1
|
Zhu Z, Li C, Cheng X, Chen Y, Zhu M, Liu X, Mao S, Qin HM, Lu F. Soluble expression, purification and biochemical characterization of a C-7 cholesterol dehydrogenase from Drosophila melanogaster. Steroids 2019; 152:108495. [PMID: 31521708 DOI: 10.1016/j.steroids.2019.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
The C-7 cholesterol dehydrogenase (NVD), which converts cholesterol to 7-dehydrocholesterol (7-DHC) by 7,8-dehydrogenation, plays a pivotal role in the metabolism of cholesterol and steroid intermediates. The NVD protein was successfully expressed in insect Sf9 cells. To reduce the production cost for industrial application, the NVD gene was cloned into E. coli BL21(DE3). However, the His-tagged NVD protein showed poor binding to Ni-NTA resin, mainly due to the formation of inclusion bodies. Consequently, the expression and solubility of NVD were optimized by respectively fusing it with maltose-binding protein (MBP), glutathione S-transferase (GST), and the nonspecific DNA binding protein from Sulfolobus solfataricus (Sso7d) as solubility tags. The NVD fusion with MBP at the N-terminus and His-tag at the C-terminus achieved a high yield of the soluble enzyme. It was further purified by ion-exchange chromatography with 95.4% purity and with a 10.4% yield. The product 7-DHC, which is produced in a reaction catalyzed by NVD and ferredoxin reductase KshB, was initially identified by GC-MS. An analysis of the amino acid sequence alignment revealed a distinct Rieske-type iron-sulfur cluster and non-heme Fe2+-binding domain, which are evolutionarily conserved among NVD family enzymes.
Collapse
Affiliation(s)
- Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Xiaotao Cheng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Xin Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Bredow M, Tomalty HE, Smith L, Walker VK. Ice and anti-nucleating activities of an ice-binding protein from the annual grass, Brachypodium distachyon. PLANT, CELL & ENVIRONMENT 2018; 41:983-992. [PMID: 28035668 DOI: 10.1111/pce.12889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/15/2023]
Abstract
Plants exposed to sub-zero temperatures face unique challenges that threaten their survival. The growth of ice crystals in the extracellular space can cause cellular dehydration, plasma membrane rupture and eventual cell death. Additionally, some pathogenic bacteria cause tissue damage by initiating ice crystal growth at high sub-zero temperatures through the use of ice-nucleating proteins (INPs), presumably to access nutrients from lysed cells. An annual species of brome grass, Brachypodium distachyon (Bd), produces an ice-binding protein (IBP) that shapes ice with a modest depression of the freezing point (~0.1 °C at 1 mg/mL), but high ice-recrystallization inhibition (IRI) activity, allowing ice crystals to remain small at near melting temperatures. This IBP, known as BdIRI, is unlike other characterized IBPs with a single ice-binding face, as mutational analysis indicates that BdIRI adsorbs to ice on two faces. BdIRI also dramatically attenuates the nucleation of ice by bacterial INPs (up to -2.26 °C). This 'anti-nucleating' activity is significantly higher than previously documented for any IBP.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Heather E Tomalty
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Lindsay Smith
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
3
|
Bäumer A, Duman JG, Havenith M. Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring. Phys Chem Chem Phys 2016; 18:19318-23. [DOI: 10.1039/c6cp02399a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Remarkably little is known about the mechanism of action of ice nucleation proteins (INPs), although their ability to trigger ice nucleation could be used in a broad variety of applications.
Collapse
Affiliation(s)
- Alexander Bäumer
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität
- 44801 Bochum
- Germany
| | - John G. Duman
- Department of Biological Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II
- Ruhr-Universität
- 44801 Bochum
- Germany
| |
Collapse
|
4
|
Disorder-to-order transition in the CyaA toxin RTX domain: implications for toxin secretion. Toxins (Basel) 2014; 7:1-20. [PMID: 25559101 PMCID: PMC4303809 DOI: 10.3390/toxins7010001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/23/2022] Open
Abstract
The past decade has seen a fundamental reappraisal of the protein structure-to-function paradigm because it became evident that a significant fraction of polypeptides are lacking ordered structures under physiological conditions. Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered regions. This trait is exhibited by RTX (Repeat in ToXin) motifs found in more than 250 virulence factors secreted by Gram-negative pathogenic bacteria. We have investigated several RTX-containing polypeptides of different lengths, all derived from the Bordetella pertussis adenylate cyclase toxin, CyaA. Using a combination of experimental approaches, we showed that the RTX proteins exhibit the hallmarks of intrinsically disordered proteins in the absence of calcium. This intrinsic disorder mainly results from internal electrostatic repulsions between negatively charged residues of the RTX motifs. Calcium binding triggers a strong reduction of the mean net charge, dehydration and compaction, folding and stabilization of secondary and tertiary structures of the RTX proteins. We propose that the intrinsically disordered character of the RTX proteins may facilitate the uptake and secretion of virulence factors through the bacterial secretion machinery. These results support the hypothesis that the folding reaction is achieved upon protein secretion and, in the case of proteins containing RTX motifs, could be finely regulated by the calcium gradient across bacterial cell wall.
Collapse
|
5
|
Cloning of the Gene Encoding an Endo-Acting Pectate Lyase fromStreptomyces thermocarboxydus. Biosci Biotechnol Biochem 2014; 74:433-6. [DOI: 10.1271/bbb.90693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Vlassi M, Brauns K, Andrade-Navarro MA. Short tandem repeats in the inhibitory domain of the mineralocorticoid receptor: prediction of a β-solenoid structure. BMC STRUCTURAL BIOLOGY 2013; 13:17. [PMID: 24088384 PMCID: PMC3851330 DOI: 10.1186/1472-6807-13-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/25/2013] [Indexed: 11/20/2022]
Abstract
Background The human mineralocorticoid receptor (MR) is one of the main components of the renin-angiotensin-aldosterone system (RAAS), the system that regulates the body exchange of water and sodium. The evolutionary origins of this protein predate those of renin and the RAAS; accordingly it has other roles, which are being characterized. The MR has two trans-activating ligand independent domains and one inhibitory domain (ID), which modulates the activity of the former. The structure of the ID is currently unknown. Results Here we report that the ID contains at least 15 tandem repeats of around 10 amino acids, which we computationally characterize in the human MR and in selected orthologs. This ensemble of repeats seems to have emerged around 450 million years ago, after the divergence of the MR from its close homolog, the glucocorticoid receptor, which does not possess the repeats. The region would have quickly expanded by successive duplication of the repeats stabilizing at its length in human MR shortly after divergence of tetrapoda from bony fishes 400 million years ago. Structural predictions, in combination with molecular dynamics simulations suggest that the repeat ensemble forms a β-solenoid, namely a β-helical fold with a polar core, stabilized by hydrogen-bonded ladders of polar residues. Our 3D-model, in conjunction with previous experimental data, implies a role of the β-helical fold as a scaffold for multiple intra-and inter-molecular interactions and that these interactions are modulated via phosphorylation-dependent conformational changes. Conclusions We, thus, propose that the structure of the repeat ensemble plays an important role in the coordination and sequential interactions of various MR partners and therefore in the functionality and specificity of MR.
Collapse
Affiliation(s)
- Metaxia Vlassi
- Protein Structure & Molecular Modeling laboratory, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Ag, Paraskevi, Athens, Greece.
| | | | | |
Collapse
|
7
|
Chenal A, Karst JC, Sotomayor Pérez AC, Wozniak AK, Baron B, England P, Ladant D. Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys J 2011; 99:3744-53. [PMID: 21112299 DOI: 10.1016/j.bpj.2010.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022] Open
Abstract
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. Its C-terminal region, the receptor-binding domain (RD), contains ∼40 calcium-binding Repeat in ToXin (RTX) motifs, which are characteristic of many virulence factors of pathogenic bacteria. We previously showed that RD is intrinsically disordered in the absence of calcium and acquires its functional three-dimensional structure upon calcium binding. To gain further insight into the physicochemical properties of RD, we characterized its calcium-induced conformational and stability changes by combining spectroscopic approaches. We show that RD, in the absence of calcium, adopts premolten globule conformations, due in part to the strong internal electrostatic repulsions between the negative charges of the aspartate-rich polypeptide sequence. Accordingly, sodium is able to screen these electrostatic repulsions, allowing a partial compaction of the polypeptide, whereas calcium triggers a strong compaction as well as the acquisition of secondary and tertiary structures in a highly cooperative manner. The differential sensitivity of the calcium-loaded state to guanidinium- and urea-induced denaturations provides further evidence that electrostatic interactions play a critical role in the folding and stability of RD. These results provide new insights into the folding/function relationship of the RTX motifs.
Collapse
Affiliation(s)
- Alexandre Chenal
- Unite de Biochimie des Interactions Macromoléculaires, Institut Pasteur, Centre National de la Recherche Scientifique URA 2185, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Mao X, Liu Z, Ma J, Pang H, Zhang F. Characterization of a novel β-helix antifreeze protein from the desert beetle Anatolica polita. Cryobiology 2011; 62:91-9. [PMID: 21232534 DOI: 10.1016/j.cryobiol.2011.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/09/2010] [Accepted: 01/06/2011] [Indexed: 11/19/2022]
Abstract
Many ectotherms organisms produce antifreeze proteins (AFPs) which inhibit the growth of ice by binding to the surface of ice crystals. In this study, a novel antifreeze protein gene from the desert beetle Anatolica polita (named as Apafp752) was expressed in a high level in Escherichia coli strain BL21 (DE3). An approximately 30kDa fusion protein thioredoxin (Trx)-ApAFP752 was purified through Ni-NTA affinity chromatography and gel filtration chromatography. The activity of the purified fusion protein Trx-ApAFP752 was analyzed by thermal hysteresis activity (THA) and cryoprotection assay. The results suggested that Trx-ApAFP752 conferred freeze resistance on bacterium in a concentration- and time-dependent manner and the cryoprotective effect increased under alkaline conditions. Circular Dichroism (CD) spectrum analysis showed that the recombinant protein of ApAFP752 possessing β-sheet as the main structure was stable under a wide range of pH from 2.0 to 11.0 and thermal stability below 50°C. The predicted 3D structure showed that Trx-ApAFP752 could form a β-helix structure on the antifreeze protein part, which placed most of the Thr in a regular array on one side of the protein to form a putative ice-binding surface.
Collapse
Affiliation(s)
- Xinfang Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
| | | | | | | | | |
Collapse
|
9
|
Middleton AJ, Brown AM, Davies PL, Walker VK. Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 2009; 583:815-9. [PMID: 19185572 DOI: 10.1016/j.febslet.2009.01.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/25/2022]
Abstract
The antifreeze protein of Lolium perenne, a perennial ryegrass, was previously modeled as a beta-roll with two extensive flat beta-sheets on opposite sides of the molecule. Here we have validated the model with a series of nine site-directed steric mutations in which outward-pointing short side-chain residues were replaced by tyrosine. None of these disrupted the fold. Mutations on one of the beta-sheets and on the sides of the protein retained 70% or greater activity. Three mutations that clustered on the other flat surface lost up to 90% of their antifreeze activity and identify this beta-sheet as the ice-binding face.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
10
|
Basu S, Ghosh A, Bera A, Saha MN, Chattopadhyay D, Chakrabarti K. Thermodynamic characterization of a highly thermoactive extracellular pectate lyase from a new isolate Bacillus pumilus DKS1. BIORESOURCE TECHNOLOGY 2008; 99:8088-8094. [PMID: 18445524 DOI: 10.1016/j.biortech.2008.03.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/14/2008] [Accepted: 03/16/2008] [Indexed: 05/26/2023]
Abstract
An extracellular pectate lyase (EC 4.2.2.2) was purified from the culture filtrate of a newly isolated Bacillus pumilus DKS1 grown in pectin containing medium. Using ion-exchange and gel filtration chromatography, this enzyme was purified and found to have a molecular weight of around 35kDa. The purified enzyme exhibited maximal activity at a temperature of 75 degrees C and pH 8.5. The presence of 1mM calcium and manganese enhanced pectate lyase activity and was strongly inhibited by zinc, nickel and EDTA. The thermal inactivation studies revealed an entropy-enthalpy compensation pattern below a critical temperature. The alkaliphilicity and high thermostability of this pectate lyase may have potential implications in fibre degumming.
Collapse
Affiliation(s)
- Snehasish Basu
- Department of Biochemistry, University College of Science, Calcutta University, 35 Ballygunge Circular Road, West Bengal, Kolkata 700 019, India
| | | | | | | | | | | |
Collapse
|
11
|
Bar M, Scherf T, Fass D. Two-dimensional surface display of functional groups on a β-helical antifreeze protein scaffold. Protein Eng Des Sel 2008; 21:107-14. [DOI: 10.1093/protein/gzm070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Massa C, Degrassi G, Devescovi G, Venturi V, Lamba D. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Expr Purif 2007; 54:300-8. [DOI: 10.1016/j.pep.2007.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
|
13
|
Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 2006; 106:1995-2044. [PMID: 16771441 DOI: 10.1021/cr040410w] [Citation(s) in RCA: 1257] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Gaggelli
- Department of Chemistry, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | | | | |
Collapse
|
14
|
Abstract
Alzheimer's disease and Creutzfeldt-Jakob disease are the best-known examples of a group of diseases known as the amyloidoses. They are characterized by the extracellular deposition of toxic, insoluble amyloid fibrils. Knowledge of the structure of these fibrils is essential for understanding the process of pathology of the amyloidoses and for the rational design of drugs to inhibit or reverse amyloid formation. Structural models have been built using information from a wide variety of techniques, including X-ray diffraction, electron microscopy, solid state NMR and EPR. Recent advances have been made in understanding the architecture of the amyloid fibril. Here, we describe and compare postulated structural models for the mature amyloid fibril and discuss how the ordered structure of amyloid contributes to its stability.
Collapse
Affiliation(s)
- O Sumner Makin
- Department of Biochemistry, John Maynard Smith Building, School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| | | |
Collapse
|
15
|
Dixit VS, Kumar AR, Pant A, Khan MI. Low molecular mass pectate lyase from Fusarium moniliforme: similar modes of chemical and thermal denaturation. Biochem Biophys Res Commun 2004; 315:477-84. [PMID: 14766233 DOI: 10.1016/j.bbrc.2004.01.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Indexed: 10/26/2022]
Abstract
A low molecular mass pectate lyase from Fusarium moniliforme was unfolded reversibly by urea and Gdn-HCl at its optimum pH of 8.5, as monitored by intrinsic fluorescence, circular dichroism, and enzymatic activity measurements. Equilibrium unfolding studies yielded a deltaG(H(2)O) of 1.741 kcal/mol, D1/2 of 2.3M, and m value of 0.755kcal/molM with urea and a deltaG(H(2)O) of 1.927kcal/mol, D1/2 of 1.52M, and m value of 1.27 kcal/molM with Gdn-HCl as the denaturant. Thermal denaturation of the pectate lyase at, pH 8.5, was also reversible even after exposure to 75 degrees C for 10 min. Thermodynamic parameters calculated from thermal denaturation curves at pH values from 5.0 to 8.5 yielded a deltaCp of 0.864kcal/(molK). The deltaG(25 degrees C) at, pH 8.5, was 2.06kcal/mol and was in good agreement with the deltaG(H(2)O) values obtained from chemical denaturation curves. There was no exposure of hydrophobic pockets during chemical or thermal denaturation as indicated by the inability of ANS to bind the pectate lyase.
Collapse
Affiliation(s)
- Vaishali S Dixit
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
16
|
Jenkins J, Pickersgill R. The architecture of parallel beta-helices and related folds. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 77:111-75. [PMID: 11747907 DOI: 10.1016/s0079-6107(01)00013-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-dimensional structures have been determined of a large number of proteins characterized by a repetitive fold where each of the repeats (coils) supplies a strand to one or more parallel beta-sheets. Some of these proteins form superfamilies of proteins, which have probably arisen by divergent evolution from a common ancestor. The classical example is the family including four families of pectinases without obviously related primary sequences, the phage P22 tailspike endorhamnosidase, chrondroitinase B and possibly pertactin from Bordetella pertusis. These show extensive stacking of similar residues to give aliphatic, aromatic and polar stacks such as the asparagine ladder. This suggests that coils can be added or removed by duplication or deletion of the DNA corresponding to one or more coils and explains how homologous proteins can have different numbers of coils. This process can also account for the evolution of other families of proteins such as the beta-rolls, the leucine-rich repeat proteins, the hexapeptide repeat family, two separate families of beta-helical antifreeze proteins and the spiral folds. These families need not be related to each other but will share features such as relative untwisted beta-sheets, stacking of similar residues and turns between beta-strands of approximately 90 degrees often stabilized by hydrogen bonding along the direction of the parallel beta-helix.Repetitive folds present special problems in the comparison of structures but offer attractive targets for structure prediction. The stacking of similar residues on a flat parallel beta-sheet may account for the formation of amyloid with beta-strands at right-angles to the fibril axis from many unrelated peptides.
Collapse
Affiliation(s)
- J Jenkins
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK.
| | | |
Collapse
|
17
|
Abstract
Antifreeze proteins (AFPs) inhibit the growth of ice, whereas ice-nucleation proteins (INPs) promote its formation. Although the structures of several AFPs are known, the structure of INP has been modeled thus far because of the difficulty in determining membrane protein structures. Here, we present a novel model of an INP structure from Pseudomonas syringae based on comparison with two newly determined insect AFP structures. The results suggest that both this class of AFPs and INPs may have a similar beta-helical fold and that they could interact with water through the repetitive TXT motif. By theoretical arguments, we show that the distinguishing feature between an ice inhibitor and an ice nucleator lies in the size of the ice-interacting surface. For INPs, the larger surface area acts as a template that is larger than the critical ice embryo surface area required for growth. In contrast, AFPs are small enough so that they bind to ice and inhibit further growth without acting as a nucleator.
Collapse
Affiliation(s)
- S P Graether
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
18
|
Hurlbert JC, Preston JF. Functional implications of the beta-helical protein fold: differences in chemical and thermal stabilities of Erwinia chrysanthemi EC16 pectate lyases B, C, and E. Arch Biochem Biophys 2000; 381:264-72. [PMID: 11032414 DOI: 10.1006/abbi.2000.1982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Colonization of plant tissue by the phytopathogen Erwinia chrysanthemi EC16 is aided by the activities of the pectate lyase isozymes (PLs), which depolymerize the polygalacturonic acid component (PGA) of plant cell walls. The bacterium secretes four pectate lyases (PLa, PLb, PLc, and PLe), two of which, PLc and PLe, have been shown to fold into a similar domain motif, the beta-helix. To understand the rationale behind the evolution and retention of these isoforms, the susceptibilities of pectate lyases B, C, and E to chemical and thermal denaturation and the resulting enzymatic inactivation were examined. With guanidine hydrochloride used as a denaturant, all three pectate lyases denatured with transition midpoint guanidine hydrochloride concentrations (Cm) of 1.3, 1.1, and 1.8 M for PLb, PLc, and PLe, respectively. Lyase activity decreased in direct response to loss of secondary structure in all enzymes. Pectate lyases B and C demonstrated increased enzymatic activity at temperatures above 30 degrees C, with maximal activity observed at 40 degrees C for PLb and 35 degrees C for PLc. Transition midpoints (Tm) as measured by circular dichroism were at 46.9 degrees C for PLb and 44.3 degrees C for PLc, indicating detectable conformational changes accompanying thermal inactivation. Decreased enzymatic activity of PLe was observed at all temperatures above 30 degrees C, and the enzyme was found to possess a Tm at 38.9 degrees C. The data demonstrate structural differences among these enzymes that may be the basis for different enzymatic efficiencies under the potential array of environmental conditions experienced by the bacterium. These differences, in turn, may play a part in the retention of these isozymes as virulence factors, allowing the successful colonization of susceptible plant hosts.
Collapse
Affiliation(s)
- J C Hurlbert
- Institute of Food and Agricultural Sciences and Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
19
|
Abstract
Structural studies of Alzheimer's amyloid fibrils have revealed information about the structure at different levels. The amyloid-beta peptide has been examined in various solvents and conditions and this has led to a model by which a conformational switching occurs from alpha-helix or random coil, to a beta-sheet structure. Amyloid fibril assembly proceeds by a nucleation dependent pathway leading to elongation of the fibrils. Along this pathway small oligomeric intermediates and short fibrillar structures (protofibrils) have been observed. In cross-section the fibril appears to be composed of several subfibrils or protofilaments. Each of these protofilaments is composed of beta-sheet structure in which hydrogen bonding occurs along the length of the fibre and the beta-strands run perpendicular to the fibre axis. This hierarchy of structure is discussed in this review.
Collapse
Affiliation(s)
- L C Serpell
- Neurobiology Division, MRC Centre, Cambridge, UK.
| |
Collapse
|
20
|
Khurana R, Fink AL. Do parallel beta-helix proteins have a unique fourier transform infrared spectrum? Biophys J 2000; 78:994-1000. [PMID: 10653812 PMCID: PMC1300702 DOI: 10.1016/s0006-3495(00)76657-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Several polypeptides have been found to adopt an unusual domain structure known as the parallel beta-helix. These domains are characterized by parallel beta-strands, three of which form a single parallel beta-helix coil, and lead to long, extended beta-sheets. We have used ATR-FTIR (attenuated total reflectance-fourier transform infrared spectroscopy) to analyze the secondary structure of representative examples of this class of protein. Because the three-dimensional structures of parallel beta-helix proteins are unique, we initiated this study to determine if there was a corresponding unique FTIR signal associated with the parallel beta-helix conformation. Analysis of the amide I region, emanating from the carbonyl stretch vibration, reveals a strong absorbance band at 1638 cm(-1) in each of the parallel beta-helix proteins. This band is assigned to the parallel beta-sheet structure. However, components at this frequency are also commonly observed for beta-sheets in many classes of globular proteins. Thus we conclude that there is no unique infrared signature for parallel beta-helix structure. Additional contributions in the 1638 cm(-1) region, and at lower frequencies, were ascribed to hydrogen bonding between the coils in the loop/turn regions and amide side-chain interactions, respectively. A 13-residue peptide that forms fibrils and has been proposed to form beta-helical structure was also examined, and its FTIR spectrum was compared to that of the parallel beta-helix proteins.
Collapse
Affiliation(s)
- R Khurana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
21
|
Lazo ND, Downing DT. Crystalline Regions of Bombyx mori Silk Fibroin May Exhibit β-Turn and β-Helix Conformations. Macromolecules 1999. [DOI: 10.1021/ma9900582] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. D. Lazo
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - Donald T. Downing
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
22
|
Lazo ND, Downing DT. Fibril formation by amyloid-beta proteins may involve beta-helical protofibrils. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 53:633-40. [PMID: 10408337 DOI: 10.1034/j.1399-3011.1999.00057.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have proposed that amyloid fibrils contain subunits (protofibrils) that are formed from beta-strands wound into continuous 2-3 nm-diameter beta-helices. Subsequent lateral aggregation of the beta-helices to form the widely observed 5-12 nm-diameter fibrils could be promoted by hydrophobic residues on the exterior of the postulated beta-helix. A number of short peptide fragments of the amyloid-beta (A beta) proteins, such as A beta34-42 [LMVGGVVIA], the nine-residue, carboxyl-terminal portion of A beta1-42, can also form amyloid fibrils. In the present study, it was found that a beta-helix formed from A beta34-42 accounts for features suggested by published rotational resonance solid-state NMR data, including an anomalous conformation about the Gly-37-Gly-38 region and exaggerated pleating. An analogue of A beta34-42 was synthesized in which the hydrophobic groups on the exterior of the postulated beta-helix were replaced with glutamates, giving LEVGGVEIE. The analogue was completely soluble at pH 7, but at pH 2.5 it produced 2-2.5 nm-diameter fibrils which did not associate into larger-diameter bundles. The results of this study support the proposal that amyloid fibrils are formed from beta-helical subunits.
Collapse
Affiliation(s)
- N D Lazo
- Department of Dermatology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
23
|
Heffron S, Moe GR, Sieber V, Mengaud J, Cossart P, Vitali J, Jurnak F. Sequence profile of the parallel beta helix in the pectate lyase superfamily. J Struct Biol 1998; 122:223-35. [PMID: 9724624 DOI: 10.1006/jsbi.1998.3978] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parallel beta helix structure found in the pectate lyase superfamily has been analyzed in detail. A comparative analysis of known structures has revealed a unique sequence profile, with a strong positional preference for specific amino acids oriented toward the interior of the parallel beta helix. Using the unique sequence profile, search patterns have been constructed and applied to the sequence databases to identify a subset of proteins that are likely to fold into the parallel beta helix. Of the 19 families identified, 39% are known to be carbohydrate-binding proteins, and 50% belong to a broad category of proteins with sequences containing leucine-rich repeats (LRRs). The most striking result is the sequence match between the search pattern and four contiguous segments of internalin A, a surface protein from the bacterial pathogen Listeria monocytogenes. A plausible model of the repetitive LRR sequences of internalin A has been constructed and favorable 3D-1D profile scores have been calculated. Moreover, spectroscopic features characteristic of the parallel beta helix topology in the pectate lyases are present in the circular dichroic spectrum of internalin A. Altogether, the data support the hypothesis that sequence search patterns can be used to identify proteins, including a subset of LRR proteins, that are likely to fold into the parallel beta helix.
Collapse
Affiliation(s)
- S Heffron
- Department of Physiology and Biophysics, University of California, Irvine, California, 92697-4560, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A synthetic peptide, KLEG13 (Ac-KLKLKLELELELG-NH2), composed of alternating bulky hydrophilic and hydrophobic amino acid residues formed clear, viscous dispersions of fibrils in saline solutions. The fibrils had a uniform diameter of 2 nm as measured on electron micrographs of negatively stained preparations. 13C solid-state nuclear magnetic resonance spectroscopy of the fibrils indicated the presence of a beta-conformation. Circular dichroic spectra of the dispersion of fibrils were essentially identical to the calculated spectrum of a 100% beta-helix. Space-filling CPK models of a proposed beta-helical conformation of the peptide, in which the leucine side chains form a hydrophobic core and the hydrophilic lysine and glutamate side chains extend outwards from the helix, had a diameter consistent with the observed 2-nm diameter of the fibrils. This study may have implications regarding the structure of amyloid fibrils.
Collapse
Affiliation(s)
- N D Lazo
- Department of Dermatology, The University of Iowa College of Medicine, Iowa City 52242, USA.
| | | |
Collapse
|
25
|
Buchanan SG, Gay NJ. Structural and functional diversity in the leucine-rich repeat family of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 65:1-44. [PMID: 9029940 DOI: 10.1016/s0079-6107(96)00003-x] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S G Buchanan
- Department of Biochemistry, University of Cambridge, U.K
| | | |
Collapse
|