order to enhance sensitivity. Recent outcomes, however, have suggested that fine manipulation of TCR binding, with an emphasis on specificity may be more valuable than large affinity increments. Structure-guided design is ideally suited for this role, and here we studied the generality of structure-guided design as applied to TCRs. We found that a previous approach, which successfully optimized the binding of a therapeutic TCR, had poor accuracy when applied to a broader set of TCR interfaces. We thus sought to develop a more general purpose TCR design framework. After assembling a large dataset of experimental data spanning multiple interfaces, we trained a new scoring function that accounted for unique features of each interface. Together with other improvements, such as explicit inclusion of molecular flexibility, this permitted the design new affinity-enhancing mutations in multiple TCRs, including those not used in training. Our approach also captured the impacts of mutations and substitutions in the peptide/MHC ligand, and recapitulated recent findings regarding TCR specificity, indicating utility in more general mutational scanning of TCR-pMHC interfaces.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Lance M Hellman
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Nishant K Singh
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Michael Cosiano
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Jennifer M Cimons
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Michael J Anderson
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Kurt H Piepenbrink
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
37
|
Dygut J, Kalinowska B, Banach M, Piwowar M, Konieczny L, Roterman I. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes. Int J Mol Sci 2016; 17:ijms17101741. [PMID: 27763556 PMCID: PMC5085769 DOI: 10.3390/ijms17101741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.
Collapse
Affiliation(s)
- Jacek Dygut
- Department of Rehabilitation, Hospital in Przemyśl, Monte Cassino 18, 37-700 Przemyśl, Poland.
| | - Barbara Kalinowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Łazarza 16, 31-530 Krakow, Poland.
| | - Monika Piwowar
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Łazarza 16, 31-530 Krakow, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland.
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Łazarza 16, 31-530 Krakow, Poland.
| |
Collapse
|
38
|
Harris DT, Wang N, Riley TP, Anderson SD, Singh NK, Procko E, Baker BM, Kranz DM. Deep Mutational Scans as a Guide to Engineering High Affinity T Cell Receptor Interactions with Peptide-bound Major Histocompatibility Complex. J Biol Chem 2016; 291:24566-24578. [PMID: 27681597 DOI: 10.1074/jbc.m116.748681] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Proteins are often engineered to have higher affinity for their ligands to achieve therapeutic benefit. For example, many studies have used phage or yeast display libraries of mutants within complementarity-determining regions to affinity mature antibodies and T cell receptors (TCRs). However, these approaches do not allow rapid assessment or evolution across the entire interface. By combining directed evolution with deep sequencing, it is now possible to generate sequence fitness landscapes that survey the impact of every amino acid substitution across the entire protein-protein interface. Here we used the results of deep mutational scans of a TCR-peptide-MHC interaction to guide mutational strategies. The approach yielded stable TCRs with affinity increases of >200-fold. The substitutions with the greatest enrichments based on the deep sequencing were validated to have higher affinity and could be combined to yield additional improvements. We also conducted in silico binding analyses for every substitution to compare them with the fitness landscape. Computational modeling did not effectively predict the impacts of mutations distal to the interface and did not account for yeast display results that depended on combinations of affinity and protein stability. However, computation accurately predicted affinity changes for mutations within or near the interface, highlighting the complementary strengths of computational modeling and yeast surface display coupled with deep mutational scanning for engineering high affinity TCRs.
Collapse
Affiliation(s)
- Daniel T Harris
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Ningyan Wang
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Timothy P Riley
- the Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46557
| | - Scott D Anderson
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Nishant K Singh
- the Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46557
| | - Erik Procko
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and
| | - Brian M Baker
- the Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46557
| | - David M Kranz
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801 and.
| |
Collapse
|
39
|
Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N, Viswanath S, Elber R, Grudinin S, Popov P, Neveu E, Lee H, Baek M, Park S, Heo L, Rie Lee G, Seok C, Qin S, Zhou HX, Ritchie DW, Maigret B, Devignes MD, Ghoorah A, Torchala M, Chaleil RAG, Bates PA, Ben-Zeev E, Eisenstein M, Negi SS, Weng Z, Vreven T, Pierce BG, Borrman TM, Yu J, Ochsenbein F, Guerois R, Vangone A, Rodrigues JPGLM, van Zundert G, Nellen M, Xue L, Karaca E, Melquiond ASJ, Visscher K, Kastritis PL, Bonvin AMJJ, Xu X, Qiu L, Yan C, Li J, Ma Z, Cheng J, Zou X, Shen Y, Peterson LX, Kim HR, Roy A, Han X, Esquivel-Rodriguez J, Kihara D, Yu X, Bruce NJ, Fuller JC, Wade RC, Anishchenko I, Kundrotas PJ, Vakser IA, Imai K, Yamada K, Oda T, Nakamura T, Tomii K, Pallara C, Romero-Durana M, Jiménez-García B, Moal IH, Férnandez-Recio J, Joung JY, Kim JY, Joo K, Lee J, Kozakov D, Vajda S, Mottarella S, Hall DR, Beglov D, Mamonov A, Xia B, Bohnuud T, Del Carpio CA, Ichiishi E, Marze N, Kuroda D, Roy Burman SS, Gray JJ, Chermak E, Cavallo L, Oliva R, et alLensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N, Viswanath S, Elber R, Grudinin S, Popov P, Neveu E, Lee H, Baek M, Park S, Heo L, Rie Lee G, Seok C, Qin S, Zhou HX, Ritchie DW, Maigret B, Devignes MD, Ghoorah A, Torchala M, Chaleil RAG, Bates PA, Ben-Zeev E, Eisenstein M, Negi SS, Weng Z, Vreven T, Pierce BG, Borrman TM, Yu J, Ochsenbein F, Guerois R, Vangone A, Rodrigues JPGLM, van Zundert G, Nellen M, Xue L, Karaca E, Melquiond ASJ, Visscher K, Kastritis PL, Bonvin AMJJ, Xu X, Qiu L, Yan C, Li J, Ma Z, Cheng J, Zou X, Shen Y, Peterson LX, Kim HR, Roy A, Han X, Esquivel-Rodriguez J, Kihara D, Yu X, Bruce NJ, Fuller JC, Wade RC, Anishchenko I, Kundrotas PJ, Vakser IA, Imai K, Yamada K, Oda T, Nakamura T, Tomii K, Pallara C, Romero-Durana M, Jiménez-García B, Moal IH, Férnandez-Recio J, Joung JY, Kim JY, Joo K, Lee J, Kozakov D, Vajda S, Mottarella S, Hall DR, Beglov D, Mamonov A, Xia B, Bohnuud T, Del Carpio CA, Ichiishi E, Marze N, Kuroda D, Roy Burman SS, Gray JJ, Chermak E, Cavallo L, Oliva R, Tovchigrechko A, Wodak SJ. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins 2016; 84 Suppl 1:323-48. [PMID: 27122118 PMCID: PMC5030136 DOI: 10.1002/prot.25007] [Show More Authors] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/30/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022]
Abstract
We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marc F Lensink
- University Lille, CNRS UMR8576 UGSF, Lille, F-59000, France.
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | | | - Shen-You Huang
- Research Support Computing, University of Missouri Bioinformatics Consortium, and Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158
- California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California, 94158
| | - Joan Segura
- GN7 of the National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC), Madrid, 28049, Spain
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY233FG, United Kingdom
| | - Shruthi Viswanath
- Department of Computer Science, University of Texas at Austin, Austin, Texas, 78712
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712
| | - Ron Elber
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712
| | - Sergei Grudinin
- LJK, University Grenoble Alpes, CNRS, Grenoble, 38000, France
- INRIA, Grenoble, 38000, France
| | - Petr Popov
- LJK, University Grenoble Alpes, CNRS, Grenoble, 38000, France
- INRIA, Grenoble, 38000, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Emilie Neveu
- LJK, University Grenoble Alpes, CNRS, Grenoble, 38000, France
- INRIA, Grenoble, 38000, France
| | - Hasup Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Sangwoo Park
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Gyu Rie Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, 32306, USA
| | | | - Bernard Maigret
- CNRS, LORIA, Campus Scientifique, BP 239, Vandœuvre-lès-Nancy, 54506, France
| | | | - Anisah Ghoorah
- Department of Computer Science and Engineering, University of Mauritius, Reduit, Mauritius
| | - Mieczyslaw Torchala
- Biomolecular Modelling Laboratory, the Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, WC2A 3LY, United Kingdom
| | - Raphaël A G Chaleil
- Biomolecular Modelling Laboratory, the Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, WC2A 3LY, United Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, the Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, WC2A 3LY, United Kingdom
| | - Efrat Ben-Zeev
- G-INCPM, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Surendra S Negi
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0857
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, 91191, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, 91191, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, 91191, France
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - João P G L M Rodrigues
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Gydo van Zundert
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Mehdi Nellen
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Li Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Ezgi Karaca
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Adrien S J Melquiond
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Koen Visscher
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
| | - Chengfei Yan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211
| | - Jilong Li
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
- Informatics Institute, University of Missouri, Columbia, Missouri, 65211
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211
- Informatics Institute, University of Missouri, Columbia, Missouri, 65211
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Yang Shen
- Toyota Technological Institute at Chicago, 6045 S Kenwood Avenue, Chicago, Illinois, 60637
| | - Lenna X Peterson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Hyung-Rae Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Amit Roy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montano 59840
| | - Xusi Han
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | | | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
- Department of Computer Science, Purdue University, West Lafayette, IN, USA, 47907
| | - Xiaofeng Yu
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jonathan C Fuller
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Ivan Anishchenko
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
| | - Petras J Kundrotas
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
| | - Ilya A Vakser
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, 66047
| | - Kenichiro Imai
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
| | - Kazunori Yamada
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
| | - Toshiyuki Oda
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
| | - Tsukasa Nakamura
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Kentaro Tomii
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Chiara Pallara
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Miguel Romero-Durana
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Brian Jiménez-García
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Iain H Moal
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Juan Férnandez-Recio
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Jong Young Joung
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Jong Yun Kim
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Keehyoung Joo
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
- Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Jooyoung Lee
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
- School of Computational Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Dima Kozakov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Scott Mottarella
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - David R Hall
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Artem Mamonov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Bing Xia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Tanggis Bohnuud
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Carlos A Del Carpio
- Institute of Biological Diversity, International Pacific Institute of Indiana, Bloomington, Indiana, 47401
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Ukyo-Ku, 616-8354, Japan
| | - Eichiro Ichiishi
- International University of Health and Welfare Hospital (IUHW Hospital), Asushiobara-City, Tochigi Prefecture, 329-2763, Japan
| | - Nicholas Marze
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Shourya S Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Edrisse Chermak
- King Abdullah University of Science and Technology, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Saudi Arabia
| | - Romina Oliva
- University of Naples "Parthenope", Napoli, Italy
| | - Andrey Tovchigrechko
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, 20850
| | - Shoshana J Wodak
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- VIB Structural Biology Research Center, VUB Pleinlaan 2, Brussels, 1050, Belgium.
| |
Collapse
|
40
|
Tripathi A, Gupta K, Khare S, Jain PC, Patel S, Kumar P, Pulianmackal AJ, Aghera N, Varadarajan R. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data. Mol Biol Evol 2016; 33:2960-2975. [PMID: 27563054 PMCID: PMC5062330 DOI: 10.1093/molbev/msw182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95pdz3) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo. This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations.
Collapse
Affiliation(s)
- Arti Tripathi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kritika Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Pankaj C Jain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Siddharth Patel
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Prasanth Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
41
|
Laszlo KJ, Munger EB, Bush MF. Folding of Protein Ions in the Gas Phase after Cation-to-Anion Proton-Transfer Reactions. J Am Chem Soc 2016; 138:9581-8. [PMID: 27399988 PMCID: PMC4999245 DOI: 10.1021/jacs.6b04282] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structure and folding of a protein in solution depends on noncovalent interactions within the protein and those with surrounding ions and molecules. Decoupling these interactions in solution is challenging, which has hindered the development of accurate physics-based models for structure prediction. Investigations of proteins in the gas phase can be used to selectively decouple factors affecting the structures of proteins. Here, we use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of denatured ubiquitin ions in the gas phase, and ion mobility to probe their structures. In CAPTR, a precursor charge state is selected (P) and reacted with monoanions to generate charge-reduced product ions (C). Following each CAPTR event, denatured ubiquitin ions (13+ to 6+) yield products that rapidly isomerize to structures that have smaller collision cross sections (Ω). The Ω values of CAPTR product ions depend strongly on C and very weakly on P. Pre- and post-CAPTR activation was then used to probe the potential-energy surfaces of the precursor and product ions, respectively. Post-CAPTR activation showed that ions of different P fold differently and populate different regions of the potential-energy surface of that ion. Finally, pre-CAPTR activation showed that the structures of protein ions can be indirectly investigated using ion mobility of their CAPTR product ions, even for subtle structural differences that are not apparent from ion mobility characterization of the activated precursor ions. More generally, these results show that CAPTR strongly complements existing techniques for characterizing the structures and dynamics of biological molecules in the gas phase.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| | - Eleanor B. Munger
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| |
Collapse
|
42
|
Sulea T, Vivcharuk V, Corbeil CR, Deprez C, Purisima EO. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities. J Chem Inf Model 2016; 56:1292-303. [PMID: 27367467 DOI: 10.1021/acs.jcim.6b00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Affinity modulation of antibodies and antibody fragments of therapeutic value is often required in order to improve their clinical efficacies. Virtual affinity maturation has the potential to quickly focus on the critical hotspot residues without the combinatorial explosion problem of conventional display and library approaches. However, this requires a binding affinity scoring function that is capable of ranking single-point mutations of a starting antibody. We focus here on assessing the solvated interaction energy (SIE) function that was originally developed for and is widely applied to scoring of protein-ligand binding affinities. To this end, we assembled a structure-function data set called Single-Point Mutant Antibody Binding (SiPMAB) comprising several antibody-antigen systems suitable for this assessment, i.e., based on high-resolution crystal structures for the parent antibodies and coupled with high-quality binding affinity measurements for sets of single-point antibody mutants in each system. Using this data set, we tested the SIE function with several mutation protocols based on the popular methods SCWRL, Rosetta, and FoldX. We found that the SIE function coupled with a protocol limited to sampling only the mutated side chain can reasonably predict relative binding affinities with a Spearman rank-order correlation coefficient of about 0.6, outperforming more aggressive sampling protocols. Importantly, this performance is maintained for each of the seven system-specific component subsets as well as for other relevant subsets including non-alanine and charge-altering mutations. The transferability and enrichment in affinity-improving mutants can be further enhanced using consensus ranking over multiple methods, including the SIE, Talaris, and FOLDEF energy functions. The knowledge gained from this study can lead to successful prospective applications of virtual affinity maturation.
Collapse
Affiliation(s)
- Traian Sulea
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, QC, Canada H4P 2R2
| | - Victor Vivcharuk
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, QC, Canada H4P 2R2
| | - Christopher R Corbeil
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, QC, Canada H4P 2R2
| | - Christophe Deprez
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, QC, Canada H4P 2R2
| | - Enrico O Purisima
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, QC, Canada H4P 2R2
| |
Collapse
|
43
|
Li M, Simonetti FL, Goncearenco A, Panchenko AR. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions. Nucleic Acids Res 2016; 44:W494-501. [PMID: 27150810 PMCID: PMC4987923 DOI: 10.1093/nar/gkw374] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/23/2016] [Indexed: 11/13/2022] Open
Abstract
Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/.
Collapse
Affiliation(s)
- Minghui Li
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
44
|
Islam MA, Bhayye S, Adeniyi AA, Soliman ME, Pillay TS. Diabetes mellitus caused by mutations in human insulin: analysis of impaired receptor binding of insulins Wakayama, Los Angeles and Chicago using pharmacoinformatics. J Biomol Struct Dyn 2016; 35:724-737. [DOI: 10.1080/07391102.2016.1160258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Md Ataul Islam
- Faculty of Health Sciences, Department of Chemical Pathology, & Institute of Cellular & Molecular Medicine, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| | - Sagar Bhayye
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Adebayo A. Adeniyi
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mahmoud E.S. Soliman
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Tahir S. Pillay
- Faculty of Health Sciences, Department of Chemical Pathology, & Institute of Cellular & Molecular Medicine, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
- Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
45
|
Sirin S, Apgar JR, Bennett EM, Keating AE. AB-Bind: Antibody binding mutational database for computational affinity predictions. Protein Sci 2016; 25:393-409. [PMID: 26473627 PMCID: PMC4815335 DOI: 10.1002/pro.2829] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/26/2022]
Abstract
Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction.
Collapse
Affiliation(s)
- Sarah Sirin
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - James R. Apgar
- Global Biotherapeutics Technologies, Pfizer Inc610 Main StreetCambridgeMassachusetts02139
| | - Eric M. Bennett
- Global Biotherapeutics Technologies, Pfizer Inc610 Main StreetCambridgeMassachusetts02139
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| |
Collapse
|
46
|
Broom HR, Vassall KA, Rumfeldt JAO, Doyle CM, Tong MS, Bonner JM, Meiering EM. Combined Isothermal Titration and Differential Scanning Calorimetry Define Three-State Thermodynamics of fALS-Associated Mutant Apo SOD1 Dimers and an Increased Population of Folded Monomer. Biochemistry 2016; 55:519-33. [PMID: 26710831 DOI: 10.1021/acs.biochem.5b01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins are naturally homooligomers, homodimers most frequently. The overall stability of oligomeric proteins may be described in terms of the stability of the constituent monomers and the stability of their association; together, these stabilities determine the populations of different monomer and associated species, which generally have different roles in the function or dysfunction of the protein. Here we show how a new combined calorimetry approach, using isothermal titration calorimetry to define monomer association energetics together with differential scanning calorimetry to measure total energetics of oligomer unfolding, can be used to analyze homodimeric unmetalated (apo) superoxide dismutase (SOD1) and determine the effects on the stability of structurally diverse mutations associated with amyotrophic lateral sclerosis (ALS). Despite being located throughout the protein, all mutations studied weaken the dimer interface, while concomitantly either decreasing or increasing the marginal stability of the monomer. Analysis of the populations of dimer, monomer, and unfolded monomer under physiological conditions of temperature, pH, and protein concentration shows that all mutations promote the formation of folded monomers. These findings may help rationalize the key roles proposed for monomer forms of SOD1 in neurotoxic aggregation in ALS, as well as roles for other forms of SOD1. Thus, the results obtained here provide a valuable approach for the quantitative analysis of homooligomeric protein stabilities, which can be used to elucidate the natural and aberrant roles of different forms of these proteins and to improve methods for predicting protein stabilities.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ming Sze Tong
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Julia M Bonner
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
47
|
Liu Q, Ren J, Song J, Li J. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots. PLoS One 2015; 10:e0144486. [PMID: 26675422 PMCID: PMC4684219 DOI: 10.1371/journal.pone.0144486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 11/19/2015] [Indexed: 11/19/2022] Open
Abstract
A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots.
Collapse
Affiliation(s)
- Qian Liu
- Advanced Analytics Institute, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jing Ren
- Advanced Analytics Institute, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC 3800, Australia
- Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Jinyan Li
- Advanced Analytics Institute and Centre for Health Technologies, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
48
|
Abstract
We report the performance of our approaches for protein-protein docking and interface analysis in CAPRI rounds 20-26. At the core of our pipeline was the ZDOCK program for rigid-body protein-protein docking. We then reranked the ZDOCK predictions using the ZRANK or IRAD scoring functions, pruned and analyzed energy landscapes using clustering, and analyzed the docking results using our interface prediction approach RCF. When possible, we used biological information from the literature to apply constraints to the search space during or after the ZDOCK runs. For approximately half of the standard docking challenges we made at least one prediction that was acceptable or better. For the scoring challenges we made acceptable or better predictions for all but one target. This indicates that our scoring functions are generally able to select the correct binding mode.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | | | | | | |
Collapse
|
49
|
Broom HR, Rumfeldt JAO, Vassall KA, Meiering EM. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Protein Sci 2015; 24:2081-9. [PMID: 26362407 DOI: 10.1002/pro.2803] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022]
Abstract
Neurotoxic misfolding of Cu, Zn-superoxide dismutase (SOD1) is implicated in causing amyotrophic lateral sclerosis, a devastating and incurable neurodegenerative disease. Disease-linked mutations in SOD1 have been proposed to promote misfolding and aggregation by decreasing protein stability and increasing the proportion of less folded forms of the protein. Here we report direct measurement of the thermodynamic effects of chemically and structurally diverse mutations on the stability of the dimer interface for metal free (apo) SOD1 using isothermal titration calorimetry and size exclusion chromatography. Remarkably, all mutations studied, even ones distant from the dimer interface, decrease interface stability, and increase the population of monomeric SOD1. We interpret the thermodynamic data to mean that substantial structural perturbations accompany dimer dissociation, resulting in the formation of poorly packed and malleable dissociated monomers. These findings provide key information for understanding the mechanisms and energetics underlying normal maturation of SOD1, as well as toxic SOD1 misfolding pathways associated with disease. Furthermore, accurate prediction of protein-protein association remains very difficult, especially when large structural changes are involved in the process, and our findings provide a quantitative set of data for such cases, to improve modelling of protein association.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
50
|
Popov P, Grudinin S. Knowledge of Native Protein–Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates. J Chem Inf Model 2015; 55:2242-55. [DOI: 10.1021/acs.jcim.5b00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petr Popov
- Université Grenoble Alpes, Laboratoire Jean Kuntzmann (LJK), F-38000 Grenoble, France
- CNRS, LJK, F-38000 Grenoble, France
- Inria, F-38000 Grenoble, France
- Moscow Institute
of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Sergei Grudinin
- Université Grenoble Alpes, Laboratoire Jean Kuntzmann (LJK), F-38000 Grenoble, France
- CNRS, LJK, F-38000 Grenoble, France
- Inria, F-38000 Grenoble, France
| |
Collapse
|