1
|
ElSawy KM. Utility of Brownian dynamics simulations in chemistry and biology: A comprehensive review. Biochim Biophys Acta Gen Subj 2025; 1869:130740. [PMID: 39694298 DOI: 10.1016/j.bbagen.2024.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Brownian dynamics (BD) simulations, a powerful computer simulation tool that has gained significant attraction in investigating the intricate dynamics of chemical and biological systems. By meticulously modeling the diffusive motion of molecules and their intricate interactions, BD simulations offer invaluable insights into a diverse array of phenomena, including reaction kinetics, molecular transport, and biomolecular association. This comprehensive review delves into the utility of BD simulations within the realms of chemistry and biology. We meticulously explore the theoretical underpinnings of the technique, critically analyze its strengths and limitations, and showcase its diverse applications across various scientific domains. By providing a comprehensive analysis of the existing literature, we aim to illuminate the potential of BD simulations to significantly advance our understanding of complex chemical and biological systems, ultimately contributing to the development of innovative therapeutic solutions serving a broad range of biomedical applications.
Collapse
Affiliation(s)
- Karim M ElSawy
- Department of Chemistry, College of Science, Qassim University, Mulaidah 52571, Saudi Arabia.
| |
Collapse
|
2
|
Mukhametgalieva A, Mir SA, Shaihutdinova Z, Masson P. Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies. Molecules 2024; 29:2140. [PMID: 38731631 PMCID: PMC11085540 DOI: 10.3390/molecules29092140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The participation of butyrylcholinesterase (BChE) in the degradation of atropine has been recurrently addressed for more than 70 years. However, no conclusive answer has been provided for the human enzyme so far. In the present work, a steady-state kinetic analysis performed by spectrophotometry showed that highly purified human plasma BChE tetramer slowly hydrolyzes atropine at pH 7.0 and 25 °C. The affinity of atropine for the enzyme is weak, and the observed kinetic rates versus the atropine concentration was of the first order: the maximum atropine concentration in essays was much less than Km. Thus, the bimolecular rate constant was found to be kcat/Km = 7.7 × 104 M-1 min-1. Rough estimates of catalytic parameters provided slow kcat < 40 min-1 and high Km = 0.3-3.3 mM. Then, using a specific organophosphoryl agent, echothiophate, the time-dependent irreversible inhibition profiles of BChE for hydrolysis of atropine and the standard substrate butyrylthiocholine (BTC) were investigated. This established that both substrates are hydrolyzed at the same site, i.e., S198, as for all substrates of this enzyme. Lastly, molecular docking provided evidence that both atropine isomers bind to the active center of BChE. However, free energy perturbations yielded by the Bennett Acceptance Ratio method suggest that the L-atropine isomer is the most reactive enantiomer. In conclusion, the results provided evidence that plasma BChE slowly hydrolyzes atropine but should have no significant role in its metabolism under current conditions of medical use and even under administration of the highest possible doses of this antimuscarinic drug.
Collapse
Affiliation(s)
- Aliya Mukhametgalieva
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia; (A.M.); (Z.S.)
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyotivihar, Burla 768019, India;
| | - Zukhra Shaihutdinova
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia; (A.M.); (Z.S.)
| | - Patrick Masson
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia; (A.M.); (Z.S.)
| |
Collapse
|
3
|
Pagán OR. The complexities of ligand/receptor interactions: Exploring the role of molecular vibrations and quantum tunnelling. Bioessays 2024; 46:e2300195. [PMID: 38459808 DOI: 10.1002/bies.202300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Molecular vibrations and quantum tunneling may link ligand binding to the function of pharmacological receptors. The well-established lock-and-key model explains a ligand's binding and recognition by a receptor; however, a general mechanism by which receptors translate binding into activation, inactivation, or modulation remains elusive. The Vibration Theory of Olfaction was proposed in the 1930s to explain this subset of receptor-mediated phenomena by correlating odorant molecular vibrations to smell, but a mechanism was lacking. In the 1990s, inelastic electron tunneling was proposed as a plausible mechanism for translating molecular vibration to odorant physiology. More recently, studies of ligands' vibrational spectra and the use of deuterated ligand analogs have provided helpful information to study this admittedly controversial hypothesis in metabotropic receptors other than olfactory receptors. In the present work, based in part on published experiments from our laboratory using planarians as an experimental organism, I will present a rationale and possible experimental approach for extending this idea to ligand-gated ion channels.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
4
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
5
|
Vauquelin G, Maes D. Competition in drug binding and … the race to equilibrium. Fundam Clin Pharmacol 2023; 37:147-157. [PMID: 35981720 DOI: 10.1111/fcp.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023]
Abstract
Binding kinetics has become a popular topic in pharmacology due to its potential contribution to the selectivity and duration of drug action. Yet, the overall kinetic aspects of complex binding mechanisms are still merely described in terms of elaborate algebraic equations. Interestingly, it has been recommended some 10 years ago to examine such mechanisms in terms of binding fluxes instead of the conventional rate constants. Alike the velocity of product formation in enzymology, those fluxes refer to the velocity by which one target species converts into another one. Novel binding flux-based approaches are utilized to get a better visual insight into the "competition" between two drugs/ligands for a single target as well as between induced fit- and conformational selection pathways for a single ligand within a thermodynamic cycle. The present data were obtained by differential equation-based simulations. Early on, the ligand-binding steps "race" to equilibrium (i.e., when their forward and reverse fluxes are equal) at their individual pace. The overall/global equilibrium is only reached later on. For the competition association assays, this parting might produce a transient "overshoot" of one of the bound target species. A similar overshoot may also show up within a thermodynamic cycle and, at first glance, suggest that the induced fit pathway dominates. Yet, present findings show that under certain circumstances, it could rather be the other way round. Novel binding flux-based approaches offer visually attractive insights into crucial aspects of "complex" binding mechanisms under non-equilibrium conditions.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Fukunishi Y, Higo J, Kasahara K. Computer simulation of molecular recognition in biomolecular system: from in silico screening to generalized ensembles. Biophys Rev 2022; 14:1423-1447. [PMID: 36465086 PMCID: PMC9703445 DOI: 10.1007/s12551-022-01015-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022] Open
Abstract
Prediction of ligand-receptor complex structure is important in both the basic science and the industry such as drug discovery. We report various computation molecular docking methods: fundamental in silico (virtual) screening, ensemble docking, enhanced sampling (generalized ensemble) methods, and other methods to improve the accuracy of the complex structure. We explain not only the merits of these methods but also their limits of application and discuss some interaction terms which are not considered in the in silico methods. In silico screening and ensemble docking are useful when one focuses on obtaining the native complex structure (the most thermodynamically stable complex). Generalized ensemble method provides a free-energy landscape, which shows the distribution of the most stable complex structure and semi-stable ones in a conformational space. Also, barriers separating those stable structures are identified. A researcher should select one of the methods according to the research aim and depending on complexity of the molecular system to be studied.
Collapse
Affiliation(s)
- Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Junichi Higo
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo 650-0047 Japan ,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 Japan
| |
Collapse
|
7
|
Jain S, Sekhar A. Elucidating the mechanisms underlying protein conformational switching using NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100034. [PMID: 35586549 PMCID: PMC7612731 DOI: 10.1016/j.jmro.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How proteins switch between various ligand-free and ligand-bound structures has been a key biophysical question ever since the postulation of the Monod-Wyman-Changeux and Koshland-Nemethy-Filmer models over six decades ago. The ability of NMR spectroscopy to provide structural and kinetic information on biomolecular conformational exchange places it in a unique position as an analytical tool to interrogate the mechanisms of biological processes such as protein folding and biomolecular complex formation. In addition, recent methodological developments in the areas of saturation transfer and relaxation dispersion have expanded the scope of NMR for probing the mechanics of transitions in systems where one or more states constituting the exchange process are sparsely populated and 'invisible' in NMR spectra. In this review, we highlight some of the strategies available from NMR spectroscopy for examining the nature of multi-site conformational exchange, using five case studies that have employed NMR, either in isolation, or in conjunction with other biophysical tools.
Collapse
|