1
|
Escher TE, Yuk SA, Qian Y, Stubbs CK, Scott EA, Satchell KJF. Therapeutic expression of RAS Degrader RRSP in Pancreatic Cancer via Nanocarrier-mediated mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598439. [PMID: 38948803 PMCID: PMC11212117 DOI: 10.1101/2024.06.11.598439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
About one-third of all human cancers encode abnormal RAS proteins locked in a constitutively activated state to drive malignant transformation and uncontrolled tumor growth. Despite progress in development of small molecules for treatment of mutant KRAS cancers, there is a need for a pan-RAS inhibitor that is effective against all RAS isoforms and variants and that avoids drug resistance. We have previously shown that the naturally occurring bacterial enzyme RAS/RAP1-specific endopeptidase (RRSP) is a potent RAS degrader that can be re-engineered as a biologic therapy to induce regression of colorectal, breast, and pancreatic tumors. Here, we have developed a strategy for in vivo expression of this RAS degrader via mRNA delivery using a synthetic nonviral gene delivery platform composed of the poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) block copolymer conjugated to a dendritic cationic peptide (PPDP2). Using this strategy, PPDP2 is shown to deliver mRNA to both human and mouse pancreatic cells resulting in RRSP gene expression, activity, and loss of cell proliferation. Further, pancreatic tumors are reduced with residual tumors lacking detectable RAS and phosphorylated ERK. These data support that mRNA-loaded synthetic nanocarrier delivery of a RAS degrader can interrupt the RAS signaling system within pancreatic cancer cells while avoiding side effects during therapy.
Collapse
Affiliation(s)
- Taylor E Escher
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Caleb K Stubbs
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 United States
| |
Collapse
|
2
|
Escher TE, Satchell KJF. RAS degraders: The new frontier for RAS-driven cancers. Mol Ther 2023; 31:1904-1919. [PMID: 36945775 PMCID: PMC10362401 DOI: 10.1016/j.ymthe.2023.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The function and significance of RAS proteins in cancer have been widely studied for decades. In 2013, the National Cancer Institute established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to create effective therapies for RAS-driven cancers. This initiative spurred researchers to develop novel approaches and to discover small molecules targeting this protein that was at one time termed "undruggable." More recently, advanced efforts in RAS degraders including PROTACs, linker-based degraders, and direct proteolysis degraders have been explored as novel strategies to target RAS for cancer treatment. These RAS degraders present new opportunities for RAS therapies and may prove fruitful in understanding basic cell biology. Novel delivery strategies will further enhance the efficacy of these therapeutics. In this review, we summarize recent efforts to develop RAS degraders, including PROTACs and E3 adaptor and ligase fusions as cancer therapies. This review also details the direct RAS protease degrader, RAS/RAP1-specific endopeptidase that directly and specifically cleaves RAS.
Collapse
Affiliation(s)
- Taylor E Escher
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Heber S, Borho J, Stadler N, Wondany F, König I, Michaelis J, Papatheodorou P, Barth H, Fellermann M. The Clostridium botulinum C2 Toxin Subunit C2IIa Delivers Enzymes with Positively Charged N-Termini into the Cytosol of Target Cells. Toxins (Basel) 2023; 15:390. [PMID: 37368691 DOI: 10.3390/toxins15060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The binary Clostridium (C.) botulinum C2 toxin consists of two non-linked proteins. The proteolytically activated binding/transport subunit C2IIa forms barrel-shaped homoheptamers, which bind to cell surface receptors, mediate endocytosis, and translocate the enzyme subunit C2I into the cytosol of target cells. Here, we investigate whether C2IIa can be harnessed as a transporter for proteins/enzymes fused to polycationic tags, as earlier demonstrated for the related anthrax toxin transport subunit PA63. To test C2IIa-mediated transport in cultured cells, reporter enzymes are generated by fusing different polycationic tags to the N- or C-terminus of other bacterial toxins' catalytic A subunits. C2IIa as well as PA63 deliver N-terminally polyhistidine-tagged proteins more efficiently compared to C-terminally tagged ones. However, in contrast to PA63, C2IIa does not efficiently deliver polylysine-tagged proteins into the cytosol of target cells. Moreover, untagged enzymes with a native cationic N-terminus are efficiently transported by both C2IIa and PA63. In conclusion, the C2IIa-transporter serves as a transport system for enzymes that harbor positively charged amino acids at their N-terminus. The charge distribution at the N-terminus of cargo proteins and their ability to unfold in the endosome and subsequently refold in the cytosol determine transport feasibility and efficiency.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Joscha Borho
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nicole Stadler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fanny Wondany
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Irina König
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Maximilian Fellermann
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
4
|
Becker L, Plückthun A. DARPins bind their cytosolic targets after having been translocated through the protective antigen pore of anthrax toxin. Sci Rep 2023; 13:8048. [PMID: 37198284 DOI: 10.1038/s41598-023-34647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Intracellular protein-protein interactions in aberrant signaling pathways have emerged as a prime target in several diseases, particularly cancer. Since many protein-protein interactions are mediated by rather flat surfaces, they can typically not be interrupted by small molecules as they require cavities for binding. Therefore, protein drugs might be developed to compete with undesired interactions. However, proteins in general are not able to translocate from the extracellular side to the cytosolic target site by themselves, and thus an efficient protein translocation system, ideally combining efficient translocation with receptor specificity, is in high demand. Anthrax toxin, the tripartite holotoxin of Bacillus anthracis, is one of the best studied bacterial protein toxins and has proven to be a suitable candidate for cell-specific translocation of cargoes in vitro and in vivo. Our group recently developed a retargeted protective antigen (PA) variant fused to different Designed Ankyrin Repeat Proteins (DARPins) to achieve receptor specificity, and we incorporated a receptor domain to stabilize the prepore and prevent cell lysis. This strategy had been shown to deliver high amounts of cargo DARPins fused behind the N-terminal 254 amino acids of Lethal Factor (LFN). Here, we established a cytosolic binding assay, demonstrating the ability of DARPins to refold in the cytosol and bind their target after been translocated by PA.
Collapse
Affiliation(s)
- Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Characteristic Metabolic Changes in Skeletal Muscle Due to Vibrio vulnificus Infection in a Wound Infection Model. mSystems 2023; 8:e0068222. [PMID: 36939368 PMCID: PMC10153474 DOI: 10.1128/msystems.00682-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.
Collapse
|
6
|
Li W, Shao L, Liu J, Sheng J, Zheng Q, Wang M. Intracellular delivery of bacterial effectors for cancer therapy using biodegradable lipid nanoparticles. Biomater Sci 2023; 11:3172-3179. [PMID: 36919841 DOI: 10.1039/d3bm00008g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bacterial effector proteins are virulence factors that are secreted and mediate orthogonal post-translational modifications of proteins that are not found naturally in mammalian systems. They hold great promise for developing biotherapeutics by regulating malignant cell signaling in a specific and targeted manner. However, delivering bacterial effectors into disease cells poses a significant challenge to their therapeutic potential. In this study, we report on the design of a combinatorial library of bioreducible lipid nanoparticles containing disulfide bonds for highly efficient bacterial effector delivery and potential cancer therapy. A leading lipid, PPPDA-O16B, identified from the library, can encapsulate and deliver DNA plasmids into cells. The gene cargo is released in response to the reductive cellular environment that is upregulated in cancer cells, leading to enhanced gene delivery and protein expression efficiency. Furthermore, we demonstrate that PPPDA-O16B can deliver the bacterial effector protein, DUF5, to degrade mutant RAS and inactivate downstream MAPK signaling cascades to suppress cancer cell growth in vitro and in tumor-bearing mouse xenografts. This strategy of delivering bacterial effectors using biodegradable lipid nanoparticles can be expanded for cancer cell signaling regulation and antitumor studies.
Collapse
Affiliation(s)
- Wenting Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhan Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Actin Cross-Linking Effector Domain of the Vibrio vulnificus F-Type MARTX Toxin Dominates Disease Progression During Intestinal Infection. Infect Immun 2022; 90:e0062721. [PMID: 35254094 DOI: 10.1128/iai.00627-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is an opportunistic pathogen that causes gastroenteritis and septicemia in humans. The V. vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin is a pore-forming toxin that translocates multiple functionally independent effector domains into target cells and an essential virulence factor for fatal disease. The effector repertoire delivered and thus the mechanism of action of the toxin can differ dramatically across V. vulnificus isolates. Here, we utilize a strain of V. vulnificus that carries an F-type MARTX toxin that delivers an actin cross-linking domain (ACD) and four other effector domains. We demonstrate that ACD is the primary driver of virulence following intragastric infection and of bacterial dissemination to distal organs. We additionally show that ACD activates the transcription of intermediate early response genes in cultured intestinal epithelial cells (IECs). However, the genes activated by ACD are suppressed, at least in part, by the codelivered Ras/Rap1-specific endopeptidase (RRSP). The transcriptional response induced by strains translocating only RRSP results in a unique transcriptional profile, demonstrating that the transcriptional response to V. vulnificus is remodeled rather than simply suppressed by the MARTX toxin effector repertoire. Regardless, the transcriptional response in the intestinal tissue of infected mice is dominated by ACD-mediated induction of genes associated with response to tissue damage and is not impacted by RRSP or the three other effectors codelivered with ACD and RRSP. These data demonstrate that while other effectors do remodel early intestinal innate immune responses, ACD is the dominant driver of disease progression by ACD+ V. vulnificus during intestinal infection.
Collapse
|
8
|
RAS specific protease induces irreversible growth arrest via p27 in several KRAS mutant colorectal cancer cell lines. Sci Rep 2021; 11:17925. [PMID: 34504197 PMCID: PMC8429734 DOI: 10.1038/s41598-021-97422-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ras-specific proteases to degrade RAS within cancer cells are under active development as an innovative strategy to treat tumorigenesis. The naturally occurring biological toxin effector called RAS/RAP1-specific endopeptidase (RRSP) is known to cleave all RAS within a cell, including HRAS, KRAS, NRAS and mutant KRAS G13D. Yet, our understanding of the mechanisms by which RRSP drives growth inhibition are unknown. Here, we demonstrate, using isogenic mouse fibroblasts expressing a single isoform of RAS or mutant KRAS, that RRSP equally inactivates all isoforms of RAS as well as the major oncogenic KRAS mutants. To investigate how RAS processing might lead to varying outcomes in cell fate within cancer cells, we tested RRSP against four colorectal cancer cell lines with a range of cell fates. While cell lines highly susceptible to RRSP (HCT116 and SW1463) undergo apoptosis, RRSP treatment of GP5d and SW620 cells induces G1 cell cycle arrest. In some cell lines, growth effects were dictated by rescued expression of the tumor suppressor protein p27 (Kip1). The ability of RRSP to irreversibly inhibit cancer cell growth highlights the antitumor potential of RRSP, and further warrants investigation as a potential anti-tumor therapeutic.
Collapse
|
9
|
Loftis AR, Santos MS, Truex NL, Biancucci M, Satchell KJF, Pentelute BL. Anthrax Protective Antigen Retargeted with Single-Chain Variable Fragments Delivers Enzymes to Pancreatic Cancer Cells. Chembiochem 2020; 21:2772-2776. [PMID: 32369652 PMCID: PMC7541672 DOI: 10.1002/cbic.202000201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Indexed: 12/15/2022]
Abstract
The nontoxic, anthrax protective antigen/lethal factor N-terminal domain (PA/LFN ) complex is an effective platform for translocating proteins into the cytosol of cells. Mutant PA (mPA) was recently fused to epidermal growth factor (EGF) to retarget delivery of LFN to cells bearing EGF receptors (EGFR), but the requirement for a known cognate ligand limits the applicability of this approach. Here, we render practical protective antigen retargeting to a variety of receptors with mPA single-chain variable fragment (scFv) fusion constructs. Our design enables the targeting of two pancreatic cancer-relevant receptors, EGFR and carcinoembryonic antigen. We demonstrate that fusion to scFvs does not disturb the basic functions of mPA. Moreover, mPA-scFv fusions enable cell-specific delivery of diphtheria toxin catalytic domain and Ras/Rap1-specific endopeptidase to pancreatic cancer cells. Importantly, mPA-scFv fusion-based treatments display potent cell-specific toxicity in vitro, opening fundamentally new routes toward engineered immunotoxins and providing a potential solution to the challenge of targeted protein delivery to the cytosol of cancer cells.
Collapse
Affiliation(s)
- Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael S Santos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nicholas L Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Marco Biancucci
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, 420 E Superior Street, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, 420 E Superior Street, Chicago, IL 60611, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Varela-Chavez C, Blondel A, Popoff MR. Bacterial intracellularly active toxins: Membrane localisation of the active domain. Cell Microbiol 2020; 22:e13213. [PMID: 32353188 DOI: 10.1111/cmi.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras-GTPases, certain virulence factors of Gram negative bacteria, Rho-GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G-proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four-helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.
Collapse
Affiliation(s)
| | - Arnaud Blondel
- Unité de Bio-Informatique Structurale, Institut Pasteur, Paris, France
| | | |
Collapse
|
11
|
Wang X, Shen J, Jiang F, Jin Q. The Photorhabdus Virulence Cassettes RRSP-Like Effector Interacts With Cyclin-Dependent Kinase 1 and Causes Mitotic Defects in Mammalian Cells. Front Microbiol 2020; 11:366. [PMID: 32231646 PMCID: PMC7082817 DOI: 10.3389/fmicb.2020.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
The "Photorhabdus virulence cassettes" (PVCs) secreted by Photorhabdus are defined as "extracellular contractile injection systems" (eCISs) and can deliver effectors to eukaryotic hosts for cytotoxicity. Previously, we demonstrated the cryogenic electron microscopy (cryo-EM) structure and assembly process of an intact PVC particle from Photorhabdus asymbiotica. In this work, we characterized the biological functions of a PVC effector, which is defined as a homologous protein of Ras/Rap1-specific endopeptidase domain (RRSP) in the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin from Vibrio vulnificus. In this work, we found that the RRSP homologous protein (RRSPPa) was associated with inhibition of cell proliferation and increased cell apoptosis and death of HeLa cells. Furthermore, we discovered that RRSPPa disturbed mitotic progression, including the induction of cell cycle alteration, retardation of cell abscission time, and regression of the cleavage furrow. In addition, we revealed that RRSPPa could target the cyclin-dependent kinase 1 (CDK1) protein and block activation of CDK1 through inhibition of Thr161 phosphorylation, which partially explained the crucial role of this effector in cell mitosis.
Collapse
Affiliation(s)
| | | | - Feng Jiang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Guo RH, Im YJ, Shin SI, Jeong K, Rhee JH, Kim YR. Vibrio vulnificus RtxA1 cytotoxin targets filamin A to regulate PAK1- and MAPK-dependent cytoskeleton reorganization and cell death. Emerg Microbes Infect 2019; 8:934-945. [PMID: 31237474 PMCID: PMC6598492 DOI: 10.1080/22221751.2019.1632153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytoskeletal rearrangement and acute cytotoxicity occur in Vibrio vulnificus-infected host cells. RtxA1 toxin, a multifunctional autoprocessing repeats-in-toxin (MARTX), is essential for the pathogenesis of V. vulnificus and the programmed necrotic cell death. In this study, HeLa cells expressing RtxA1 amino acids 1491–1971 fused to GFP were observed to be rounded. Through yeast two-hybrid screening and subsequent immunoprecipitation validation assays, we confirmed the specific binding of a RtxA11491–1971 fragment with host-cell filamin A, an actin cross-linking scaffold protein. Downregulation of filamin A expression decreased the cytotoxicity of RtxA1 toward host cells. Furthermore, the phosphorylation of JNK and p38 MAPKs was induced by the RtxA1-filamin A interaction during the toxin-mediated cell death. However, the phosphorylation of these MAPKs was not observed during the RtxA1 intoxication of filamin A-deficient M2 cells. In addition, the depletion of pak1, which appeared to be activated by the RtxA1-filamin A interaction, inhibited RtxA1-induced phosphorylation of JNK and p38, and the cells treated with a pak1 inhibitor exhibited decreased RtxA1-mediated cytoskeletal rearrangement and cytotoxicity. Thus, the binding of filamin A by the RtxA11491–1971 domain appears to be a requisite to pak1-mediated MAPK activation, which contributes to the cytoskeletal reorganization and host cell death.
Collapse
Affiliation(s)
- Rui Hong Guo
- a College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Young Jun Im
- a College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Soo Im Shin
- c Department of Bioengineering and Biotechnology, College of Engineering , Chonnam National University , Gwangju , Republic of Korea
| | - Kwangjoon Jeong
- b Clinical Vaccine R&D Center and Department of Microbiology , Chonnam National University Medical School , Hwasun , Republic of Korea
| | - Joon Haeng Rhee
- b Clinical Vaccine R&D Center and Department of Microbiology , Chonnam National University Medical School , Hwasun , Republic of Korea
| | - Young Ran Kim
- a College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
13
|
Gavin HE, Satchell KJF. RRSP and RID Effector Domains Dominate the Virulence Impact of Vibrio vulnificus MARTX Toxin. J Infect Dis 2019; 219:889-897. [PMID: 30289477 PMCID: PMC6386806 DOI: 10.1093/infdis/jiy590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The bacterial pathogen Vibrio vulnificus causes severe septic foodborne infections. The multifunctional autoprocessing repeats-in-toxins (MARTX) toxin is an important secreted virulence factor. The effector domain region is essential for lethal intestinal infection in mice, but the contribution of each of the 5 effector domains to infection has not been investigated. METHODS V. vulnificus mutants with varying effector domain content were inoculated intragastrically to mice, and the time to death was monitored to establish the contribution of each effector domain to overall virulence. Each strain was also tested for bacterial dissemination from the intestine to internal organs and for inhibition of phagocytosis. RESULTS The effector domain region was required for V. vulnificus to inhibit phagocytosis by J774 macrophages, but no single effector domain was required. No single MARTX effector domain was necessary for bacterial dissemination. Nonetheless, overall survival of infected mice differed with respect to the infecting V. vulnificus strain. Removal of rid or rrsp significantly reduced the virulence potential of V. vulnificus, while deletion of duf1 or abh accelerated the time to death. CONCLUSION Rho GTPases inactivation domain and Ras/Rap1-specific endopeptidase each exert greater effects on virulence than other MARTX domains, suggesting that modulation of the Rho/Ras family of GTPases is a critical function of the toxin during intestinal infection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Kim BS. The Modes of Action of MARTX Toxin Effector Domains. Toxins (Basel) 2018; 10:toxins10120507. [PMID: 30513802 PMCID: PMC6315884 DOI: 10.3390/toxins10120507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Food Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
15
|
Jang SY, Hwang J, Kim BS, Lee EY, Oh BH, Kim MH. Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus. J Biol Chem 2018; 293:18110-18122. [PMID: 30282804 PMCID: PMC6254334 DOI: 10.1074/jbc.ra118.004857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site-coordinating core β-sheet-containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes.
Collapse
Affiliation(s)
- Song Yee Jang
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,; the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and
| | - Jungwon Hwang
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and.
| | - Byoung Sik Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and; the Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Young Lee
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and
| | - Byung-Ha Oh
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,.
| | - Myung Hee Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, and.
| |
Collapse
|
16
|
Biancucci M, Minasov G, Banerjee A, Herrera A, Woida PJ, Kieffer MB, Bindu L, Abreu-Blanco M, Anderson WF, Gaponenko V, Stephen AG, Holderfield M, Satchell KJF. The bacterial Ras/Rap1 site-specific endopeptidase RRSP cleaves Ras through an atypical mechanism to disrupt Ras-ERK signaling. Sci Signal 2018; 11:eaat8335. [PMID: 30279169 PMCID: PMC6309442 DOI: 10.1126/scisignal.aat8335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Ras-extracellular signal-regulated kinase pathway is critical for controlling cell proliferation, and its aberrant activation drives the growth of various cancers. Because many pathogens produce toxins that inhibit Ras activity, efforts to develop effective Ras inhibitors to treat cancer could be informed by studies of Ras inhibition by pathogens. Vibrio vulnificus causes fatal infections in a manner that depends on multifunctional autoprocessing repeats-in-toxin, a toxin that releases bacterial effector domains into host cells. One such domain is the Ras/Rap1-specific endopeptidase (RRSP), which site-specifically cleaves the Switch I domain of the small GTPases Ras and Rap1. We solved the crystal structure of RRSP and found that its backbone shares a structural fold with the EreA/ChaN-like superfamily of enzymes. Unlike other proteases in this family, RRSP is not a metalloprotease. Through nuclear magnetic resonance analysis and nucleotide exchange assays, we determined that the processing of KRAS by RRSP did not release any fragments or cause KRAS to dissociate from its bound nucleotide but instead only locally affected its structure. However, this structural alteration of KRAS was sufficient to disable guanine nucleotide exchange factor-mediated nucleotide exchange and prevent KRAS from binding to RAF. Thus, RRSP is a bacterial effector that represents a previously unrecognized class of protease that disconnects Ras from its signaling network while inducing limited structural disturbance in its target.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Minasov
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alfa Herrera
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick J Woida
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew B Kieffer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lakshman Bindu
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Maria Abreu-Blanco
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew G Stephen
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Matthew Holderfield
- National Cancer Institute-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Beilhartz GL, Sugiman-Marangos SN, Melnyk RA. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochem Pharmacol 2017; 142:13-20. [DOI: 10.1016/j.bcp.2017.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
|
18
|
Biancucci M, Rabideau AE, Lu Z, Loftis AR, Pentelute BL, Satchell KJF. Substrate Recognition of MARTX Ras/Rap1-Specific Endopeptidase. Biochemistry 2017; 56:2747-2757. [PMID: 28459538 DOI: 10.1021/acs.biochem.7b00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ras/Rap1-specific endopeptidase (RRSP) is a cytotoxic effector domain of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of highly virulent strains of Vibrio vulnificus. RRSP blocks RAS-MAPK kinase signaling by cleaving Ras and Rap1 within the switch I region between Y32 and D33. Although the RRSP processing site is highly conserved among small GTPases, only Ras and Rap1 have been identified as proteolytic substrates. Here we report that residues Y32 and D33 at the scissile bond play an important role in RRSP substrate recognition, while the nucleotide state of Ras has an only minimal effect. In addition, substrate specificity is generated by residues across the entire switch I region. Indeed, swapping the Ras switch I region into either RalA or RhoA, GTPases that are not recognized by RRSP, generated chimeras that are substrates of RRSP. However, a difference in the processing efficiency of Ras switch I in the context of Ras, RalA, or RhoA indicates that protein regions outside Ras switch I also contribute to efficient RRSP substrate recognition. Moreover, we show that synthetic peptides corresponding to the Ras and Rap1, but not RalA, switch I regions are cleaved by RRSP, demonstrating sequence-specific substrate recognition. In conclusion, this work demonstrates that the GTPase recognition of RRSP is independent of the nucleotide state and is mainly driven by the Ras and Rap1 switch I loop and also influenced by additional protein-protein interactions, increasing the substrate specificity of RRSP.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | - Amy E Rabideau
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Zeyu Lu
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alex R Loftis
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| |
Collapse
|
19
|
Bankapalli LK, Mishra RC, Raychaudhuri S. VopE, a Vibrio cholerae Type III Effector, Attenuates the Activation of CWI-MAPK Pathway in Yeast Model System. Front Cell Infect Microbiol 2017; 7:82. [PMID: 28373966 PMCID: PMC5357651 DOI: 10.3389/fcimb.2017.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
VopE, a mitochondrial targeting T3SS effector protein of Vibrio cholerae, perturbs innate immunity by modulating mitochondrial dynamics. In the current study, ectopic expression of VopE was found to be toxic in a yeast model system and toxicity was further aggravated in the presence of various stressors. Interestingly, a VopE variant lacking predicted mitochondrial targeting sequence (MTS) also exhibited partial lethality in the yeast system. With the aid of yeast genetic tools and different stressors, we have demonstrated that VopE and its derivative VopEΔMTS modulate cell wall integrity (CWI-MAPK) signaling pathway and have identified several critical residues contributing to the lethality of VopE. Furthermore, co-expression of two effectors VopEΔMTS and VopX, interfering with the CWI-MAPK cellular pathway can partially suppress the VopX mediated yeast growth inhibition. Taken together, these results suggest that VopE alters signaling through the CWI-MAPK pathway, and demonstrates the usefulness of yeast model system to gain additional insights on the functionality of VopE.
Collapse
Affiliation(s)
- Leela K Bankapalli
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Rahul C Mishra
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology, Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
20
|
Hisao GS, Brothers MC, Ho M, Wilson BA, Rienstra CM. The membrane localization domains of two distinct bacterial toxins form a 4-helix-bundle in solution. Protein Sci 2017; 26:497-504. [PMID: 27977897 PMCID: PMC5326565 DOI: 10.1002/pro.3097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/12/2022]
Abstract
Membrane localization domain (MLD) was first proposed for a 4-helix-bundle motif in the crystal structure of the C1 domain of Pasteurella multocida toxin (PMT). This structure motif is also found in the crystal structures of several clostridial glycosylating toxins (TcdA, TcdB, TcsL, and TcnA). The Ras/Rap1-specific endopeptidase (RRSP) module of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin produced by Vibrio vulnificus has sequence homology to the C1-C2 domains of PMT, including a putative MLD. We have determined the solution structure for the MLDs in PMT and in RRSP using solution state NMR. We conclude that the MLDs in these two toxins assume a 4-helix-bundle structure in solution.
Collapse
Affiliation(s)
- Grant S. Hisao
- Department of ChemistryUniversity of Illinois at Urbana‐ChampaignIllinois
| | | | - Mengfei Ho
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignIllinois
| | - Brenda A. Wilson
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignIllinois
| | - Chad M. Rienstra
- Department of ChemistryUniversity of Illinois at Urbana‐ChampaignIllinois
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignIllinois
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana‐ChampaignIllinois
| |
Collapse
|
21
|
Rabideau AE, Pentelute BL. Delivery of Non-Native Cargo into Mammalian Cells Using Anthrax Lethal Toxin. ACS Chem Biol 2016; 11:1490-501. [PMID: 27055654 DOI: 10.1021/acschembio.6b00169] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intracellular delivery of peptide and protein therapeutics is a major challenge due to the plasma membrane, which acts as a barrier between the extracellular environment and the intracellular milieu. Over the past two decades, a nontoxic PA/LFN delivery platform derived from anthrax lethal toxin has been developed for the transport of non-native cargo into the cytosol of cells in order to understand the translocation process through a protective antigen (PA) pore and to probe intracellular biological functions. Enzyme-mediated ligation using sortase A and native chemical ligation are two facile methods used to synthesize these non-native conjugates, inaccessible by recombinant technology. Cargo molecules that translocate efficiently include enzymes from protein toxins, antibody mimic proteins, and peptides of varying lengths and non-natural amino acid compositions. The PA pore has been found to effectively convey over 30 known cargos other than native lethal factor (LF; i.e., non-native) with diverse sequences and functionalities on the LFN transporter protein. All together these studies demonstrated that non-native cargos must adopt an unfolded or extended conformation and contain a suitable charge composition in order to efficiently pass through the PA pore. This review provides insight into design parameters for the efficient delivery of new cargos using PA and LFN.
Collapse
Affiliation(s)
- Amy E. Rabideau
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley Lether Pentelute
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
23
|
Agarwal S, Kim H, Chan RB, Agarwal S, Williamson R, Cho W, Paolo GD, Paolo GD, Satchell KJF. Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity. Nat Commun 2015; 6:8745. [PMID: 26498860 PMCID: PMC4640098 DOI: 10.1038/ncomms9745] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser–His–Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae. The MARTX toxin of V. cholerae processes itself to deliver three distinct effector domains to the cytosol. Here the authors show that the third effector domain is a phosphatidylinositol-3-phosphate (PtdIns3P)-specific phospholipase that inhibits autophagy in target cells.
Collapse
Affiliation(s)
- Shivani Agarwal
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Hyunjin Kim
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, 630 West 168th Street, Columbia University, New York, New York 10032, USA
| | - Shivangi Agarwal
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Rebecca Williamson
- Department of Pathology and Cell Biology, 630 West 168th Street, Columbia University, New York, New York 10032, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, 630 West 168th Street, Columbia University, New York, New York 10032, USA
| | - Gilbert D Paolo
- Department of Pathology and Cell Biology, 630 West 168th Street, Columbia University, New York, New York 10032, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
24
|
Identification of Critical Amino Acids Conferring Lethality in VopK, a Type III Effector Protein of Vibrio cholerae: Lessons from Yeast Model System. PLoS One 2015; 10:e0141038. [PMID: 26488395 PMCID: PMC4619451 DOI: 10.1371/journal.pone.0141038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
VopK, a type III effector protein, has been implicated in the pathogenesis of Vibrio cholerae strains belonging to diverse serogroups. Ectopic expression of this protein exhibits strong toxicity in yeast model system. In order to map critical residues in VopK, we scanned the primary sequence guided by available data on various toxins and effector proteins. Our in silico analysis of VopK indicated the presence of predicted MCF1-SHE (SHxxxE) serine peptidase domain at the C-terminus region of the protein. Substitution of each of the predicted catalytic triad residues namely Ser314, His353 and Glu357 with alanine resulted in recombinant VopK proteins varying in lethality as evaluated in yeast model system. We observed that replacement of glutamate357 to alanine causes complete loss in toxicity while substitutions of serine314 and histidine353 with alanine exhibited partial loss in toxicity without affecting the stability of variants. In addition, replacement of another conserved serine residue at position 354 (S354) within predicted S314H353E357 did not affect toxicity of VopK. In essence, combined in silico and site directed mutagenesis, we have identified critical amino acids contributing to the lethal activity of VopK in yeast model system.
Collapse
|
25
|
Gavin HE, Satchell KJF. MARTX toxins as effector delivery platforms. Pathog Dis 2015; 73:ftv092. [PMID: 26472741 DOI: 10.1093/femspd/ftv092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
26
|
The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis. Infect Immun 2015; 83:4392-403. [PMID: 26351282 DOI: 10.1128/iai.00570-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus.
Collapse
|
27
|
Antic I, Biancucci M, Zhu Y, Gius DR, Satchell KJF. Site-specific processing of Ras and Rap1 Switch I by a MARTX toxin effector domain. Nat Commun 2015; 6:7396. [PMID: 26051945 PMCID: PMC4468845 DOI: 10.1038/ncomms8396] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/01/2015] [Indexed: 12/31/2022] Open
Abstract
Ras (Rat sarcoma) protein is a central regulator of cell growth and proliferation. Mutations in the RAS gene are known to occur in human cancers and have been shown to contribute to carcinogenesis. In this study, we show that the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin-effector domain DUF5Vv from Vibrio vulnificus to be a site-specific endopeptidase that cleaves within the Switch 1 region of Ras and Rap1. DUF5Vv processing of Ras, which occurs both biochemically and in mammalian cell culture, inactivates ERK1/2, thereby inhibiting cell proliferation. The ability to cleave Ras and Rap1 is shared by DUF5Vv homologues found in other bacteria. In addition, DUF5Vv can cleave all Ras isoforms and KRas with mutations commonly implicated in malignancies. Therefore, we speculate that this new family of Ras/Rap1-specific endopeptidases (RRSPs) has potential to inactivate both wild-type and mutant Ras proteins expressed in malignancies. V. vulnificus, a bacteria that cause life-threatening septicaemia following wound infections or tainted food consumption, utilizes MARTX toxins for toxic effector delivery. Here the authors show that the MARTX virulence factor DUF5 targets the cellular MAP kinase pathway as a Ras and Rap1 site-specific protease.
Collapse
Affiliation(s)
- Irena Antic
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 6-225, Chicago, Illinois 60611, USA
| | - Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 6-225, Chicago, Illinois 60611, USA
| | - Yueming Zhu
- Department of Radiation Oncology and Pharmacology, Feinberg School of Medicine, Northwestern University, 303 East Superior Avenue, Lurie 3-119, Chicago, Illinois 60611, USA
| | - David R Gius
- Department of Radiation Oncology and Pharmacology, Feinberg School of Medicine, Northwestern University, 303 East Superior Avenue, Lurie 3-119, Chicago, Illinois 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Ward 6-225, Chicago, Illinois 60611, USA
| |
Collapse
|
28
|
Agarwal S, Agarwal S, Biancucci M, Satchell KJF. Induced autoprocessing of the cytopathic Makes caterpillars floppy-like effector domain of the Vibrio vulnificus MARTX toxin. Cell Microbiol 2015; 17:1494-509. [PMID: 25912102 DOI: 10.1111/cmi.12451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The multifunctional-autoprocessing repeats-in-toxin (MARTX(Vv)) toxin that harbours a varied repertoire of effector domains is the primary virulence factor of Vibrio vulnificus. Although ubiquitously present among Biotype I toxin variants, the 'Makes caterpillars floppy-like' effector domain (MCF(Vv)) is previously unstudied. Using transient expression and protein delivery, MCF(Vv) and MCF(Ah) from the Aeromonas hydrophila MARTX(Ah)) toxin are shown for the first time to induce cell rounding. Alanine mutagenesis across the C-terminal subdomain of MCF(Vv) identified an Arg-Cys-Asp (RCD) tripeptide motif shown to comprise a cysteine protease catalytic site essential for autoprocessing of MCF(Vv). The autoprocessing could be recapitulated in vitro by the addition of host cell lysate to recombinant MCF(Vv), indicating induced autoprocessing by cellular factors. The RCD motif is also essential for cytopathicity, suggesting autoprocessing is essential first to activate the toxin and then to process a cellular target protein resulting in cell rounding. Sequence homology places MCF(Vv) within the C58 cysteine protease family that includes the type III secretion effectors YopT from Yersinia spp. and AvrPphB from Pseudomonas syringae. However, the catalytic site RCD motif is unique compared with other C58 peptidases and is here proposed to represent a new subgroup of autopeptidase found within a number of putative large bacterial toxins.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shivani Agarwal
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
29
|
Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. mBio 2015; 6:mBio.00324-15. [PMID: 25827415 PMCID: PMC4453568 DOI: 10.1128/mbio.00324-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with β-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. Up to 95% of deaths from seafood-borne infections in the United States are due solely to one pathogen, V. vulnificus. Among its various virulence factors, the MARTXVv toxin has been characterized as a critical exotoxin for successful pathogenesis of V. vulnificus in mouse infection models. Similarly to MARTX toxins of other pathogens, MARTXVv toxin is comprised of repeat-containing regions, central effector domains, and an autoprocessing cysteine protease domain. Yet how each of these regions contributes to essential activities of the toxins has not been fully identified for any of MARTX toxins. Using modified MARTXVv toxin fused with β-lactamase as a reporter enzyme, the portion(s) responsible for toxin secretion from bacteria, effector domain translocation into host cells, rapid host cell rounding, and necrotic host cell death was identified. The results are relevant for understanding how MARTXVv toxin serves as both a necrotic pore-forming toxin and an effector delivery platform.
Collapse
|
30
|
Jank T, Trillhaase C, Brozda N, Steinemann M, Schwan C, Süss R, Aktories K. Intracellular plasma membrane guidance of
Photorhabdus asymbiotica
toxin is crucial for cell toxicity. FASEB J 2015; 29:2789-802. [DOI: 10.1096/fj.14-269381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/26/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Jank
- Departments of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
| | - Christoph Trillhaase
- Departments of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
| | - Natalia Brozda
- Departments of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
| | - Marcus Steinemann
- Departments of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
| | - Carsten Schwan
- Departments of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
| | - Regine Süss
- Pharmaceutical Technology and BiopharmacyUniversity of FreiburgFreiburgGermany
| | - Klaus Aktories
- Departments of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
- Centre for Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
31
|
Dolores JS, Agarwal S, Egerer M, Satchell KJF. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol 2015; 95:590-604. [PMID: 25427654 DOI: 10.1111/mmi.12879] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/17/2022]
Abstract
The Vibrio cholerae MARTXVc toxin delivers three effector domains to eukaryotic cells. To study toxin delivery and function of individual domains, the rtxA gene was modified to encode toxin with an in-frame beta-lactamase (Bla) fusion. The hybrid RtxA::Bla toxin was Type I secreted from bacteria; and then Bla was translocated into eukaryotic cells and delivered by autoprocessing, demonstrating that the MARTXVc toxin is capable of heterologous protein transfer. Strains that produce hybrid RtxA::Bla toxins that carry one effector domain in addition to Bla were found to more efficiently translocate Bla. In cell biological assays, the actin cross-linking domain (ACD) and Rho-inactivation domain (RID) are found to cross-link actin and inactivate RhoA, respectively, when other effector domains are absent, with toxin autoprocessing required for high efficiency. The previously unstudied alpha-beta hydrolase domain (ABH) is shown here to activate CDC42, although the effect is ameliorated when RID is also present. Despite all effector domains acting on cytoskeleton assembly, the ACD was sufficient to rapidly inhibit macrophage phagocytosis. Both the ACD and RID independently disrupted polarized epithelial tight junction integrity. The sufficiency of ACD but strong selection for retention of RID and ABH suggests these two domains may primarily function by modulating cell signaling.
Collapse
Affiliation(s)
- Jazel S Dolores
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | |
Collapse
|