1
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
2
|
del Alamo D, DeSousa L, Nair RM, Rahman S, Meiler J, Mchaourab HS. Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter. Proc Natl Acad Sci U S A 2022; 119:e2206129119. [PMID: 35969794 PMCID: PMC9407458 DOI: 10.1073/pnas.2206129119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Amino Acid-Polyamine-Organocation (APC) transporter GadC contributes to the survival of pathogenic bacteria under extreme acid stress by exchanging extracellular glutamate for intracellular γ-aminobutyric acid (GABA). Its structure, determined in an inward-facing conformation at alkaline pH, consists of the canonical LeuT-fold with a conserved five-helix inverted repeat, thereby resembling functionally divergent transporters such as the serotonin transporter SERT and the glucose-sodium symporter SGLT1. However, despite this structural similarity, it is unclear if the conformational dynamics of antiporters such as GadC follow the blueprint of these or other LeuT-fold transporters. Here, we used double electron-electron resonance (DEER) spectroscopy to monitor the conformational dynamics of GadC in lipid bilayers in response to acidification and substrate binding. To guide experimental design and facilitate the interpretation of the DEER data, we generated an ensemble of structural models in multiple conformations using a recently introduced modification of AlphaFold2 . Our experimental results reveal acid-induced conformational changes that dislodge the Cterminus from the permeation pathway coupled with rearrangement of helices that enables isomerization between inward- and outward-facing states. The substrate glutamate, but not GABA, modulates the dynamics of an extracellular thin gate without shifting the equilibrium between inward- and outward-facing conformations. In addition to introducing an integrated methodology for probing transporter conformational dynamics, the congruence of the DEER data with patterns of structural rearrangements deduced from ensembles of AlphaFold2 models illuminates the conformational cycle of GadC underpinning transport and exposes yet another example of the divergence between the dynamics of different families in the LeuT-fold.
Collapse
Affiliation(s)
- Diego del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
| | - Lillian DeSousa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Rahul M. Nair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Suhaila Rahman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany 04109
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
3
|
Artzi L, Alon A, Brock KP, Green AG, Tam A, Ramírez-Guadiana FH, Marks D, Kruse A, Rudner DZ. Dormant spores sense amino acids through the B subunits of their germination receptors. Nat Commun 2021; 12:6842. [PMID: 34824238 PMCID: PMC8617281 DOI: 10.1038/s41467-021-27235-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria from the orders Bacillales and Clostridiales differentiate into stress-resistant spores that can remain dormant for years, yet rapidly germinate upon nutrient sensing. How spores monitor nutrients is poorly understood but in most cases requires putative membrane receptors. The prototypical receptor from Bacillus subtilis consists of three proteins (GerAA, GerAB, GerAC) required for germination in response to L-alanine. GerAB belongs to the Amino Acid-Polyamine-Organocation superfamily of transporters. Using evolutionary co-variation analysis, we provide evidence that GerAB adopts a structure similar to an L-alanine transporter from this superfamily. We show that mutations in gerAB predicted to disrupt the ligand-binding pocket impair germination, while mutations predicted to function in L-alanine recognition enable spores to respond to L-leucine or L-serine. Finally, substitutions of bulkier residues at these positions cause constitutive germination. These data suggest that GerAB is the L-alanine sensor and that B subunits in this broadly conserved family function in nutrient detection.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Anna G Green
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Amy Tam
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | | | - Debora Marks
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Andrew Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Diallinas G. Transporter Specificity: A Tale of Loosened Elevator-Sliding. Trends Biochem Sci 2021; 46:708-717. [PMID: 33903007 DOI: 10.1016/j.tibs.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Elevator-type transporters are a group of proteins translocating nutrients and metabolites across cell membranes. Despite structural and functional differences, elevator-type transporters use a common mechanism of substrate translocation via reversible movements of a mobile core domain (the elevator), which includes the substrate binding site, along a rigid scaffold domain, stably anchored in the plasma membrane. How substrate specificity is determined in elevator transporters remains elusive. Here, I discuss how a recent report on the sliding elevator mechanism, seen under the context of genetic analysis of a prototype fungal transporter, sheds light on how specificity might be genetically modified. I propose that flexible specificity alterations might occur by 'loosening' of the sliding mechanism from tight coupling to substrate binding.
Collapse
Affiliation(s)
- George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece.
| |
Collapse
|
5
|
Structure and function of an Arabidopsis thaliana sulfate transporter. Nat Commun 2021; 12:4455. [PMID: 34294705 PMCID: PMC8298490 DOI: 10.1038/s41467-021-24778-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Plant sulfate transporters (SULTR) mediate absorption and distribution of sulfate (SO42-) and are essential for plant growth; however, our understanding of their structures and functions remains inadequate. Here we present the structure of a SULTR from Arabidopsis thaliana, AtSULTR4;1, in complex with SO42- at an overall resolution of 2.8 Å. AtSULTR4;1 forms a homodimer and has a structural fold typical of the SLC26 family of anion transporters. The bound SO42- is coordinated by side-chain hydroxyls and backbone amides, and further stabilized electrostatically by the conserved Arg393 and two helix dipoles. Proton and SO42- are co-transported by AtSULTR4;1 and a proton gradient significantly enhances SO42- transport. Glu347, which is ~7 Å from the bound SO42-, is required for H+-driven transport. The cytosolic STAS domain interacts with transmembrane domains, and deletion of the STAS domain or mutations to the interface compromises dimer formation and reduces SO42- transport, suggesting a regulatory function of the STAS domain.
Collapse
|
6
|
Mohany NAM, Totti A, Naylor KR, Janovjak H. Microbial methionine transporters and biotechnological applications. Appl Microbiol Biotechnol 2021; 105:3919-3929. [PMID: 33929594 PMCID: PMC8140960 DOI: 10.1007/s00253-021-11307-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/07/2022]
Abstract
Methionine (Met) is an essential amino acid with commercial value in animal feed, human nutrition, and as a chemical precursor. Microbial production of Met has seen intensive investigation towards a more sustainable alternative to the chemical synthesis that currently meets the global Met demand. Indeed, efficient Met biosynthesis has been achieved in genetically modified bacteria that harbor engineered enzymes and streamlined metabolic pathways. Very recently, the export of Met as the final step during its fermentative production has been studied and optimized, primarily through identification and expression of microbial Met efflux transporters. In this mini-review, we summarize the current knowledge on four families of Met export and import transporters that have been harnessed for the production of Met and other valuable biomolecules. These families are discussed with respect to their function, gene regulation, and biotechnological applications. We cover methods for identification and characterization of Met transporters as the basis for the further engineering of these proteins and for exploration of other solute carrier families. The available arsenal of Met transporters from different species and protein families provides blueprints not only for fermentative production but also synthetic biology systems, such as molecular sensors and cell-cell communication systems. KEY POINTS: • Sustainable production of methionine (Met) using microbes is actively explored. • Met transporters of four families increase production yield and specificity. • Further applications include other biosynthetic pathways and synthetic biology.
Collapse
Affiliation(s)
- Nurul Amira Mohammad Mohany
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Clayton, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Melbourne, Clayton, Australia
| | - Alessandra Totti
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, Italy
| | - Keith R Naylor
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Clayton, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Melbourne, Clayton, Australia
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Clayton, Australia.
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Melbourne, Clayton, Australia.
| |
Collapse
|
7
|
Kawano-Kawada M, Ichimura H, Ohnishi S, Yamamoto Y, Kawasaki Y, Sekito T. Ygr125w/Vsb1-dependent accumulation of basic amino acids into vacuoles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1157-1164. [PMID: 33704406 DOI: 10.1093/bbb/zbab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 01/23/2023]
Abstract
The Ygr125w was previously identified as a vacuolar membrane protein by a proteomic analysis. We found that vacuolar levels of basic amino acids drastically decreased in ygr125wΔ cells. Since N- or C-terminally tagged Ygr125w was not functional, an expression plasmid of YGR125w with HA3-tag inserted in its N-terminal hydrophilic region was constructed. Introduction of this plasmid into ygr125w∆ cells restored the vacuolar levels of basic amino acids. We successfully detected the uptake activity of arginine by the vacuolar membrane vesicles depending on HA3-YGR125w expression. A conserved aspartate residue in the predicted first transmembrane helix (D223) was indispensable for the accumulation of basic amino acids. YGR125w has been recently reported as a gene involved in vacuolar storage of arginine; and it is designated as VSB1. Taken together, our findings indicate that Ygr125w/Vsb1 contributes to the uptake of arginine into vacuoles and vacuolar compartmentalization of basic amino acids.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Life Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Haruka Ichimura
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Shota Ohnishi
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yusuke Yamamoto
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yumi Kawasaki
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Life Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
8
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
9
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
10
|
Yang X, Wang Q, Cao E. Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Nat Commun 2020; 11:1016. [PMID: 32081947 PMCID: PMC7035313 DOI: 10.1038/s41467-020-14790-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
The secondary active cation-chloride cotransporters (CCCs) utilize the existing Na+ and/or K+ gradients to move Cl- into or out of cells. NKCC1 is an intensively studied member of the CCC family and plays fundamental roles in regulating trans-epithelial ion movement, cell volume, chloride homeostasis and neuronal excitability. Here, we report a cryo-EM structure of human NKCC1 captured in a partially loaded, inward-open state. NKCC1 assembles into a dimer, with the first ten transmembrane (TM) helices harboring the transport core and TM11-TM12 helices lining the dimer interface. TM1 and TM6 helices break α-helical geometry halfway across the lipid bilayer where ion binding sites are organized around these discontinuous regions. NKCC1 may harbor multiple extracellular entryways and intracellular exits, raising the possibility that K+, Na+, and Cl- ions may traverse along their own routes for translocation. NKCC1 structure provides a blueprint for further probing structure-function relationships of NKCC1 and other CCCs.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - Qinzhe Wang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
| |
Collapse
|
11
|
Cytosolic N- and C-Termini of the Aspergillus nidulans FurE Transporter Contain Distinct Elements that Regulate by Long-Range Effects Function and Specificity. J Mol Biol 2019; 431:3827-3844. [DOI: 10.1016/j.jmb.2019.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
|
12
|
Abstract
Cell nutrition, detoxification, signalling, homeostasis and response to drugs, processes related to cell growth, differentiation and survival are all mediated by plasma membrane (PM) proteins called transporters. Despite their distinct fine structures, mechanism of function, energetic requirements, kinetics and substrate specificities, all transporters are characterized by a main hydrophobic body embedded in the PM as a series of tightly packed, often intertwined, α-helices that traverse the lipid bilayer in a zigzag mode, connected with intracellular or extracellular loops and hydrophilic N- and C-termini. Whereas longstanding genetic, biochemical and biophysical evidence suggests that specific transmembrane segments, and also their connecting loops, are responsible for substrate recognition and transport dynamics, emerging evidence also reveals the functional importance of transporter N- and C-termini, in respect to transport catalysis, substrate specificity, subcellular expression, stability and signalling. This review highlights selected prototypic examples of transporters in which their termini play important roles in their functioning.
Collapse
Affiliation(s)
- Emmanuel Mikros
- Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| |
Collapse
|
13
|
Structural basis for substrate binding and specificity of a sodium-alanine symporter AgcS. Proc Natl Acad Sci U S A 2019; 116:2086-2090. [PMID: 30659158 DOI: 10.1073/pnas.1806206116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The amino acid, polyamine, and organocation (APC) superfamily is the second largest superfamily of membrane proteins forming secondary transporters that move a range of organic molecules across the cell membrane. Each transporter in the APC superfamily is specific for a unique subset of substrates, even if they possess a similar structural fold. The mechanism of substrate selectivity remains, by and large, elusive. Here, we report two crystal structures of an APC member from Methanococcus maripaludis, the alanine or glycine:cation symporter (AgcS), with l- or d-alanine bound. Structural analysis combined with site-directed mutagenesis and functional studies inform on substrate binding, specificity, and modulation of the AgcS family and reveal key structural features that allow this transporter to accommodate glycine and alanine while excluding all other amino acids. Mutation of key residues in the substrate binding site expand the selectivity to include valine and leucine. These studies provide initial insights into substrate selectivity in AgcS symporters.
Collapse
|
14
|
Majd H, King MS, Palmer SM, Smith AC, Elbourne LDH, Paulsen IT, Sharples D, Henderson PJF, Kunji ERS. Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. eLife 2018; 7:e38821. [PMID: 30320551 PMCID: PMC6211832 DOI: 10.7554/elife.38821] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 02/02/2023] Open
Abstract
Substrates of most transport proteins have not been identified, limiting our understanding of their role in physiology and disease. Traditional identification methods use transport assays with radioactive compounds, but they are technically challenging and many compounds are unavailable in radioactive form or are prohibitively expensive, precluding large-scale trials. Here, we present a high-throughput screening method that can identify candidate substrates from libraries of unlabeled compounds. The assay is based on the principle that transport proteins recognize substrates through specific interactions, which lead to enhanced stabilization of the transporter population in thermostability shift assays. Representatives of three different transporter (super)families were tested, which differ in structure as well as transport and ion coupling mechanisms. In each case, the substrates were identified correctly from a large set of chemically related compounds, including stereo-isoforms. In some cases, stabilization by substrate binding was enhanced further by ions, providing testable hypotheses on energy coupling mechanisms.
Collapse
Affiliation(s)
- Homa Majd
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Shane M Palmer
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Anthony C Smith
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Liam DH Elbourne
- Department of Molecular SciencesMacquarie UniversitySydneyAustralia
| | - Ian T Paulsen
- Department of Molecular SciencesMacquarie UniversitySydneyAustralia
| | - David Sharples
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Biomedical SciencesUniversity of LeedsLeedsUnited Kingdom
| | - Peter JF Henderson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Biomedical SciencesUniversity of LeedsLeedsUnited Kingdom
| | - Edmund RS Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
15
|
Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state. Nat Struct Mol Biol 2018; 25:522-527. [PMID: 29872228 PMCID: PMC7346717 DOI: 10.1038/s41594-018-0072-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Recent advances in understanding intracellular amino acid transport and mechanistic target of rapamycin complex 1 (mTORC1) signaling shed light on solute carrier 38, family A member 9 (SLC38A9), a lysosomal transporter responsible for the binding and translocation of several essential amino acids. Here we present the first crystal structure of SLC38A9 from Danio rerio in complex with arginine. As captured in the cytosol-open state, the bound arginine was locked in a transitional state stabilized by transmembrane helix 1 (TM1) of drSLC38A9, which was anchored at the groove between TM5 and TM7. These anchoring interactions were mediated by the highly conserved WNTMM motif in TM1, and mutations in this motif abolished arginine transport by drSLC38A9. The underlying mechanism of substrate binding is critical for sensitizing the mTORC1 signaling pathway to amino acids and for maintenance of lysosomal amino acid homeostasis. This study offers a first glimpse into a prototypical model for SLC38 transporters.
Collapse
|
16
|
Kourkoulou A, Pittis AA, Diallinas G. Evolution of substrate specificity in the Nucleobase-Ascorbate Transporter (NAT) protein family. MICROBIAL CELL 2018; 5:280-292. [PMID: 29850465 PMCID: PMC5972032 DOI: 10.15698/mic2018.06.636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
L-ascorbic acid (vitamin C) is an essential metabolite in animals and plants due to its role as an enzyme co-factor and antioxidant activity. In most eukaryotic organisms, L-ascorbate is biosynthesized enzymatically, but in several major groups, including the primate suborder Haplorhini, this ability is lost due to gene truncations in the gene coding for L-gulonolactone oxidase. Specific ascorbate transporters (SVCTs) have been characterized only in mammals and shown to be essential for life. These belong to an extensively studied transporter family, called Nucleobase-Ascorbate Transporters (NAT). The prototypic member of this family, and one of the most extensively studied eukaryotic transporters, is UapA, a uric acid-xanthine/H+ symporter in the fungus Aspergillus nidulans. Here, we investigate molecular aspects of NAT substrate specificity and address the evolution of ascorbate transporters apparently from ancestral nucleobase transporters. We present a phylogenetic analysis, identifying a distinct NAT clade that includes all known L-ascorbate transporters. This clade includes homologues only from vertebrates, and has no members in non-vertebrate or microbial eukaryotes, plants or prokaryotes. Additionally, we identify within the substrate-binding site of NATs a differentially conserved motif, which we propose is critical for nucleobase versus ascorbate recognition. This conclusion is supported by the amino acid composition of this motif in distinct phylogenetic clades and mutational analysis in the UapA transporter. Together with evidence obtained herein that UapA can recognize with extremely low affinity L-ascorbate, our results support that ascorbate-specific NATs evolved by optimization of a sub-function of ancestral nucleobase transporters.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | | | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| |
Collapse
|
17
|
Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, Newman D, Azimov R, Pushkin A, Zhou ZH, Kurtz I. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat Commun 2018; 9:900. [PMID: 29500354 PMCID: PMC5834491 DOI: 10.1038/s41467-018-03271-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Na+-coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na+-coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.
Collapse
Affiliation(s)
- Kevin W Huynh
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jiansen Jiang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Natalia Abuladze
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Kirill Tsirulnikov
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Liyo Kao
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Xuesi Shao
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA
| | - Debra Newman
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Rustam Azimov
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Tsirigos KD, Govindarajan S, Bassot C, Västermark Å, Lamb J, Shu N, Elofsson A. Topology of membrane proteins-predictions, limitations and variations. Curr Opin Struct Biol 2017; 50:9-17. [PMID: 29100082 DOI: 10.1016/j.sbi.2017.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins.
Collapse
Affiliation(s)
| | - Sudha Govindarajan
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Claudio Bassot
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Åke Västermark
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; NITECH, Showa-Ku, Nagoya 466-8555 Japan
| | - John Lamb
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Nanjiang Shu
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; National Bioinformatics Infrastructure, Sweden; Nordic e-Infrastructure Collaboration, Sweden
| | - Arne Elofsson
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Swedish e-Science Research Center (SeRC), Sweden.
| |
Collapse
|
19
|
Chang YN, Geertsma ER. The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 2017; 398:165-174. [PMID: 27865089 DOI: 10.1515/hsz-2016-0254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Solute carriers from the SLC4, SLC23, and SLC26 families are involved in pH regulation, vitamin C transport and ion homeostasis. While these families do not share any obvious sequence relationship, they are united by their unique and novel architecture. Each member of this structural class is organized into two structurally related halves of seven transmembrane segments each. These halves span the membrane with opposite orientations and form an intricately intertwined structure of two inverted repeats. This review highlights the general design principles of this fold and reveals the diversity between the different families. We discuss their domain architecture, structural framework and transport mode and detail an initial transport mechanism for this fold inferred from the recently solved structures of different members.
Collapse
|
20
|
Coudray N, L Seyler S, Lasala R, Zhang Z, Clark KM, Dumont ME, Rohou A, Beckstein O, Stokes DL. Structure of the SLC4 transporter Bor1p in an inward-facing conformation. Protein Sci 2016; 26:130-145. [PMID: 27717063 DOI: 10.1002/pro.3061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023]
Abstract
Bor1p is a secondary transporter in yeast that is responsible for boron transport. Bor1p belongs to the SLC4 family which controls bicarbonate exchange and pH regulation in animals as well as borate uptake in plants. The SLC4 family is more distantly related to members of the Amino acid-Polyamine-organoCation (APC) superfamily, which includes well studied transporters such as LeuT, Mhp1, AdiC, vSGLT, UraA, SLC26Dg. Their mechanism generally involves relative movements of two domains: a core domain that binds substrate and a gate domain that in many cases mediates dimerization. To shed light on conformational changes governing transport by the SLC4 family, we grew helical membrane crystals of Bor1p from Saccharomyces mikatae and determined a structure at ∼6 Å resolution using cryo-electron microscopy. To evaluate the conformation of Bor1p in these crystals, a homology model was built based on the related anion exchanger from red blood cells (AE1). This homology model was fitted to the cryo-EM density map using the Molecular Dynamics (MD) Flexible Fitting method and then relaxed by all-atom MD simulation in explicit solvent and membrane. Mapping of water accessibility indicates that the resulting structure represents an inward-facing conformation. Comparisons of the resulting Bor1p model with the X-ray structure of AE1 in an outward-facing conformation, together with MD simulations of inward-facing and outward-facing Bor1p models, suggest rigid body movements of the core domain relative to the gate domain. These movements are consistent with the rocking-bundle transport mechanism described for other members of the APC superfamily.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Sean L Seyler
- Department of Physics, Arizona State University, Tempe, Arizona, 85287
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Kathy M Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Mark E Dumont
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Alexis Rohou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona, 85287.,Center for Biological Physics, Arizona State University, Tempe, Arizona, 85287
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| |
Collapse
|
21
|
The V-motifs facilitate the substrate capturing step of the PTS elevator mechanism. J Struct Biol 2016; 196:496-502. [PMID: 27720943 DOI: 10.1016/j.jsb.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
We propose that the alternative crystal forms of outward open UlaA (which are experimental, not simulated, and contain the substrate in the cavity) can be used to interpret/validate the MD results from MalT (the substrate capture step, which involves the mobile second TMSs of the V-motifs, TMSs 2 and 7). Since the crystal contacts are the same between the two alternative crystal forms of outward open UlaA, the striking biological differences noted, including rearranged hydrogen bonds and salt bridge coordination, are not attributable to crystal packing differences. Using transport assays, we identified G58 and G286 as essential for normal vitamin C transport, but the comparison of alternative crystal forms revealed that these residues to unhinge TMS movements from substrate-binding side chains, rendering the mid-TMS regions of homologous TMSs 2 and 7 relatively immobile. While the TMS that is involved in substrate binding in MalT is part of the homologous bundle that holds the two separate halves of the transport assembly (two proteins) together, an unequal effect of the two knockouts was observed for UlaA where both V-motifs are free from such dimer interface interactions.
Collapse
|
22
|
Dissection of Transporter Function: From Genetics to Structure. Trends Genet 2016; 32:576-590. [DOI: 10.1016/j.tig.2016.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
|
23
|
Coudray N, Lasala R, Zhang Z, Clark KM, Dumont ME, Stokes DL. Deducing the symmetry of helical assemblies: Applications to membrane proteins. J Struct Biol 2016; 195:167-178. [PMID: 27255388 DOI: 10.1016/j.jsb.2016.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Helical reconstruction represents a convenient and powerful approach for structure determination of macromolecules that assemble into helical arrays. In the case of membrane proteins, formation of tubular crystals with helical symmetry represents an attractive alternative, especially when their small size precludes the use of single-particle analysis. An essential first step for helical reconstruction is to characterize the helical symmetry. This process is often daunting, due to the complexity of helical diffraction and to the low signal-to-noise ratio in images of individual assemblies. Furthermore, the large diameters of the tubular crystals produced by membrane proteins exacerbates the innate ambiguities that, if not resolved, will produce incorrect structures. In this report, we describe a set of tools that can be used to eliminate ambiguities and to validate the choice of symmetry. The first approach increases the signal-to-noise ratio along layer lines by incoherently summing data from multiple helical assemblies, thus producing several candidate indexing schemes. The second approach compares the layer lines from images with those from synthetic models built with the various candidate schemes. The third approach uses unit cell dimensions measured from collapsed tubes to distinguish between these candidate schemes. These approaches are illustrated with tubular crystals from a boron transporter from yeast, Bor1p, and a β-barrel channel from the outer membrane of E. coli, OmpF.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Kathy M Clark
- Department of Pediatrics and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14652, United States
| | - Mark E Dumont
- Department of Pediatrics and Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14652, United States
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States
| |
Collapse
|
24
|
The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol 2016; 23:256-63. [PMID: 26828963 PMCID: PMC5215794 DOI: 10.1038/nsmb.3166] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/30/2015] [Indexed: 11/11/2022]
Abstract
Secondary transporters use alternating access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters utilize a “rocking bundle” motion, where the protein moves around an immobile substrate binding site. However, the glutamate transporter homolog, GltPh, translocates its substrate binding site vertically across the membrane, an “elevator” mechanism. Here, we used the “repeat swap” approach to computationally predict the outward-facing state of the Na+/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial “elevator”-like movement of vcINDY’s substrate binding site, with a vertical translation of ~15 Å and a rotation of ~43°; multiple disulfide crosslinks which completely inhibit transport provide experimental confirmation and demonstrate that such movement is essential. In contrast, crosslinks across the VcINDY dimer interface preserve transport, revealing an absence of large scale coupling between protomers.
Collapse
|
25
|
Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, Iwata S. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 2015; 350:680-4. [PMID: 26542571 DOI: 10.1126/science.aaa4335] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias and/or distal renal tubular acidosis. Here we report the crystal structure of the band 3 anion exchanger domain (AE1(CTD)) at 3.5 angstroms. The structure is locked in an outward-facing open conformation by an inhibitor. Comparing this structure with a substrate-bound structure of the uracil transporter UraA in an inward-facing conformation allowed us to identify the anion-binding position in the AE1(CTD), and to propose a possible transport mechanism that could explain why selected mutations lead to disease.
Collapse
Affiliation(s)
- Takatoshi Arakawa
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takami Kobayashi-Yurugi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hinako Hatae
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Momi Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK
| | - Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoya Hino
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiyo Ikeda-Suno
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kuma
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Murata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Alexander D Cameron
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Takuya Kobayashi
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Hamasaki
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan
| | - So Iwata
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
26
|
|
27
|
Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 2015; 22:803-8. [PMID: 26367249 DOI: 10.1038/nsmb.3091] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The SLC26 family of membrane proteins combines a variety of functions within a conserved molecular scaffold. Its members, besides coupled anion transporters and channels, include the motor protein Prestin, which confers electromotility to cochlear outer hair cells. To gain insight into the architecture of this protein family, we characterized the structure and function of SLC26Dg, a facilitator of proton-coupled fumarate symport, from the bacterium Deinococcus geothermalis. Its modular structure combines a transmembrane unit and a cytoplasmic STAS domain. The membrane-inserted domain consists of two intertwined inverted repeats of seven transmembrane segments each and resembles the fold of the unrelated transporter UraA. It shows an inward-facing, ligand-free conformation with a potential substrate-binding site at the interface between two helix termini at the center of the membrane. This structure defines the common framework for the diverse functional behavior of the SLC26 family.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yung-Ning Chang
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Farooque R Shaik
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Els Pardon
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Billesbølle CB, Krüger MB, Shi L, Quick M, Li Z, Stolzenberg S, Kniazeff J, Gotfryd K, Mortensen JS, Javitch JA, Weinstein H, Loland CJ, Gether U. Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter. J Biol Chem 2015; 290:26725-38. [PMID: 26363074 DOI: 10.1074/jbc.m115.677658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter:sodium symporters (NSSs) mediate reuptake of neurotransmitters from the synaptic cleft and are targets for several therapeutics and psychostimulants. The prokaryotic NSS homologue, LeuT, represents a principal structural model for Na(+)-coupled transport catalyzed by these proteins. Here, we used site-directed fluorescence quenching spectroscopy to identify in LeuT a substrate-induced conformational rearrangement at the inner gate conceivably leading to formation of a structural intermediate preceding transition to the inward-open conformation. The substrate-induced, Na(+)-dependent change required an intact primary substrate-binding site and involved increased water exposure of the cytoplasmic end of transmembrane segment 5. The findings were supported by simulations predicting disruption of an intracellular interaction network leading to a discrete rotation of transmembrane segment 5 and the adjacent intracellular loop 2. The magnitude of the spectroscopic response correlated inversely with the transport rate for different substrates, suggesting that stability of the intermediate represents an unrecognized rate-limiting barrier in the NSS transport mechanism.
Collapse
Affiliation(s)
- Christian B Billesbølle
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mie B Krüger
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lei Shi
- Department of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York 10065
| | - Matthias Quick
- Center for Molecular Recognition and Departments of Psychiatry and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Zheng Li
- Department of Physiology and Biophysics and
| | | | - Julie Kniazeff
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kamil Gotfryd
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jonas S Mortensen
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jonathan A Javitch
- Center for Molecular Recognition and Departments of Psychiatry and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032 Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
| | - Harel Weinstein
- Department of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York 10065
| | - Claus J Loland
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ulrik Gether
- From the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark,
| |
Collapse
|
29
|
Lovas S, He DZZ, Liu H, Tang J, Pecka JL, Hatfield MPD, Beisel KW. Glutamate transporter homolog-based model predicts that anion-π interaction is the mechanism for the voltage-dependent response of prestin. J Biol Chem 2015; 290:24326-39. [PMID: 26283790 DOI: 10.1074/jbc.m115.649962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
Prestin is the motor protein of cochlear outer hair cells. Its unique capability to perform direct, rapid, and reciprocal electromechanical conversion depends on membrane potential and interaction with intracellular anions. How prestin senses the voltage change and interacts with anions are still unknown. Our three-dimensional model of prestin using molecular dynamics simulations predicts that prestin contains eight transmembrane-spanning segments and two helical re-entry loops and that tyrosyl residues are the structural specialization of the molecule for the unique function of prestin. Using site-directed mutagenesis and electrophysiological techniques, we confirmed that residues Tyr(367), Tyr(486), Tyr(501), and Tyr(508) contribute to anion binding, interacting with intracellular anions through novel anion-π interactions. Such weak interactions, sensitive to voltage and mechanical stimulation, confer prestin with a unique capability to perform electromechanical and mechanoelectric conversions with exquisite sensitivity. This novel mechanism is completely different from all known mechanisms seen in ion channels, transporters, and motor proteins.
Collapse
Affiliation(s)
- Sándor Lovas
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - David Z Z He
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Huizhan Liu
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Jie Tang
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Jason L Pecka
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Marcus P D Hatfield
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Kirk W Beisel
- From the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| |
Collapse
|
30
|
Karena E, Tatsaki E, Lambrinidis G, Mikros E, Frillingos S. Analysis of conserved NCS2 motifs in theEscherichia colixanthine permease XanQ. Mol Microbiol 2015; 98:502-17. [DOI: 10.1111/mmi.13138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Ekaterini Karena
- Laboratory of Biological Chemistry; University of Ioannina School of Health Sciences; Ioannina Greece
| | - Ekaterini Tatsaki
- Laboratory of Biological Chemistry; University of Ioannina School of Health Sciences; Ioannina Greece
| | - George Lambrinidis
- Laboratory of Pharmaceutical Chemistry; National and Kapodistrian University of Athens School of Pharmacy; Athens Greece
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry; National and Kapodistrian University of Athens School of Pharmacy; Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry; University of Ioannina School of Health Sciences; Ioannina Greece
| |
Collapse
|
31
|
Abstract
The Slc26 proteins are a ubiquitous superfamily of anion transporters conserved from bacteria to humans, among which four have been identified as human disease genes. Our functional knowledge of this protein family has increased but limited structural information is available. These proteins contain a transmembrane (TM) domain and a C-terminal cytoplasmic sulfate transporter and anti-sigma factor (STAS) domain. In a fundamental step towards understanding the structure/function relationships within the family we have used small-angle neutron scattering (SANS) on two distantly related bacterial homologues to show that there is a common, dimeric and structural architecture among Slc26A transporters. Pulsed electron-electron double resonance (PELDOR) spectroscopy supports the dimeric SANS-derived model. Using chimaeric/truncated proteins we have determined the domain organization: the STAS domains project away from the TM core and are essential for protein stability. We use the SANS-generated envelopes to assess a homology model of the TM core.
Collapse
|
32
|
Price GD, Howitt SM. Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA. Mol Membr Biol 2014; 31:177-82. [DOI: 10.3109/09687688.2014.953222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Diallinas G. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol 2014; 5:207. [PMID: 25309439 PMCID: PMC4162363 DOI: 10.3389/fphar.2014.00207] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open toward the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action.
Collapse
|
34
|
Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins 2014; 82:2797-811. [PMID: 25043943 DOI: 10.1002/prot.24643] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/07/2022]
Abstract
The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.
Collapse
Affiliation(s)
- Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, 92093-0116
| | | | | | | | | |
Collapse
|
35
|
Abstract
The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research. The database contains more than 10 000 non-redundant proteins that represent all currently recognized families of transmembrane molecular transport systems. Proteins in TCDB are organized in a five level hierarchical system, where the first two levels are the class and subclass, the second two are the family and subfamily, and the last one is the transport system. Superfamilies that contain multiple families are included as hyperlinks to the five tier TC hierarchy. TCDB includes proteins from all types of living organisms and is the only transporter classification system that is both universal and recognized by the International Union of Biochemistry and Molecular Biology. It has been expanded by manual curation, contains extensive text descriptions providing structural, functional, mechanistic and evolutionary information, is supported by unique software and is interconnected to many other relevant databases. TCDB is of increasing usefulness to the international scientific community and can serve as a model for the expansion of database technologies. This manuscript describes an update of the database descriptions previously featured in NAR database issues.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|