1
|
Xu H, Li B, Tang K, Yang J, Zhan P. Nucleoside antiviral agents with atypical structures and new targets. Bioorg Med Chem Lett 2025; 119:130110. [PMID: 39864529 DOI: 10.1016/j.bmcl.2025.130110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Nucleoside analogs (NAs), as antiviral drugs, play a significant role in clinical medicine, constituting approximately 50 % of all antiviral therapies in current use. Nucleoside inhibitors function by mimicking the structure of natural nucleosides, integrating themselves into viral genetic material during replication, and subsequently inhibiting the virus's ability to reproduce. They are used to treat a variety of viral infections, including herpes simplex, hepatitis B, and acquired immunodeficiency syndrome (AIDS). This review offers the development and mechanisms of atypical nucleoside antiviral agents that target novel sites on viral polymerase and other antiviral targets of nucleoside molecules, highlighting their significance in response to emerging viral threats like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Hui Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China
| | - Baohu Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266001, China
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China.
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266001, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China.
| |
Collapse
|
2
|
Oliver-Guimera A, Murphy BG, Keel MK. The Nucleoside Analog GS-441524 Effectively Attenuates the In Vitro Replication of Multiple Lineages of Circulating Canine Distemper Viruses Isolated from Wild North American Carnivores. Viruses 2025; 17:150. [PMID: 40006905 PMCID: PMC11861726 DOI: 10.3390/v17020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Canine distemper is a severe and lethal viral disease of dogs and wild carnivores with an urgent need for the identification of effective antiviral agents against canine distemper virus (CDV). We assessed multiple agents for their ability to block the replication of three different lineages of CDV isolated from wild carnivores in the United States. Six antiviral compounds were selected after preliminary experiments that excluded ribavirin, hesperidin and rutin: a protease inhibitor (nirmatrelvir), a polymerase inhibitor (favipiravir) and four nucleoside analogs (remdesivir, GS-441524, EIDD2801 and EIDD1931). Antiviral efficacy was determined by the attenuation of the cytopathic effect in a CDV-susceptible cell line and the inhibition of viral RNA replication. The nucleoside analog GS-441524 effectively blocked the replication of CDV at pharmacologically relevant concentrations. Four other antiviral agents inhibited CDV replication to a lesser degree (remdesivir, nirmatrelvir, EIDD2801 and EIDD1931). The replication of different viral lineages was differentially inhibited by the antivirals. Several of the nucleoside analogs have been safely used previously in carnivore species for the treatment of other viral diseases, suggesting that they may be promising candidates for the treatment of canine distemper in dogs. Our results emphasize the need to consider different viral lineages in the screening of antiviral compounds.
Collapse
Affiliation(s)
- Arturo Oliver-Guimera
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
- Veterinary Pathology Service, School of Veterinary Medicine, Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
| | - M. Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA; (A.O.-G.); (B.G.M.)
| |
Collapse
|
3
|
Raczkiewicz I, Rivière C, Bouquet P, Desmarets L, Tarricone A, Camuzet C, François N, Lefèvre G, Silva Angulo F, Robil C, Trottein F, Sahpaz S, Dubuisson J, Belouzard S, Goffard A, Séron K. Hyperforin, the major metabolite of St. John's wort, exhibits pan-coronavirus antiviral activity. Front Microbiol 2024; 15:1443183. [PMID: 39176276 PMCID: PMC11339956 DOI: 10.3389/fmicb.2024.1443183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.
Collapse
Affiliation(s)
- Imelda Raczkiewicz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Audrey Tarricone
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Anne Goffard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
4
|
Mesaros EF, Dugan BJ, Gao M, Sheraz M, McGovern-Gooch K, Xu F, Fan KY, Nguyen D, Kultgen SG, Lindstrom A, Stever K, Tercero B, Binder RJ, Liu F, Micolochick Steuer HM, Mani N, Harasym TO, Thi EP, Cuconati A, Dorsey BD, Cole AG, Lam AM, Sofia MJ. Discovery of C-Linked Nucleoside Analogues with Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2024; 10:1780-1792. [PMID: 38651692 DOI: 10.1021/acsinfecdis.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.
Collapse
Affiliation(s)
- Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin J Dugan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Muhammad Sheraz
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Fran Xu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Aaron Lindstrom
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Breanna Tercero
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Randall J Binder
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Cuconati
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Angela M Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
5
|
Hurwitz SJ, De R, LeCher JC, Downs-Bowen JA, Goh SL, Zandi K, McBrayer T, Amblard F, Patel D, Kohler JJ, Bhasin M, Dobosh BS, Sukhatme V, Tirouvanziam RM, Schinazi RF. Why Certain Repurposed Drugs Are Unlikely to Be Effective Antivirals to Treat SARS-CoV-2 Infections. Viruses 2024; 16:651. [PMID: 38675992 PMCID: PMC11053489 DOI: 10.3390/v16040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Most repurposed drugs have proved ineffective for treating COVID-19. We evaluated median effective and toxic concentrations (EC50, CC50) of 49 drugs, mostly from previous clinical trials, in Vero cells. Ratios of reported unbound peak plasma concentrations, (Cmax)/EC50, were used to predict the potential in vivo efficacy. The 20 drugs with the highest ratios were retested in human Calu-3 and Caco-2 cells, and their CC50 was determined in an expanded panel of cell lines. Many of the 20 drugs with the highest ratios were inactive in human Calu-3 and Caco-2 cells. Antivirals effective in controlled clinical trials had unbound Cmax/EC50 ≥ 6.8 in Calu-3 or Caco-2 cells. EC50 of nucleoside analogs were cell dependent. This approach and earlier availability of more relevant cultures could have reduced the number of unwarranted clinical trials.
Collapse
Affiliation(s)
- Selwyn J. Hurwitz
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Jessica A. Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Tamara McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - James J. Kohler
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| | - Manoj Bhasin
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Brian S. Dobosh
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Vikas Sukhatme
- Morningside Center for Innovative and Affordable Medicine, Departments of Medicine and Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rabindra M. Tirouvanziam
- Center for Cystic Fibrosis & Airways Disease Research, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Emory University and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA 30322, USA; (M.B.); (B.S.D.); (R.M.T.)
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA 30322, USA; (S.J.H.); (R.D.); (J.C.L.); (J.A.D.-B.); (S.L.G.); (K.Z.); (T.M.); (F.A.); (D.P.); (J.J.K.)
| |
Collapse
|
6
|
Jia W, Ouyang Y, Zhang S, Du X, Zhang P, Huang S. Nanopore Signatures of Nucleoside Drugs. NANO LETTERS 2023; 23:9437-9444. [PMID: 37818841 DOI: 10.1021/acs.nanolett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.
Collapse
Affiliation(s)
- Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yusheng Ouyang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
7
|
Yang L, Wang Z. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. Eur J Med Chem 2023; 257:115503. [PMID: 37229831 PMCID: PMC10193775 DOI: 10.1016/j.ejmech.2023.115503] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in millions of deaths globally, highlighting the need to develop potent prophylactic and therapeutic strategies against SARS-CoV-2. Small molecule inhibitors (remdesivir, Paxlovid, and molnupiravir) are essential complements to vaccines and play important roles in clinical treatment of SARS-CoV-2. Many advances have been made in development of anti-SARS-CoV-2 inhibitors in China, but progress in discovery and characterization of pharmacological activity, antiviral mechanisms, and clinical efficacy are limited. We review development of small molecule anti-SARS-CoV-2 drugs (azvudine [approved by the NMPA of China on July 25, 2022], VV116 [approved by the NMPA of China on January 29, 2023], FB2001, WPV01, pentarlandir, and cepharanthine) in China and summarize their pharmacological activity, potential mechanisms of action, clinical trials and use, and important milestones in their discovery. The role of structural biology in drug development is also reviewed. Future studies should focus on development of diverse second-generation inhibitors with excellent oral bioavailability, superior plasma half-life, increased antiviral activity against SARS-CoV-2 and its variants, high target specificity, minimal side effects, reduced drug-drug interactions, and improved lung histopathology.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
8
|
Sun C, Liu B, Zhou F, Zheng Q, Dai C, Wei W, Liao G, Sun Y. Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography. Molecules 2023; 28:5634. [PMID: 37570604 PMCID: PMC10420250 DOI: 10.3390/molecules28155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
SARS-CoV-2 is a highly contagious and pathogenic virus that first appeared in late December 2019 and caused a global pandemic in a short period. The virus is a single-stranded RNA virus belonging to the Coronaviridae family. Numerous treatments have been developed and tested in response to the pandemic, particularly antiviral drugs. Among them, GS441524 (GS441), a nucleoside antiviral drug, has demonstrated promising results in inhibiting SARS-CoV-2. Nevertheless, the limited oral bioavailability of GS441 restricts its application to patients with the virus. In this study, a novel prodrug of GS441 (NGP-1) with an isobutyl ester and cyclic carbonate structure was designed and synthesized. Its purity and the stability in different artificial digestive juices of NGP-1 was determined with HPLC-DAD methods. The pharmacokinetics of NGP-1 and GS441 were studied in rats via gavage administration. A new LC-MS/MS method was developed to quantitatively analyze GS441 in plasma samples. The results showed that the ka, Cmax, and MRT of converted GS441 from NGP-1 were 5.9, 3, and 2.5 times greater than those of GS441 alone. The Frel of NGP-1 was approximately four-fold that of GS441, with an AUC0-∞ of 9716.3 h·ng mL-1. As a prodrug of GS441, NGP-1 increased its lipophilicity, absorption, and bioavailability, indicating that it holds promise in improving the clinical efficacy of anti-SARS-CoV-2 medications.
Collapse
Affiliation(s)
- Chen Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Bo Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Fengzhi Zhou
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Qianqian Zheng
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Chunmei Dai
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Wei Wei
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuqi Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
9
|
Kirkwood‐Johnson L, Marikawa Y. Developmental toxicity of remdesivir, an anti-COVID-19 drug, is implicated by in vitro assays using morphogenetic embryoid bodies of mouse and human pluripotent stem cells. Birth Defects Res 2023; 115:224-239. [PMID: 36349436 PMCID: PMC9877128 DOI: 10.1002/bdr2.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Remdesivir is an antiviral drug approved for the treatment of COVID-19, whose developmental toxicity remains unclear. More information about the safety of remdesivir is urgently needed for people of childbearing potential, who are affected by the ongoing pandemic. Morphogenetic embryoid bodies (MEBs) are three-dimensional (3D) aggregates of pluripotent stem cells that recapitulate embryonic body patterning in vitro, and have been used as effective embryo models to detect the developmental toxicity of chemical exposures specifically and sensitively. METHODS MEBs were generated from mouse P19C5 and human H9 pluripotent stem cells, and used to examine the effects of remdesivir. The morphological effects were assessed by analyzing the morphometric parameters of MEBs after exposure to varying concentrations of remdesivir. The molecular impact of remdesivir was evaluated by measuring the transcript levels of developmental regulator genes. RESULTS The mouse MEB morphogenesis was impaired by remdesivir at 1-8 μM. Remdesivir affected MEBs in a manner dependent on metabolic conversion, and its potency was higher than GS-441524 and GS-621763, presumptive anti-COVID-19 drugs that act similarly to remdesivir. The expressions of developmental regulator genes, particularly those involved in axial and somite patterning, were dysregulated by remdesivir. The early stage of MEB development was more vulnerable to remdesivir exposure than the later stage. The morphogenesis and gene expression profiles of human MEBs were also impaired by remdesivir at 1-8 μM. CONCLUSIONS Remdesivir impaired mouse and human MEBs at concentrations that are comparable to the therapeutic plasma levels in humans, urging further investigation into the potential impact of remdesivir on developing embryos.
Collapse
Affiliation(s)
- Lauren Kirkwood‐Johnson
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, Department of Anatomy, Biochemistry and PhysiologyJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, Department of Anatomy, Biochemistry and PhysiologyJohn A. Burns School of Medicine, University of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
10
|
Lee J, Kim J, Kang J, Lee HJ. COVID-19 drugs: potential interaction with ATP-binding cassette transporters P-glycoprotein and breast cancer resistance protein. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:1-22. [PMID: 36320434 PMCID: PMC9607806 DOI: 10.1007/s40005-022-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023]
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in acute respiratory distress, fatal systemic manifestations (extrapulmonary as well as pulmonary), and premature mortality among many patients. Therapy for COVID-19 has focused on the treatment of symptoms and of acute inflammation (cytokine storm) and the prevention of viral infection. Although the mechanism of COVID-19 is not fully understood, potential clinical targets have been identified for pharmacological, immunological, and vaccinal approaches. Area covered Pharmacological approaches including drug repositioning have been a priority for initial COVID-19 therapy due to the time-consuming nature of the vaccine development process. COVID-19 drugs have been shown to manage the antiviral infection cycle (cell entry and replication of proteins and genomic RNA) and anti-inflammation. In this review, we evaluated the interaction of current COVID-19 drugs with two ATP-binding cassette transporters [P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP)] and potential drug-drug interactions (DDIs) among COVID-19 drugs, especially those associated with P-gp and BCRP efflux transporters. Expert opinion Overall, understanding the pharmacodynamic/pharmacokinetic DDIs of COVID-19 drugs can be useful for pharmacological therapy in COVID-19 patients.
Collapse
Affiliation(s)
- Jaeok Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jihye Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jiyeon Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
11
|
Wang Z, Yang L, Song XQ. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front Immunol 2022; 13:1015355. [PMID: 36561747 PMCID: PMC9763260 DOI: 10.3389/fimmu.2022.1015355] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| |
Collapse
|
12
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Rasmussen HB, Thomsen R, Hansen PR. Nucleoside analog GS-441524: pharmacokinetics in different species, safety, and potential effectiveness against Covid-19. Pharmacol Res Perspect 2022; 10:e00945. [PMID: 35396928 PMCID: PMC8994193 DOI: 10.1002/prp2.945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/28/2022] Open
Abstract
GS-441524, the parent nucleoside of remdesivir, has been proposed to be effective against Covid-19 based on in vitro studies and studies in animals. However, randomized clinical trials of the agent to treat Covid-19 have not been conducted. Here, we evaluated GS-441524 for Covid-19 treatment based on studies reporting pharmacokinetic parameters of the agent in mice, rats, cats, dogs, monkeys, and the single individual in the first-in-human trial supplemented with information about its activity against severe acute respiratory syndrome coronavirus 2 and safety. A dosing interval of 8 h was considered clinically relevant and used to calculate steady-state plasma concentrations of GS-441524. These ranged from 0.27 to 234.41 μM, reflecting differences in species, doses, and administration routes. Fifty percent maximal inhibitory concentrations of GS-441524 against severe acute respiratory syndrome coronavirus 2 ranged from 0.08 μM to above 10 μM with a median of 0.87 μM whereas concentrations required to produce 90% of the maximal inhibition of the virus varied from 0.18 µM to more than 20 µM with a median of 1.42 µM in the collected data. Most of these concentrations were substantially lower than the calculated steady-state plasma concentrations of the agent. Plasma exposures to orally administered GS-441524, calculated after normalization of doses, were larger for dogs, mice, and rats than cynomolgus monkeys and humans, probably reflecting interspecies differences in oral uptake with reported oral bioavailabilities below 8.0% in cynomolgus monkeys and values as high as 92% in dogs. Reported oral bioavailabilities in rodents ranged from 12% to 57%. Using different presumptions, we estimated human oral bioavailability of GS-441524 at 13% and 20%. Importantly, doses of GS-441524 lower than the 13 mg/kg dose used in the first-in-human trial may be effective against Covid-19. Also, GS-441524 appears to be well-tolerated. In conclusion, GS-441524 has potential for oral treatment of Covid-19.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark.,Department of Science and Environment, Roskilde University Center, Roskilde, Denmark
| | - Ragnar Thomsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Riis Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|