1
|
Lill A, Herbst A, Langhans M, Paech S, Hamacher K, Biesalski M, Meckel T, Schmitz K. Investigating Cellulose Binding of Peptides Derived from Carbohydrate Binding Module 1. Biomacromolecules 2024; 25:5902-5908. [PMID: 39103164 PMCID: PMC11389687 DOI: 10.1021/acs.biomac.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Carbohydrate-binding modules (CBM) have emerged as useful tools for a wide range of tasks, including the use as purification tags or for cellulose fiber modification. For this purpose, the CBM needs to be attached to a target protein leading to large constructs. We investigated if short peptides from the carbohydrate binding site of CBMs can bind in a similar way as native, full-length CBMs to nanocrystalline cellulose (NCC) or cotton linter paper. We designed our cellulose-binding peptides to be less hydrophobic and shorter than those previously reported. Starting from the binding site of Cel7A-CBM1, we incorporated the essential amino acids involved in cellulose binding into our peptides. These peptides, as well as control peptides with scrambled sequences or a lack of essential amino acids, bound to cellulose with similar affinity as CBM regardless of their secondary structure, sequence, or hydrophobicity. This unspecific mode of cellulose binding displayed by the presented peptides may be exploited to functionalize cellulose-based biomaterials by means of peptide-conjugates.
Collapse
Affiliation(s)
- Annika Lill
- Biological
Chemistry, Chemistry Department, Technical
University of Darmstadt, Darmstadt 64278, Germany
| | - Alexandra Herbst
- Biological
Chemistry, Chemistry Department, Technical
University of Darmstadt, Darmstadt 64278, Germany
| | - Markus Langhans
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Steffen Paech
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Kay Hamacher
- Computational
Biology and Simulation, Biology Department, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Markus Biesalski
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Tobias Meckel
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Katja Schmitz
- Biological
Chemistry, Chemistry Department, Technical
University of Darmstadt, Darmstadt 64278, Germany
| |
Collapse
|
2
|
Datta R. Enzymatic degradation of cellulose in soil: A review. Heliyon 2024; 10:e24022. [PMID: 38234915 PMCID: PMC10792583 DOI: 10.1016/j.heliyon.2024.e24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.
Collapse
Affiliation(s)
- Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology. Mendel University In Brno, Czech Republic
| |
Collapse
|
3
|
Wunderlich G, Bull M, Ross T, Rose M, Chapman B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim Microbiome 2023; 5:3. [PMID: 36635784 PMCID: PMC9837927 DOI: 10.1186/s42523-022-00224-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
The equine gastrointestinal tract is a self-sufficient fermentation system, housing a complex microbial consortium that acts synergistically and independently to break down complex lignocellulolytic material that enters the equine gut. Despite being strict herbivores, equids such as horses and zebras lack the diversity of enzymes needed to completely break down plant tissue, instead relying on their resident microbes to carry out fibrolysis to yield vital energy sources such as short chain fatty acids. The bulk of equine digestion occurs in the large intestine, where digesta is fermented for 36-48 h through the synergistic activities of bacteria, fungi, and methanogenic archaea. Anaerobic gut dwelling bacteria and fungi break down complex plant polysaccharides through combined mechanical and enzymatic strategies, and notably possess some of the greatest diversity and repertoire of carbohydrate active enzymes among characterized microbes. In addition to the production of enzymes, some equid-isolated anaerobic fungi and bacteria have been shown to possess cellulosomes, powerful multi-enzyme complexes that further enhance break down. The activities of both anaerobic fungi and bacteria are further facilitated by facultatively aerobic yeasts and methanogenic archaea, who maintain an optimal environment for fibrolytic organisms, ultimately leading to increased fibrolytic microbial counts and heightened enzymatic activity. The unique interactions within the equine gut as well as the novel species and powerful mechanisms employed by these microbes makes the equine gut a valuable ecosystem to study fibrolytic functions within complex communities. This review outlines the primary taxa involved in fibre break down within the equine gut and further illuminates the enzymatic strategies and metabolic pathways used by these microbes. We discuss current methods used in analysing fibrolytic functions in complex microbial communities and propose a shift towards the development of functional assays to deepen our understanding of this unique ecosystem.
Collapse
Affiliation(s)
- Georgia Wunderlich
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Michelle Bull
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| | - Tom Ross
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Michael Rose
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Belinda Chapman
- grid.1009.80000 0004 1936 826XTasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia ,Quantal Bioscience Pty Ltd, Castle Hill, Australia
| |
Collapse
|
4
|
Ma H, Shi Q, Li X, Ren J, Wang Y, Li Z, Ning L. Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling. J Comput Aided Mol Des 2023; 37:39-51. [PMID: 36427107 DOI: 10.1007/s10822-022-00489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Cellulose/collagen composites have been widely used in biomedicine and tissue engineering. Interfacial interactions are crucial in determining the final properties of cellulose/collagen composite. Molecular dynamics simulations were carried out to gain insights into the interactions between cellulose and collagen. It has been found that the structure of collagen remained intact during adsorption. The results derived from umbrella sampling showed that (110) and ([Formula: see text]) faces exhibited the strongest affinity with collagen (100) face came the second and (010) the last, which could be attributed to the surface roughness and hydrogen-bonding linkers involved water molecules. Cellulose planes with flat surfaces and the capability to form hydrogen-bonding linkers produce stronger affinity with collagen. The occupancy of hydrogen bonds formed between cellulose and collagen was low and not significantly contributive to the binding affinity. These findings provided insights into the interactions between cellulose and collagen at the molecular level, which may guide the design and fabrication of cellulose/collagen composites.
Collapse
Affiliation(s)
- Huaiqin Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Qingwen Shi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junli Ren
- Information Center, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yuhan Wang
- Xi'an Qujiang NO.1 High School, Xi'an, 710061, China
| | - Zhijian Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
5
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. BIORESOUR BIOPROCESS 2021; 8:95. [PMID: 38650192 PMCID: PMC10992179 DOI: 10.1186/s40643-021-00447-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.
Collapse
Affiliation(s)
- Nisha Bhardwaj
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
7
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
8
|
Anuganti M, Fu H, Ekatan S, Kumar CV, Lin Y. Kinetic Study on Enzymatic Hydrolysis of Cellulose in an Open, Inhibition-Free System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5180-5192. [PMID: 33872034 DOI: 10.1021/acs.langmuir.1c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the complexity of cellulases and the requirement of enzyme adsorption on cellulose prior to reactions, it is difficult to evaluate their reaction with a general mechanistic scheme. Nevertheless, it is of great interest to come up with an approximate analytic description of a valid model for the purpose of developing an intuitive understanding of these complex enzyme systems. Herein, we used the surface plasmonic resonance method to monitor the action of a cellobiohydrolase by itself, as well as its mixture with a synergetic endoglucanase, on the surface of a regenerated model cellulose film, under continuous flow conditions. We found a phenomenological approach by taking advantage of the long steady state of cellulose hydrolysis in the open, inhibition-free system. This provided a direct and reliable way to analyze the adsorption and reaction processes with a minimum number of fitting parameters. We investigated a generalized Langmuir-Michaelis-Menten model to describe a full set of kinetic results across a range of enzyme concentrations, compositions, and temperatures. The overall form of the equations describing the pseudo-steady-state kinetics of the flow-system shares some interesting similarities with the Michaelis-Menten equation. The use of familiar Michaelis-Menten parameters in the analysis provides a unifying framework to study cellulase kinetics. The strategy may provide a shortcut for approaching a quantitative while intuitive understanding of enzymatic degradation of cellulose from top to bottom. The open system approach and the kinetic analysis should be applicable to a variety of cellulases and reaction systems to accelerate the progress in the field.
Collapse
Affiliation(s)
- Murali Anuganti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hailin Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Stephen Ekatan
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Material Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Alahuhta M, Xu Q, Knoshaug EP, Wang W, Wei H, Amore A, Baker JO, Vander Wall T, Himmel ME, Zhang M. Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:6. [PMID: 33407766 PMCID: PMC7789491 DOI: 10.1186/s13068-020-01856-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 05/16/2023]
Abstract
Consolidated bioprocessing using oleaginous yeast is a promising modality for the economic conversion of plant biomass to fuels and chemicals. However, yeast are not known to produce effective biomass degrading enzymes naturally and this trait is essential for efficient consolidated bioprocessing. We expressed a chimeric cellobiohydrolase I gene in three different oleaginous, industrially relevant yeast: Yarrowia lipolytica, Lipomyces starkeyi, and Saccharomyces cerevisiae to study the biochemical and catalytic properties and biomass deconstruction potential of these recombinant enzymes. Our results showed differences in glycosylation, surface charge, thermal and proteolytic stability, and efficacy of biomass digestion. L. starkeyi was shown to be an inferior active cellulase producer compared to both the Y. lipolytica and S. cerevisiae enzymes, whereas the cellulase expressed in S. cerevisiae displayed the lowest activity against dilute-acid-pretreated corn stover. Comparatively, the chimeric cellobiohydrolase I enzyme expressed in Y. lipolytica was found to have a lower extent of glycosylation, better protease stability, and higher activity against dilute-acid-pretreated corn stover.
Collapse
Affiliation(s)
- Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Antonella Amore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
10
|
Chundawat SPS, Nemmaru B, Hackl M, Brady SK, Hilton MA, Johnson MM, Chang S, Lang MJ, Huh H, Lee SH, Yarbrough JM, López CA, Gnanakaran S. Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III. J Biol Chem 2021; 296:100431. [PMID: 33610545 PMCID: PMC8010709 DOI: 10.1016/j.jbc.2021.100431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
Efficient enzymatic saccharification of cellulosic biomass into fermentable sugars can enable production of bioproducts like ethanol. Native crystalline cellulose, or cellulose I, is inefficiently processed via enzymatic hydrolysis but can be converted into the structurally distinct cellulose III allomorph that is processed via cellulase cocktails derived from Trichoderma reesei up to 20-fold faster. However, characterization of individual cellulases from T. reesei, like the processive exocellulase Cel7A, shows reduced binding and activity at low enzyme loadings toward cellulose III. To clarify this discrepancy, we monitored the single-molecule initial binding commitment and subsequent processive motility of Cel7A enzymes and associated carbohydrate-binding modules (CBMs) on cellulose using optical tweezers force spectroscopy. We confirmed a 48% lower initial binding commitment and 32% slower processive motility of Cel7A on cellulose III, which we hypothesized derives from reduced binding affinity of the Cel7A binding domain CBM1. Classical CBM-cellulose pull-down assays, depending on the adsorption model fitted, predicted between 1.2- and 7-fold reduction in CBM1 binding affinity for cellulose III. Force spectroscopy measurements of CBM1-cellulose interactions, along with molecular dynamics simulations, indicated that previous interpretations of classical binding assay results using multisite adsorption models may have complicated analysis, and instead suggest simpler single-site models should be used. These findings were corroborated by binding analysis of other type-A CBMs (CBM2a, CBM3a, CBM5, CBM10, and CBM64) on both cellulose allomorphs. Finally, we discuss how complementary analytical tools are critical to gain insight into the complex mechanisms of insoluble polysaccharides hydrolysis by cellulolytic enzymes and associated carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| | - Bhargava Nemmaru
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Markus Hackl
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sonia K Brady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark A Hilton
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Madeline M Johnson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sungrok Chang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Hyun Huh
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sang-Hyuk Lee
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - John M Yarbrough
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Cesar A López
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
11
|
Christensen SJ, Badino SF, Cavaleiro AM, Borch K, Westh P. Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Eng Des Sel 2020; 32:401-409. [PMID: 32100026 DOI: 10.1093/protein/gzaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 11/14/2022] Open
Abstract
The glycoside hydrolase (GH) family 6 is an important group of enzymes that constitute an essential part of industrial enzyme cocktails used to convert lignocellulose into fermentable sugars. In nature, enzymes from this family often have a carbohydrate binding module (CBM) from the CBM family 1. These modules are known to promote adsorption to the cellulose surface and influence enzymatic activity. Here, we have investigated the functional diversity of CBMs found within the GH6 family. This was done by constructing five chimeric enzymes based on the model enzyme, TrCel6A, from the soft-rot fungus Trichoderma reesei. The natural CBM of this enzyme was exchanged with CBMs from other GH6 enzymes originating from different cellulose degrading fungi. The chimeric enzymes were expressed in the same host and investigated in adsorption and quasi-steady-state kinetic experiments. Our results quantified functional differences of these phylogenetically distant binding modules. Thus, the partitioning coefficient for substrate binding varied 4-fold, while the maximal turnover (kcat) showed a 2-fold difference. The wild-type enzyme showed the highest cellulose affinity on all tested substrates and the highest catalytic turnover. The CBM from Serendipita indica strongly promoted the enzyme's ability to form productive complexes with sites on the substrate surface but showed lower turnover of the complex. We conclude that the CBM plays an important role for the functional differences between GH6 wild-type enzymes.
Collapse
Affiliation(s)
- Stefan Jarl Christensen
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Silke Flindt Badino
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Ana Mafalda Cavaleiro
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark.,Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, building 224, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Griffo A, Rooijakkers BJM, Hähl H, Jacobs K, Linder MB, Laaksonen P. Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterials. Biomacromolecules 2019; 20:769-777. [PMID: 30657665 PMCID: PMC6727214 DOI: 10.1021/acs.biomac.8b01346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
this study, the interaction forces between different cellulosic
nanomaterials and a protein domain belonging to cellulose binding
modules family 1 (CBM1) were investigated at the molecular scale.
Cellulose binding modules are protein domains found in carbohydrate
active enzymes having an affinity toward cellulosic materials. Here,
the binding force of a fusion protein containing a cellulose binding
module (CBM1) produced recombinantly in E. coli was quantified on different cellulose nanocrystals immobilized on
surfaces. Adhesion of the CBM on cellulose with different degrees
of crystallinity as well as on chitin nanocrystals was examined. This
study was carried out by single molecule force spectroscopy using
an atomic force microscope, which enables the detection of binding
force of individual molecules. The study contains a preliminary quantification
of the interactions at the molecular level that sheds light on the
development of new nanocellulose-based nanocomposites with improved
strength and elasticity.
Collapse
Affiliation(s)
- Alessandra Griffo
- Department of Bioproducts and Biosystems , Aalto University , Espoo, FI-00076 Aalto , Finland
| | - Bart J M Rooijakkers
- Department of Bioproducts and Biosystems , Aalto University , Espoo, FI-00076 Aalto , Finland
| | - Hendrik Hähl
- Department of Experimental Physics , Saarland University , Saarbrücken 66123 , Germany
| | - Karin Jacobs
- Department of Experimental Physics , Saarland University , Saarbrücken 66123 , Germany
| | - Markus B Linder
- Department of Bioproducts and Biosystems , Aalto University , Espoo, FI-00076 Aalto , Finland
| | - Päivi Laaksonen
- Department of Bioproducts and Biosystems , Aalto University , Espoo, FI-00076 Aalto , Finland
| |
Collapse
|
13
|
Du J, Zhang X, Li X, Zhao J, Liu G, Gao B, Qu Y. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. BIORESOURCE TECHNOLOGY 2018; 266:19-25. [PMID: 29940438 DOI: 10.1016/j.biortech.2018.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Commercial cellulase preparations for lignocellulose bioconversion are mainly produced by the fungus Trichoderma reesei. The maximum cellulose conversion of T. reesei cellulase mixture was 15%-20% higher than that of Penicillium oxalicum in the hydrolysis of corncob residue and Avicel. Nevertheless, both preparations hydrolyzed more than 92% of cellulose in NaOH-mercerized Avicel. When added to Avicel hydrolysis residue that was less reactive to P. oxalicum cellulases, cellobiohydrolase I (CBH I) from T. reesei resulted in a higher cellulose conversion than its homologous proteins from P. oxalicum and Aspergillus niger at the same protein loadings. Further domain exchange experiment attributed the high hydrolytic efficiency of T. reesei CBH I to its inter-domain linker and cellulose-binding domain. The results in part explained the superior performance of T. reesei cellulases on the degradation of native crystalline cellulose, and highlighted the important role of cellulose-binding region in determining the degree of hydrolysis by cellulases.
Collapse
Affiliation(s)
- Jian Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, PR China
| | - Xiu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, PR China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, PR China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, PR China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, PR China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, PR China; National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, PR China
| |
Collapse
|
14
|
Goedegebuur F, Dankmeyer L, Gualfetti P, Karkehabadi S, Hansson H, Jana S, Huynh V, Kelemen BR, Kruithof P, Larenas EA, Teunissen PJM, Ståhlberg J, Payne CM, Mitchinson C, Sandgren M. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. J Biol Chem 2017; 292:17418-17430. [PMID: 28860192 DOI: 10.1074/jbc.m117.803270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.
Collapse
Affiliation(s)
- Frits Goedegebuur
- From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands,
| | - Lydia Dankmeyer
- From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands
| | | | - Saeid Karkehabadi
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| | - Henrik Hansson
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| | - Suvamay Jana
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Vicky Huynh
- DuPont Industrial Biosciences, Palo Alto, California 94304
| | | | - Paulien Kruithof
- From DuPont Industrial Biosciences, Archimedesweg 30, Leiden 2333CN, The Netherlands
| | | | | | - Jerry Ståhlberg
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| | - Christina M Payne
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | | | - Mats Sandgren
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, Uppsala SE-75007, Sweden, and
| |
Collapse
|
15
|
Xu Q, Knoshaug EP, Wang W, Alahuhta M, Baker JO, Yang S, Vander Wall T, Decker SR, Himmel ME, Zhang M, Wei H. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microb Cell Fact 2017; 16:126. [PMID: 28738851 PMCID: PMC5525229 DOI: 10.1186/s12934-017-0742-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/13/2017] [Indexed: 11/29/2022] Open
Abstract
Background Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. Results To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Conclusions Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0742-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
16
|
Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass. Sci Rep 2017. [PMID: 28623337 PMCID: PMC5473887 DOI: 10.1038/s41598-017-03927-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.
Collapse
|
17
|
Eo MY, Fan H, Cho YJ, Kim SM, Lee SK. Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam. Biomater Res 2016; 20:16. [PMID: 27418974 PMCID: PMC4944233 DOI: 10.1186/s40824-016-0065-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022] Open
Abstract
The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article.
Collapse
Affiliation(s)
- Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Huan Fan
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Yun Ju Cho
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 110-768 South Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, 123 Chibyon-dong, Gangneung, 210-702 South Korea
| |
Collapse
|
18
|
Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D. Nanoscale Engineering of Designer Cellulosomes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5619-47. [PMID: 26748482 DOI: 10.1002/adma.201503948] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/01/2015] [Indexed: 05/27/2023]
Abstract
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.
Collapse
Affiliation(s)
- Melissabye Gunnoo
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Pierre-André Cazade
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Michael A Nash
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC, Université Paris 06, and Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique, de Roscoff, CS 90074, F-29688, Roscoff cedex, Bretagne, France
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Beatriz Alvarez
- Biopolis S.L., Parc Científic de la Universitat de Valencia, Edificio 2, C/Catedrático Agustín Escardino 9, 46980, Paterna (Valencia), Spain
| | - Marina Aguilar
- Abengoa, S.A., Palmas Altas, Calle Energía Solar nº 1, 41014, Seville, Spain
| | - Alon Karpol
- Designer Energy Ltd., 2 Bergman St., Tamar Science Park, Rehovot, 7670504, Israel
| | - Hermann Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University, 80799, Munich, Germany
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED, Madrid, Spain
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Damien Thompson
- Materials and Surface Science Institute and Department of Physics and Energy, University of Limerick, Limerick, Ireland
| |
Collapse
|
19
|
Mann E, Mallette E, Clarke BR, Kimber MS, Whitfield C. The Klebsiella pneumoniae O12 ATP-binding Cassette (ABC) Transporter Recognizes the Terminal Residue of Its O-antigen Polysaccharide Substrate. J Biol Chem 2016; 291:9748-61. [PMID: 26934919 DOI: 10.1074/jbc.m116.719344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 11/06/2022] Open
Abstract
Export of the Escherichia coli serotype O9a O-antigenic polysaccharides (O-PS) involves an ATP-binding cassette (ABC) transporter. The process requires a non-reducing terminal residue, which is recognized by a carbohydrate-binding module (CBM) appended to the C terminus of the nucleotide-binding domain of the transporter. Here, we investigate the process in Klebsiella pneumoniae serotype O12 (and Raoultella terrigena ATCC 33257). The O12 polysaccharide is terminated at the non-reducing end by a β-linked 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue. The O12 ABC transporter also binds its cognate O-PS via a CBM, and export is dependent on the presence of the terminal β-Kdo residue. The overall structural architecture of the O12 CBM resembles the O9a prototype, but they share only weak sequence similarity, and the putative binding pocket for the O12 glycan is different. Removal of the CBM abrogated O-PS transport, but export was restored when the CBM was expressed in trans with the mutant CBM-deficient ABC transporter. These results demonstrate that the CBM-mediated substrate-recognition mechanism is evolutionarily conserved and can operate with glycans of widely differing structures.
Collapse
Affiliation(s)
- Evan Mann
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Evan Mallette
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bradley R Clarke
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
20
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|
21
|
Martinez T, Texier H, Nahoum V, Lafitte C, Cioci G, Heux L, Dumas B, O’Donohue M, Gaulin E, Dumon C. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica. PLoS One 2015; 10:e0137481. [PMID: 26390127 PMCID: PMC4577117 DOI: 10.1371/journal.pone.0137481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1–1 and 1–2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL’s CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.
Collapse
Affiliation(s)
- Thomas Martinez
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Hélène Texier
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- Cinabio ADISSEO France SAS, Hall Gilbert Durand 3, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Virginie Nahoum
- Université de Toulouse, UPS, IPBS, Toulouse, F-31077, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Toulouse, F-31077, France
| | - Claude Lafitte
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Gianluca Cioci
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | | | - Bernard Dumas
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Michael O’Donohue
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Elodie Gaulin
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Claire Dumon
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- * E-mail:
| |
Collapse
|
22
|
Hamid SBA, Islam MM, Das R. Cellulase biocatalysis: key influencing factors and mode of action. CELLULOSE 2015; 22:2157-2182. [DOI: 10.1007/s10570-015-0672-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Borisova AS, Isaksen T, Dimarogona M, Kognole AA, Mathiesen G, Várnai A, Røhr ÅK, Payne CM, Sørlie M, Sandgren M, Eijsink VGH. Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. J Biol Chem 2015; 290:22955-69. [PMID: 26178376 DOI: 10.1074/jbc.m115.660183] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 01/02/2023] Open
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose β-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu(2+) center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9C enabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4-oxidized products show an intermediate situation.
Collapse
Affiliation(s)
- Anna S Borisova
- From the Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Trine Isaksen
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Maria Dimarogona
- From the Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Abhishek A Kognole
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Geir Mathiesen
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Anikó Várnai
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Åsmund K Røhr
- the Department of Biosciences, University of Oslo, N-0316 Oslo, Norway, and
| | - Christina M Payne
- From the Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden, the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Mats Sandgren
- From the Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden,
| | - Vincent G H Eijsink
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway,
| |
Collapse
|
24
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
25
|
Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC. Mechanism of lignin inhibition of enzymatic biomass deconstruction. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:217. [PMID: 26697106 PMCID: PMC4687093 DOI: 10.1186/s13068-015-0379-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. RESULTS By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). CONCLUSIONS Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.
Collapse
Affiliation(s)
- Josh V. Vermaas
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 61801 Urbana, IL USA
| | - Loukas Petridis
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
| | - Xianghong Qi
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
| | - Roland Schulz
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
| | - Benjamin Lindner
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
| | - Jeremy. C. Smith
- />UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, 37831 Oak Ridge, TN USA
- />Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, 37996 Knoxville, TN USA
- />University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, P.O.Box 2008, Oak Ridge, TN 37831-6309 USA
| |
Collapse
|
26
|
Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Adv 2014; 33:142-154. [PMID: 25479282 DOI: 10.1016/j.biotechadv.2014.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
Hypocrea jecorina, the sexual teleomorph of Trichoderma reesei, has long been favored as an industrial cellulase producer, first utilizing its native cellulase system and later augmented by the introduction of heterologous enzymatic activities or improved variants of native enzymes. Expression of heterologous proteins in H. jecorina was once considered difficult when the target was an improved variant of a native cellulase. Developments over the past nearly 30 years have produced strains, vectors, and selection mechanisms that have continued to simplify and streamline heterologous protein expression in this fungus. More recent developments in fungal molecular biology have pointed the way toward a fundamental transformation in the ease and efficiency of heterologous protein expression in this important industrial host. Here, 1) we provide a historical perspective on advances in H. jecorina molecular biology, 2) outline host strain engineering, transformation, selection, and expression strategies, 3) detail potential pitfalls when working with this organism, and 4) provide consolidated examples of successful cellulase expression outcomes from our laboratory.
Collapse
|
27
|
Kim IJ, Lee HJ, Choi IG, Kim KH. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 2014; 98:8469-80. [PMID: 25129610 DOI: 10.1007/s00253-014-6001-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Reducing the enzyme loadings for enzymatic saccharification of lignocellulose is required for economically feasible production of biofuels and biochemicals. One strategy is addition of small amounts of synergistic proteins to cellulase mixtures. Synergistic proteins increase the activity of cellulase without causing significant hydrolysis of cellulose. Synergistic proteins exert their activity by inducing structural modifications in cellulose. Recently, synergistic proteins from various biological sources, including bacteria, fungi, and plants, were identified based on genomic data, and their synergistic activities were investigated. Currently, an up-to-date overview of several aspects of synergistic proteins, such as their functions, action mechanisms and synergistic activity, are important for future industrial application. In this review, we summarize the current state of research on four synergistic proteins: carbohydrate-binding modules, plant expansins, expansin-like proteins, and Auxiliary Activity family 9 (formerly GH61) proteins. This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:103-65. [PMID: 24767427 DOI: 10.1016/b978-0-12-800260-5.00004-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, the present knowledge on the occurrence of cellulases, with a special emphasis on the presence of carbohydrate-binding modules (CBMs) in various fungal strains, has been summarized. The importance of efficient fungal cellulases is growing due to their potential uses in biorefinery processes where lignocellulosic biomasses are converted to platform sugars and further to biofuels and chemicals. Most secreted cellulases studied in detail have a bimodular structure containing an active core domain attached to a CBM. CBMs are traditionally been considered as essential parts in cellulases, especially in cellobiohydrolases. However, presently available genome data indicate that many cellulases lack the binding domains in cellulose-degrading organisms. Recent data also demonstrate that CBMs are not necessary for the action of cellulases and they solely increase the concentration of enzymes on the substrate surfaces. On the other hand, in practical industrial processes where high substrate concentrations with low amounts of water are employed, the enzymes have been shown to act equally efficiently with and without CBM. Furthermore, available kinetic data show that enzymes without CBMs can desorb more readily from the often lignaceous substrates, that is, they are not stuck on the substrates and are thus available for new actions. In this review, the available data on the natural habitats of different wood-degrading organisms (with emphasis on the amount of water present during wood degradation) and occurrence of cellulose-binding domains in their genome have been assessed in order to identify evolutionary advantages for the development of CBM-less cellulases in nature.
Collapse
|
29
|
De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One 2014; 9:e96311. [PMID: 24802510 PMCID: PMC4011697 DOI: 10.1371/journal.pone.0096311] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.
Collapse
|
30
|
Mello BL, Polikarpov I. Family 1 carbohydrate binding-modules enhance saccharification rates. AMB Express 2014; 4:36. [PMID: 24949270 PMCID: PMC4052752 DOI: 10.1186/s13568-014-0036-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 11/10/2022] Open
Abstract
Cellulose degrading enzymes usually have a two-domain structure consisting of a catalytic domain and a non-catalytic carbohydrate-binding module. Although it is well known the importance of those modules in cell wall degrading process, their function is not yet fully understood. Here, we analyze the cellulose-hydrolysis activity enhancement promoted by the cellobiohydrolase I carbohydrate-binding module from Trichoderma harzianum. It was cloned, expressed, purified and used in combination with either a commercial cellulase preparation, T. reesei cellobiohydrolase I or its separate catalytic domain to hydrolyze filter paper. In all cases the amount of glucose released was increased, reaching up to 30% gain when the carbohydrate-binding module was added to the reaction. We also show that this effect seems to be mediated by a decrease in the recalcitrance of the cellulosic substrate. This effect was observed both for crystalline cellulose samples which underwent incubation with the CBM prior to application of cellulases and for the ones incubated simultaneously. Our studies demonstrate that family 1 carbohydrate-binding modules are able to potentiate the enzymatic degradation of the polysaccharides and their application might contribute to diminishing the currently prohibitive costs of the lignocellulose saccharification process.
Collapse
|
31
|
Pakarinen A, Haven MØ, Djajadi DT, Várnai A, Puranen T, Viikari L. Cellulases without carbohydrate-binding modules in high consistency ethanol production process. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:27. [PMID: 24559384 PMCID: PMC3974600 DOI: 10.1186/1754-6834-7-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/06/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Enzymes still comprise a major part of ethanol production costs from lignocellulose raw materials. Irreversible binding of enzymes to the residual substrate prevents their reuse and no efficient methods for recycling of enzymes have so far been presented. Cellulases without a carbohydrate-binding module (CBM) have been found to act efficiently at high substrate consistencies and to remain non-bound after the hydrolysis. RESULTS High hydrolysis yields could be obtained with thermostable enzymes of Thermoascus aurantiacus containing only two main cellulases: cellobiohydrolase I (CBH I), Cel7A and endoglucanase II (EG II), Cel5A. The yields were decreased by only about 10% when using these cellulases without CBM. A major part of enzymes lacking CBM was non-bound during the most active stage of hydrolysis and in spite of this, produced high sugar yields. Complementation of the two cellulases lacking CBM with CBH II (CtCel6A) improved the hydrolysis. Cellulases without CBM were more sensitive during exposure to high ethanol concentration than the enzymes containing CBM. Enzymes lacking CBM could be efficiently reused leading to a sugar yield of 90% of that with fresh enzymes. The applicability of cellulases without CBM was confirmed under industrial ethanol production conditions at high (25% dry matter (DM)) consistency. CONCLUSIONS The results clearly show that cellulases without CBM can be successfully used in the hydrolysis of lignocellulose at high consistency, and that this approach could provide new means for better recyclability of enzymes. This paper provides new insight into the efficient action of CBM-lacking cellulases. The relationship of binding and action of cellulases without CBM at high DM consistency should, however, be studied in more detail.
Collapse
Affiliation(s)
- Annukka Pakarinen
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
| | | | - Demi Tristan Djajadi
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
| | - Anikó Várnai
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432 Aas, Norway
| | - Terhi Puranen
- Roal Oy, Tykkimäentie 15, FIN-05200 Rajamäki, Finland
| | - Liisa Viikari
- Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Rahikainen JL, Evans JD, Mikander S, Kalliola A, Puranen T, Tamminen T, Marjamaa K, Kruus K. Cellulase–lignin interactions—The role of carbohydrate-binding module and pH in non-productive binding. Enzyme Microb Technol 2013; 53:315-21. [DOI: 10.1016/j.enzmictec.2013.07.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
|
33
|
Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013; 98:2991-3001. [DOI: 10.1007/s00253-013-5177-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
|
34
|
Guo J, Catchmark JM, Mohamed MNA, Benesi AJ, Tien M, Kao TH, Watts HD, Kubicki JD. Identification and Characterization of a Cellulose Binding Heptapeptide Revealed by Phage Display. Biomacromolecules 2013; 14:1795-805. [DOI: 10.1021/bm4001876] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jing Guo
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Jeffrey M. Catchmark
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Mohamed Naseer Ali Mohamed
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Alan James Benesi
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Ming Tien
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Teh-hui Kao
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Heath D. Watts
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - James D. Kubicki
- Intercollege
Graduate Degree Program in Plant Biology, ‡Department of Agricultural and
Biological Engineering, and §School of Advanced Sciences, Crystal Growth and Crystallographic
Division, VIT University,
Vellore-632014, India
- Department
of Chemistry, ⊥Department of Biochemistry and Molecular Biology, #Department of Geosciences, ▽Center for NanoCellulosics, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
35
|
Guo J, Catchmark JM. Binding Specificity and Thermodynamics of Cellulose-Binding Modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 2013; 14:1268-77. [DOI: 10.1021/bm300810t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jing Guo
- Intercollege
Graduate Degree Program in Plant Biology, §Department of Agricultural and Biological
Engineering, ‡Center for NanoCellulosics, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
| | - Jeffrey M. Catchmark
- Intercollege
Graduate Degree Program in Plant Biology, §Department of Agricultural and Biological
Engineering, ‡Center for NanoCellulosics, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
| |
Collapse
|
36
|
Thongekkaew J, Ikeda H, Masaki K, Iefuji H. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzyme Microb Technol 2013; 52:241-6. [DOI: 10.1016/j.enzmictec.2013.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 11/24/2022]
|
37
|
Martín-Sampedro R, Rahikainen JL, Johansson LS, Marjamaa K, Laine J, Kruus K, Rojas OJ. Preferential Adsorption and Activity of Monocomponent Cellulases on Lignocellulose Thin Films with Varying Lignin Content. Biomacromolecules 2013; 14:1231-9. [DOI: 10.1021/bm400230s] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raquel Martín-Sampedro
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Jenni L. Rahikainen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo,
Finland
| | - Leena-Sisko Johansson
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Kaisa Marjamaa
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo,
Finland
| | - Janne Laine
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo,
Finland
| | - Orlando J. Rojas
- Department of Forest Products
Technology, School of Chemical Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
- Departments of Forest
and Biomaterials
and Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
38
|
Várnai A, Siika-aho M, Viikari L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:30. [PMID: 23442543 PMCID: PMC3599012 DOI: 10.1186/1754-6834-6-30] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/04/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose? RESULTS The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin. CONCLUSIONS Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol.
Collapse
Affiliation(s)
- Anikó Várnai
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Liisa Viikari
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| |
Collapse
|
39
|
den Haan R, Kroukamp H, van Zyl JHD, van Zyl WH. Cellobiohydrolase secretion by yeast: Current state and prospects for improvement. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Olson DG, McBride JE, Joe Shaw A, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012; 23:396-405. [DOI: 10.1016/j.copbio.2011.11.026] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/08/2011] [Accepted: 11/23/2011] [Indexed: 12/30/2022]
|
41
|
Ilmén M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-aho M, la Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttilä M. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:30. [PMID: 21910902 PMCID: PMC3224389 DOI: 10.1186/1754-6834-4-30] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/12/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. RESULTS We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™) to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. CONCLUSIONS Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.
Collapse
Affiliation(s)
- Marja Ilmén
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland
| | - Riaan den Haan
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - Elena Brevnova
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - John McBride
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Erin Wiswall
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Allan Froehlich
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Anu Koivula
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland
| | - Sanni P Voutilainen
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland
| | - Daniël C la Grange
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - Naomi Thorngren
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Simon Ahlgren
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Mark Mellon
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Kristen Deleault
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
| | - Vineet Rajgarhia
- Mascoma Corporation, 67 Etna Road, Suite 300, Lebanon, NH 03766, USA
- Total Gas & Power, 5858 Horton Street, Suite 253, Emeryville, CA 94608, USA
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, De Beer Street, Stellenbosch 7600, South Africa
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044 VTT, Finland
| |
Collapse
|
42
|
Ye Z, Lane AN, Willing GA, Berson RE. Scaled-up separation of cellobiohydrolase1 from a cellulase mixture by ion-exchange chromatography. Biotechnol Prog 2011; 27:1644-52. [DOI: 10.1002/btpr.696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/27/2011] [Indexed: 11/10/2022]
|
43
|
Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J, Bergenstråhle M, Brady JW, Adney WS, Himmel ME, Crowley MF. The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys J 2011; 99:3773-81. [PMID: 21112302 DOI: 10.1016/j.bpj.2010.10.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022] Open
Abstract
Fungi and bacteria secrete glycoprotein cocktails to deconstruct cellulose. Cellulose-degrading enzymes (cellulases) are often modular, with catalytic domains for cellulose hydrolysis and carbohydrate-binding modules connected by linkers rich in serine and threonine with O-glycosylation. Few studies have probed the role that the linker and O-glycans play in catalysis. Since different expression and growth conditions produce different glycosylation patterns that affect enzyme activity, the structure-function relationships that glycosylation imparts to linkers are relevant for understanding cellulase mechanisms. Here, the linker of the Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) is examined by simulation. Our results suggest that the Cel7A linker is an intrinsically disordered protein with and without glycosylation. Contrary to the predominant view, the O-glycosylation does not change the stiffness of the linker, as measured by the relative fluctuations in the end-to-end distance; rather, it provides a 16 Å extension, thus expanding the operating range of Cel7A. We explain observations from previous biochemical experiments in the light of results obtained here, and compare the Cel7A linker with linkers from other cellulases with sequence-based tools to predict disorder. This preliminary screen indicates that linkers from Family 7 enzymes from other genera and other cellulases within T. reesei may not be as disordered, warranting further study.
Collapse
Affiliation(s)
- Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wohlert J, Berglund LA. A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose. J Chem Theory Comput 2011. [DOI: 10.1021/ct100489z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jakob Wohlert
- Wallenberg Wood Science Center, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Lars A. Berglund
- Wallenberg Wood Science Center, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
45
|
Nakagame S, Chandra RP, Saddler JN. The Influence of Lignin on the Enzymatic Hydrolysis of Pretreated Biomass Substrates. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1067.ch006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seiji Nakagame
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada, V6T1Z4
| | - Richard P. Chandra
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada, V6T1Z4
| | - Jack N. Saddler
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada, V6T1Z4
| |
Collapse
|
46
|
Meso-Scale Modeling of Polysaccharides in Plant Cell Walls: An Application to Translation of CBMs on the Cellulose Surface. ACTA ACUST UNITED AC 2010. [DOI: 10.1021/bk-2010-1052.ch005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Kalluri UC, Keller M. Bioenergy research: a new paradigm in multidisciplinary research. J R Soc Interface 2010; 7:1391-401. [PMID: 20542958 PMCID: PMC3227023 DOI: 10.1098/rsif.2009.0564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/10/2010] [Indexed: 12/28/2022] Open
Abstract
The field of biology is becoming increasingly interdisciplinary and cross-cutting. This changing research atmosphere is creating the way for a new kind of enquiry that while building upon the traditional research establishment is providing a new multidisciplinary framework to more effectively address scientific grand challenges. Using the US Department of Energy sponsored BioEnergy Science Center as an example, we highlight how impactful breakthroughs in biofuel science can be achieved within a large cross-disciplinary team environment. Such transformational insights are key to furthering our understanding and in generating models, theories and processes that can be used to overcome recalcitrance of biomass for sustainable biofuel production. Multidisciplinary approaches have an increasingly greater role to play in meeting rising demands for food, fibre, energy, clean environment and good health. Discoveries achieved by diverse minds and cross-applications of tools and analytical approaches have tremendous potential to fill existing knowledge gaps, clear roadblocks and facilitate translation of basic sciences discoveries as solutions towards addressing some of the most pressing global issues.
Collapse
Affiliation(s)
- Udaya C. Kalluri
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Martin Keller
- Biological and Environmental Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- BESC BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
48
|
Ribeiro O, Wiebe M, Ilmén M, Domingues L, Penttilä M. Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii. Appl Microbiol Biotechnol 2010; 87:1437-46. [DOI: 10.1007/s00253-010-2610-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 12/17/2022]
|
49
|
|
50
|
Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF. Identification of Amino Acids Responsible for Processivity in a Family 1 Carbohydrate-Binding Module from a Fungal Cellulase. J Phys Chem B 2010; 114:1447-53. [DOI: 10.1021/jp908810a] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - James F. Matthews
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Yannick J. Bomble
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - William S. Adney
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael E. Himmel
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Mark R. Nimlos
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F. Crowley
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|