1
|
Han J, Lin C, Zhu T, Liu Y, Yan J, Qi Z, Yan X. Comprehensive Chloroplast Genomic Insights into Amaranthus: Resolving the Phylogenetic and Taxonomic Status of A. powellii and A. bouchonii. PLANTS (BASEL, SWITZERLAND) 2025; 14:649. [PMID: 40094558 PMCID: PMC11902225 DOI: 10.3390/plants14050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Amaranthus, a genus in Amaranthaceae, is divided into three subgenera-Amaranthus, Acnida, and Albersia-and contains approximately 70 to 80 species. Understanding its phylogenetic relationships is essential for species classification, genetic diversity assessment, and evolutionary studies. This knowledge is vital for improving Amaranthus utilization in crop improvement and managing the ecological impacts of invasive weeds. In this study, we analyzed the chloroplast genomes of 27 Amaranthus species across all three subgenera to characterize their genomic features and construct a comprehensive phylogenetic tree. Our aim was to elucidate the phylogenetic relationships within the genus and evaluate interspecific affinities among the subgenera. We also addressed the taxonomic ambiguity surrounding A. bouchonii and A. powellii to determine their distinct species within the genus. Chloroplast genome sizes ranged from 149,949 to 150,818 bp, with GC content varying between 36.52% and 36.63%. Comparative structural analyses confirmed highly conserved quadripartite structures, gene content, and organization, comprising 87 protein-coding genes, 37 tRNAs, and 8 rRNAs. Repeat and codon usage analyses revealed conserved repeat patterns and a preference for codons ending in A or U. Selection pressure analysis indicated a predominantly purifying selection, with matK showing signs of positive selection, particularly in A. spinosus. Phylogenetic analysis of 80 protein-coding genes confirmed the monophyly of subgenus Amaranthus but found Alberisa and Acnida to be paraphyletic. Despite their morphological similarity, A. bouchonii and A. powellii were placed in separate clades within subgenus Amaranthus, with A. bouchonii clustering with A. retroflexus, and A. powellii aligning with the A. hybridus complex. Additionally, we identified 16 variable regions as potential molecular markers for species identification. Our study provides the most comprehensive Amaranthus chloroplast genome dataset to date, offering new insights into its evolutionary relationships and valuable genomic resources for taxonomy, germplasm management, and invasive risk assessment.
Collapse
Affiliation(s)
- Jizhe Han
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.H.); (T.Z.); (Y.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (C.L.); (J.Y.)
| | - Chuhang Lin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (C.L.); (J.Y.)
| | - Tingting Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.H.); (T.Z.); (Y.L.)
| | - Yonghui Liu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.H.); (T.Z.); (Y.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (C.L.); (J.Y.)
| | - Jing Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (C.L.); (J.Y.)
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.H.); (T.Z.); (Y.L.)
| | - Xiaoling Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (C.L.); (J.Y.)
| |
Collapse
|
2
|
Chen K, Yang H, Wu D, Peng Y, Lian L, Bai L, Wang L. Weed biology and management in the multi-omics era: Progress and perspectives. PLANT COMMUNICATIONS 2024; 5:100816. [PMID: 38219012 PMCID: PMC11009161 DOI: 10.1016/j.xplc.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Weeds pose a significant threat to crop production, resulting in substantial yield reduction. In addition, they possess robust weedy traits that enable them to survive in extreme environments and evade human control. In recent years, the application of multi-omics biotechnologies has helped to reveal the molecular mechanisms underlying these weedy traits. In this review, we systematically describe diverse applications of multi-omics platforms for characterizing key aspects of weed biology, including the origins of weed species, weed classification, and the underlying genetic and molecular bases of important weedy traits such as crop-weed interactions, adaptability to different environments, photoperiodic flowering responses, and herbicide resistance. In addition, we discuss limitations to the application of multi-omics techniques in weed science, particularly compared with their extensive use in model plants and crops. In this regard, we provide a forward-looking perspective on the future application of multi-omics technologies to weed science research. These powerful tools hold great promise for comprehensively and efficiently unraveling the intricate molecular genetic mechanisms that underlie weedy traits. The resulting advances will facilitate the development of sustainable and highly effective weed management strategies, promoting greener practices in agriculture.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Lianyang Bai
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lifeng Wang
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Raiyemo DA, Tranel PJ. Comparative analysis of dioecious Amaranthus plastomes and phylogenomic implications within Amaranthaceae s.s. BMC Ecol Evol 2023; 23:15. [PMID: 37149567 PMCID: PMC10164334 DOI: 10.1186/s12862-023-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The genus Amaranthus L. consists of 70-80 species distributed across temperate and tropical regions of the world. Nine species are dioecious and native to North America; two of which are agronomically important weeds of row crops. The genus has been described as taxonomically challenging and relationships among species including the dioecious ones are poorly understood. In this study, we investigated the phylogenetic relationships among the dioecious amaranths and sought to gain insights into plastid tree incongruence. A total of 19 Amaranthus species' complete plastomes were analyzed. Among these, seven dioecious Amaranthus plastomes were newly sequenced and assembled, an additional two were assembled from previously published short reads sequences and 10 other plastomes were obtained from a public repository (GenBank). RESULTS Comparative analysis of the dioecious Amaranthus species' plastomes revealed sizes ranged from 150,011 to 150,735 bp and consisted of 112 unique genes (78 protein-coding genes, 30 transfer RNAs and 4 ribosomal RNAs). Maximum likelihood trees, Bayesian inference trees and splits graphs support the monophyly of subgenera Acnida (7 dioecious species) and Amaranthus; however, the relationship of A. australis and A. cannabinus to the other dioecious species in Acnida could not be established, as it appears a chloroplast capture occurred from the lineage leading to the Acnida + Amaranthus clades. Our results also revealed intraplastome conflict at some tree branches that were in some cases alleviated with the use of whole chloroplast genome alignment, indicating non-coding regions contribute valuable phylogenetic signals toward shallow relationship resolution. Furthermore, we report a very low evolutionary distance between A. palmeri and A. watsonii, indicating that these two species are more genetically related than previously reported. CONCLUSIONS Our study provides valuable plastome resources as well as a framework for further evolutionary analyses of the entire Amaranthus genus as more species are sequenced.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Raiyemo DA, Bobadilla LK, Tranel PJ. Genomic profiling of dioecious Amaranthus species provides novel insights into species relatedness and sex genes. BMC Biol 2023; 21:37. [PMID: 36804015 PMCID: PMC9940365 DOI: 10.1186/s12915-023-01539-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Amaranthus L. is a diverse genus consisting of domesticated, weedy, and non-invasive species distributed around the world. Nine species are dioecious, of which Amaranthus palmeri S. Watson and Amaranthus tuberculatus (Moq.) J.D. Sauer are troublesome weeds of agronomic crops in the USA and elsewhere. Shallow relationships among the dioecious Amaranthus species and the conservation of candidate genes within previously identified A. palmeri and A. tuberculatus male-specific regions of the Y (MSYs) in other dioecious species are poorly understood. In this study, seven genomes of dioecious amaranths were obtained by paired-end short-read sequencing and combined with short reads of seventeen species in the family Amaranthaceae from NCBI database. The species were phylogenomically analyzed to understand their relatedness. Genome characteristics for the dioecious species were evaluated and coverage analysis was used to investigate the conservation of sequences within the MSY regions. RESULTS We provide genome size, heterozygosity, and ploidy level inference for seven newly sequenced dioecious Amaranthus species and two additional dioecious species from the NCBI database. We report a pattern of transposable element proliferation in the species, in which seven species had more Ty3 elements than copia elements while A. palmeri and A. watsonii had more copia elements than Ty3 elements, similar to the TE pattern in some monoecious amaranths. Using a Mash-based phylogenomic analysis, we accurately recovered taxonomic relationships among the dioecious Amaranthus species that were previously identified based on comparative morphology. Coverage analysis revealed eleven candidate gene models within the A. palmeri MSY region with male-enriched coverages, as well as regions on scaffold 19 with female-enriched coverage, based on A. watsonii read alignments. A previously reported FLOWERING LOCUS T (FT) within A. tuberculatus MSY contig was also found to exhibit male-enriched coverages for three species closely related to A. tuberculatus but not for A. watsonii reads. Additional characterization of the A. palmeri MSY region revealed that 78% of the region is made of repetitive elements, typical of a sex determination region with reduced recombination. CONCLUSIONS The results of this study further increase our understanding of the relationships among the dioecious species of the Amaranthus genus as well as revealed genes with potential roles in sex function in the species.
Collapse
Affiliation(s)
- Damilola A Raiyemo
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Panozzo S, Farinati S, Sattin M, Scarabel L. Can allele-specific loop-mediated isothermal amplification be used for rapid detection of target-site herbicide resistance in Lolium spp.? PLANT METHODS 2023; 19:14. [PMID: 36750938 PMCID: PMC9906911 DOI: 10.1186/s13007-023-00989-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Herbicide resistance is one of the threats to modern agriculture and its early detection is one of the most effective components for sustainable resistance management strategies. Many techniques have been used for target-site-resistance detection. Allele-Specific Loop-Mediated Isothermal Amplification (AS-LAMP) was evaluated as a possible rapid diagnostic method for acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibiting herbicides resistance in Lolium spp. RESULTS AS-LAMP protocols were set up for the most frequent mutations responsible for herbicide resistance to ALS (positions 197, 376 and 574) and ACCase (positions 1781, 2041 and 2078) inhibitors in previously characterized and genotyped Lolium spp. POPULATIONS A validation step on new putative resistant populations gave the overview of a possible use of this tool for herbicide resistance diagnosis in Lolium spp. Regarding the ACCase inhibitor pinoxaden, in more than 65% of the analysed plants, the LAMP assay and genotyping were in keeping, whereas the results were not consistent when ALS inhibitors resistance was considered. Limitations on the use of this technique for herbicide resistance detection in the allogamous Lolium spp. are discussed. CONCLUSIONS The LAMP method used for the detection of target-site resistance in weed species could be applicable with target genes that do not have high genetic variability, such as ACCase gene in Lolium spp.
Collapse
Affiliation(s)
- Silvia Panozzo
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Maurizio Sattin
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Laura Scarabel
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
6
|
Genetic variation and structure of complete chloroplast genome in alien monoecious and dioecious Amaranthus weeds. Sci Rep 2022; 12:8255. [PMID: 35585207 PMCID: PMC9117656 DOI: 10.1038/s41598-022-11983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
Amaranthus is a complex taxon with economic importance as well as harmful weeds. We studied the genetic variation and structure of the chloroplast genomes of 22 samples from 17 species of three subgenera. It was found that the length of the chloroplast genome of Amaranthus varied from 149,949 bp of A. polygonoides to 150,757 bp of A. albus. The frequencies of SNPs and InDels in chloroplast genomes were 1.79% and 2.86%, and the variation mainly occurred in the non-coding regions. The longest InDel was 387 bp, which occurred on ycf2, followed by 384 bp InDel on psbM-trnD. Two InDels in ndhE-I on the SSC make the three subgenera clearly distinguished. In LSC, SSC and IRs regions, there were four 30 bp forward and reverse repeats, and the repeats in SSC and LSC were in nearly opposite positions in circular genome structure, and almost divided the circular genome into symmetrical structures. In the topological tree constructed by chloroplast genome, species in subgen. Amaranthus and subgen. Acnida form monophyletic branches separately and cluster together. A. albus, A. blitoides and A. polygonoides were separated from subgen. Albersia, and the rest of subgen. Albersia were clustered into a monophyletic branch. The rpoC2, ycf1, ndhF-rpl32 were good at distinguishing most amaranths. The trnk-UUU-atpF, trnT-UGU-atpB, psbE-clpP, rpl14-rps19, and ndhF-D can distinguish several similar species. In general, the chloroplast genome is of certain value for the identification of the similar species of Amaranthus, which provides more evidence for clarifying the phylogenetic relationships within the genus.
Collapse
|
7
|
Kreiner JM, Tranel PJ, Weigel D, Stinchcombe JR, Wright SI. The genetic architecture and population genomic signatures of glyphosate resistance in Amaranthus tuberculatus. Mol Ecol 2021; 30:5373-5389. [PMID: 33853196 DOI: 10.1111/mec.15920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, despite the increasingly recognized importance of polygenic resistance. Little work has been done to characterize the broader genomic basis of herbicide resistance, including the number and distribution of genes involved, their effect sizes, allele frequencies and signatures of selection. In this work, we implemented genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate (Round-up) resistance in the problematic agricultural weed Amaranthus tuberculatus. A GWA was able to correctly identify the known target-gene but statistically controlling for two causal target-site mechanisms revealed an additional 250 genes across all 16 chromosomes associated with non-target-site resistance (NTSR). The encoded proteins had functions that have been linked to NTSR, the most significant of which is response to chemicals, but also showed pleiotropic roles in reproduction and growth. Compared to an empirical null that accounts for complex population structure, the architecture of NTSR was enriched for large effect sizes and low allele frequencies, suggesting the role of pleiotropic constraints on its evolution. The enrichment of rare alleles also suggested that the genetic architecture of NTSR may be population-specific and heterogeneous across the range. Despite their rarity, we found signals of recent positive selection on NTSR-alleles by both window- and haplotype-based statistics, and an enrichment of amino acid changing variants. In our samples, genome-wide single nucleotide polymorphisms explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, even in a collection of individuals where 80% of resistant individuals have large-effect TSR mutations, indicating an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Koffler Scientific Reserve, University of Toronto, King City, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Tranel PJ. Herbicide resistance in Amaranthus tuberculatus †. PEST MANAGEMENT SCIENCE 2021; 77:43-54. [PMID: 32815250 DOI: 10.1002/ps.6048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 05/23/2023]
Abstract
Amaranthus tuberculatus is the major weed species in many midwestern US row-crop production fields, and it is among the most problematic weeds in the world in terms of its ability to evolve herbicide resistance. It has now evolved resistance to herbicides spanning seven unique sites of action, with populations and even individual plants often possessing resistance to several herbicides/herbicide groups. Historically, herbicide target-site changes accounted for most of the known resistance mechanisms in this weed; however, over the last few years, non-target-site mechanisms, particularly enhanced herbicide detoxification, have become extremely common in A. tuberculatus. Unravelling the genetics and molecular details of non-target-site resistance mechanisms, understanding the extent to which they confer cross resistance to other herbicides, and understanding how they evolve remain as critical research endeavors. Transcriptomic and genomics approaches are already facilitating such studies, the results of which hopefully will inform better resistance-mitigation strategies. The largely unprecedented level of herbicide resistance in A. tuberculatus is not only a fascinating example of evolution in action, but it is a serious and growing threat to the sustainability of midwestern US cropping systems. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
9
|
Shaikh KM, Kumar P, Nesamma AA, Abdin MZ, Jutur PP. Hybrid genome assembly and functional annotation reveals insights on lipid biosynthesis of oleaginous native isolate Parachlorella kessleri, a potential industrial strain for production of biofuel precursors. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Montgomery JS, Giacomini D, Waithaka B, Lanz C, Murphy BP, Campe R, Lerchl J, Landes A, Gatzmann F, Janssen A, Antonise R, Patterson E, Weigel D, Tranel PJ. Draft Genomes of Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri. Genome Biol Evol 2020; 12:1988-1993. [PMID: 32835372 PMCID: PMC7643611 DOI: 10.1093/gbe/evaa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
Amaranthus tuberculatus, Amaranthus hybridus, and Amaranthus palmeri are agronomically important weed species. Here, we present the most contiguous draft assemblies of these three species to date. We utilized a combination of Pacific Biosciences long-read sequencing and chromatin contact mapping information to assemble and order sequences of A. palmeri to near-chromosome-level resolution, with scaffold N50 of 20.1 Mb. To resolve the issues of heterozygosity and coassembly of alleles in diploid species, we adapted the trio binning approach to produce haplotype assemblies of A. tuberculatus and A. hybridus. This approach resulted in an improved assembly of A. tuberculatus, and the first genome assembly for A. hybridus, with contig N50s of 2.58 and 2.26 Mb, respectively. Species-specific transcriptomes and information from related species were used to predict transcripts within each assembly. Syntenic comparisons of these species and Amaranthus hypochondriacus identified sites of genomic rearrangement, including duplication and translocation, whereas genetic map construction within A. tuberculatus highlighted the need for further ordering of the A. hybridus and A. tuberculatus contigs. These multiple reference genomes will accelerate genomic studies in these species to further our understanding of weedy evolution within Amaranthus.
Collapse
Affiliation(s)
| | | | - Bridgit Waithaka
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christa Lanz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Brent P Murphy
- Department of Crop Sciences, University of Illinois, Urbana
| | | | | | | | | | | | | | - Eric Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
11
|
Bai S, Zhao Y, Zhou Y, Wang M, Li Y, Luo X, Li L. Identification and expression of main genes involved in non-target site resistance mechanisms to fenoxaprop-p-ethyl in Beckmannia syzigachne. PEST MANAGEMENT SCIENCE 2020; 76:2619-2626. [PMID: 32083373 DOI: 10.1002/ps.5800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Non-target-site resistance (NTSR) to herbicides is a serious threat to global agriculture. Although metabolic resistance is the dominant mechanism of NTSR, the molecular mechanisms are not yet well-characterized. This study aimed to uncover the likely metabolism-related genes in Beckmannia syzigachne (American sloughgrass) resistant to fenoxaprop-p-ethyl. RESULTS Ultra-performance liquid chromatography - tandem mass spectrometry experiments showed that the resistant American sloughgrass biotype (R, SD-04-SS) showed enhanced degradation of this herbicide compared to the susceptible biotype (S, SD-12). R and S biotype were harvested at 24 h after fenoxaprop-p-ethyl treatment to conduct RNA sequencing (RNA-Seq) analysis to investigate the likely fenoxaprop-p-ethyl metabolic genes. The RNA-Seq libraries yield 417 969 980 clean reads. The de novo assembly generated 115 112 unigenes, of which 57 906 unigenes were annotated. Finally, we identified 273 cytochrome P450s, 178 oxidases, 47 glutathione S-transferases (GSTs), 166 glucosyltransferases (GTs) and 180 ABC transporter genes to determine the likely fenoxaprop-p-ethyl metabolism-related genes in R biotype. Twelve overlapping up-regulated genes in the R biotype (fenoxaprop-p-ethyl-treated R/non-treated R, fenoxaprop-p-ethyl-treated R/fenoxaprop-p-ethyl-treated S) were identified by RNA-Seq and the results were validated using qRT-PCR. Ten were identified as fenoxaprop-p-ethyl metabolism-related genes, including three P450s (homologous to CYP71D7, CYP99A2 and CYP71D10), one GST (homologous to GSTF1), two GTs (homologous to UGT90A1 and UGT83A1) and four oxidase genes. CONCLUSION This work demonstrates that the NTSR mechanism by means of enhanced detoxification of fenoxaprop-p-ethyl in American sloughgrass is very likely driven by herbicide metabolism related genes. The RNA-Seq data presented here provide a valuable resource for understanding the molecular mechanism of NTSR in American sloughgrass. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Bai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Yanfang Zhao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Yuanming Zhou
- Central Laboratory of Qingdao Agricultural University, Qingdao, China
| | - Mingliang Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Yihui Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Xiaoyong Luo
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| | - Lingxu Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao, China
| |
Collapse
|
12
|
Species identification, phylogenetic analysis and detection of herbicide-resistant biotypes of Amaranthus based on ALS and ITS. Sci Rep 2020; 10:11735. [PMID: 32678146 PMCID: PMC7366686 DOI: 10.1038/s41598-020-68541-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/27/2020] [Indexed: 11/08/2022] Open
Abstract
The taxonomically challenging genus Amaranthus (Family Amaranthaceae) includes important agricultural weed species that are being spread globally as grain contaminants. We hypothesized that the ALS gene will help resolve these taxonomic challenges and identify potentially harmful resistant biotypes. We obtained 153 samples representing 26 species from three Amaranthus subgenera and included in that incorporated ITS, ALS (domains C, A and D) and ALS (domains B and E) sequences. Subgen. Albersia was well supported, but subgen. Amaranthus and subgen. Acnida were not. Amaranthus tuberculatus, A. palmeri and A. spinosus all showed different genetic structuring. Unique SNPs in ALS offered reliable diagnostics for most of the sampled Amaranthus species. Resistant ALS alleles were detected in sixteen A. tuberculatus samples (55.2%), eight A. palmeri (27.6%) and one A. arenicola (100%). These involved Ala122Asn, Pro197Ser/Thr/Ile, Trp574Leu, and Ser653Thr/Asn/Lys substitutions, with Ala122Asn, Pro197Thr/Ile and Ser653Lys being reported in Amaranthus for the first time. Moreover, different resistant mutations were present in different A. tuberculatus populations. In conclusion, the ALS gene is important for species identification, investigating population genetic diversity and understanding resistant evolution within the genus Amaranthus.
Collapse
|
13
|
Wang MM, Huang H, Shu L, Liu JM, Zhang JQ, Yan YL, Zhang DY. Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors. Beilstein J Org Chem 2020; 16:233-247. [PMID: 32180842 PMCID: PMC7059547 DOI: 10.3762/bjoc.16.25] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
A series of aryloxyacetic acid derivatives were designed and synthesized as 4-hydoxyphenylpyruvate dioxygenase (HPPD) inhibitors. Preliminary bioassay results reveal that these derivatives are promising Arabidopsis thaliana HPPD (AtHPPD) inhibitors, in particular compounds I12 (Ki = 0.011 µM) and I23 (Ki = 0.012 µM), which exhibit similar activities to that of mesotrione, a commercial HPPD herbicide (Ki = 0.013 µM). Furthermore, the newly synthesized compounds show significant greenhouse herbicidal activities against tested weeds at dosages of 150 g ai/ha. In particular, II4 exhibited high herbicidal activity for pre-emergence treatment that was slightly better than that of mesotrione. In addition, compound II4 was safe for weed control in maize fields at a rate of 150 g ai/ha, and was identified as the most potent candidate for a novel HPPD inhibitor herbicide. The compounds described herein may provide useful guidance for the design of new HPPD inhibiting herbicides and their modification.
Collapse
Affiliation(s)
- Man-Man Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hao Huang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lei Shu
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian-Min Liu
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian-Qiu Zhang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi-Le Yan
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Da-Yong Zhang
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
14
|
Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Proc Natl Acad Sci U S A 2019; 116:21076-21084. [PMID: 31570613 PMCID: PMC6800383 DOI: 10.1073/pnas.1900870116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While evolution has been thought of as playing out over millions of years, adaptation to new environments can occur very rapidly, presenting us with key opportunities to understand evolutionary dynamics. One of the most amazing examples of real-time evolution comes from agriculture, where due to the intense use of a few herbicides, many plant species have evolved herbicide resistance to become aggressive weeds. An important question has been whether herbicide resistance arises only rarely and then spreads quickly, or whether herbicide resistance arises all the time de novo. Our work with glyphosate resistance in US Midwestern and Canadian populations of Amaranthus tuberculatus reveals the answer to be, “it depends,” as we surprisingly find examples for both modes of evolution. The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the United States. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically nonagricultural. Moreover, resistance on these local, nonagricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the Midwestern United States show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.
Collapse
|
15
|
García MJ, Palma-Bautista C, Rojano-Delgado AM, Bracamonte E, Portugal J, Alcántara-de la Cruz R, De Prado R. The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus. Int J Mol Sci 2019; 20:E2396. [PMID: 31096560 PMCID: PMC6567628 DOI: 10.3390/ijms20102396] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
The introduction of glyphosate-resistant (GR) crops revolutionized weed management; however, the improper use of this technology has selected for a wide range of weeds resistant to glyphosate, referred to as superweeds. We characterized the high glyphosate resistance level of an Amaranthus hybridus population (GRH)-a superweed collected in a GR-soybean field from Cordoba, Argentina-as well as the resistance mechanisms that govern it in comparison to a susceptible population (GSH). The GRH population was 100.6 times more resistant than the GSH population. Reduced absorption and metabolism of glyphosate, as well as gene duplication of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or its overexpression did not contribute to this resistance. However, GSH plants translocated at least 10% more 14C-glyphosate to the rest of the plant and roots than GRH plants at 9 h after treatment. In addition, a novel triple amino acid substitution from TAP (wild type, GSH) to IVS (triple mutant, GRH) was identified in the EPSPS gene of the GRH. The nucleotide substitutions consisted of ATA102, GTC103 and TCA106 instead of ACA102, GCG103, and CCA106, respectively. The hydrogen bond distances between Gly-101 and Arg-105 positions increased from 2.89 Å (wild type) to 2.93 Å (triple-mutant) according to the EPSPS structural modeling. These results support that the high level of glyphosate resistance of the GRH A. hybridus population was mainly governed by the triple mutation TAP-IVS found of the EPSPS target site, but the impaired translocation of herbicide also contributed in this resistance.
Collapse
Affiliation(s)
- Maria J García
- Department of Botany, Ecology and Plant Physiology, University of Cordoba, 14071 Córdoba, Spain.
| | | | - Antonia M Rojano-Delgado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071 Cordoba, Spain.
| | - Enzo Bracamonte
- Faculty of Agricultural Sciences, National University of Cordoba (UNC), 5001 Cordoba, Argentina.
| | - João Portugal
- Department of Biosciences, Research Center for Endogenous Resource Valorization's, Polytechnic Institute of Beja, 7800-295 Beja, Portugal.
| | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071 Cordoba, Spain.
| |
Collapse
|
16
|
Kohlhase DR, O’Rourke JA, Owen MDK, Graham MA. Using RNA-seq to characterize responses to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide resistance in waterhemp (Amaranthus tuberculatus). BMC PLANT BIOLOGY 2019; 19:182. [PMID: 31060501 PMCID: PMC6501407 DOI: 10.1186/s12870-019-1795-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Waterhemp (Amaranthus tuberculatus (Moq.) J.D. Sauer) is a problem weed commonly found in the Midwestern United States that can cause crippling yield losses for both maize (Zea mays L.) and soybean (Glycine max L. Merr). In 2011, 4-hydroxyphenylpyruvate-dioxygenase (HPPD, EC 1.13.11.27) inhibitor herbicide resistance was first reported in two waterhemp populations. Since the discovery of HPPD-herbicide resistance, studies have identified the mechanism of resistance and described the inheritance of the herbicide resistance. However, no studies have examined genome-wide gene expression changes in response to herbicide treatment in herbicide resistant and susceptible waterhemp. RESULTS We conducted RNA-sequencing (RNA-seq) analyses of two waterhemp populations (HPPD-herbicide resistant and susceptible), from herbicide-treated and mock-treated leaf samples at three, six, twelve, and twenty-four hours after treatment (HAT). We performed a de novo transcriptome assembly using all sample sequences. Following assessments of our assembly, individual samples were mapped to the de novo transcriptome allowing us to identify transcripts specific to a genotype, herbicide treatment, or time point. Our results indicate that the response of HPPD-herbicide resistant and susceptible waterhemp genotypes to HPPD-inhibiting herbicide is rapid, established as soon as 3 hours after herbicide treatment. Further, there was little overlap in gene expression between resistant and susceptible genotypes, highlighting dynamic differences in response to herbicide treatment. In addition, we used stringent analytical methods to identify candidate single nucleotide polymorphisms (SNPs) that distinguish the resistant and susceptible genotypes. CONCLUSIONS The waterhemp transcriptome, herbicide-responsive genes, and SNPs generated in this study provide valuable tools for future studies by numerous plant science communities. This collection of resources is essential to study and understand herbicide effects on gene expression in resistant and susceptible weeds. Understanding how herbicides impact gene expression could allow us to develop novel approaches for future herbicide development. Additionally, an increased understanding of the prolific traits intrinsic in weed success could lead to crop improvement.
Collapse
Affiliation(s)
| | - Jamie A. O’Rourke
- U.S. Department of Agriculture (USDA)–Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA USA
| | | | - Michelle A. Graham
- U.S. Department of Agriculture (USDA)–Agricultural Research Service (ARS), Corn Insects and Crop Genetics Research Unit, Ames, IA USA
| |
Collapse
|
17
|
Sablok G, Amiryousefi A, He X, Hyvönen J, Poczai P. Sequencing the Plastid Genome of Giant Ragweed ( Ambrosia trifida, Asteraceae) From a Herbarium Specimen. FRONTIERS IN PLANT SCIENCE 2019; 10:218. [PMID: 30873197 PMCID: PMC6403193 DOI: 10.3389/fpls.2019.00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
We report the first plastome sequence of giant ragweed (Ambrosia trifida); with this new genome information, we assessed the phylogeny of Asteraceae and the transcriptional profiling against glyphosate resistance in giant ragweed. Assembly and genic features show a normal angiosperm quadripartite plastome structure with no signatures of deviation in gene directionality. Comparative analysis revealed large inversions across the plastome of giant ragweed and the previously sequenced members of the plant family. Asteraceae plastid genomes contain two inversions of 22.8 and 3.3 kb; the former is located between trnS-GCU and trnG-UCC genes, and the latter between trnE-UUC and trnT-GGU genes. The plastid genome sequences of A. trifida and the related species, Ambrosia artemisiifolia, are identical in gene content and arrangement, but they differ in length. The phylogeny is well-resolved and congruent with previous hypotheses about the phylogenetic relationship of Asteraceae. Transcriptomic analysis revealed divergence in the relative expressions at the exonic and intronic levels, providing hints toward the ecological adaptation of the genus. Giant ragweed shows various levels of glyphosate resistance, with introns displaying higher expression patterns at resistant time points after the assumed herbicide treatment.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xiaolan He
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit), University of Helsinki, Helsinki, Finland
- Organismal Evolution and Biology, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Liu W, Bai S, Zhao N, Jia S, Li W, Zhang L, Wang J. Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC PLANT BIOLOGY 2018; 18:225. [PMID: 30305027 PMCID: PMC6180388 DOI: 10.1186/s12870-018-1451-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/27/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Water chickweed (Myosoton aquaticum (L.)) is a dicot broadleaf weed that is widespread in winter fields in China, and has evolved serious resistance to acetolactate synthase (ALS) inhibiting herbicides. RESULTS We identified a M. aquaticum population exhibiting moderate (6.15-fold) resistance to tribenuron-methyl (TM). Target-site ALS gene sequencing revealed no known resistance mutations in these plants, and the in vitro ALS activity assays showed no differences in enzyme sensitivity between susceptible and resistant populations; however, resistance was reversed by pretreatment with the cytochrome P450 (CYP) monooxygenase inhibitor malathion. An RNA sequencing transcriptome analysis was performed to identify candidate genes involved in metabolic resistance, and the unigenes obtained by de novo transcriptome assembly were annotated across seven databases. In total, 34 differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time (qRT)-PCR. Ten consistently overexpressed contigs, including four for CYP, four for ATP-binding cassette (ABC) transporter, and two for peroxidase were further validated by qRT-PCR using additional plants from resistant and susceptible populations. Three CYP genes (with homology to CYP734A1, CYP76C1, and CYP86B1) and one ABC transporter gene (with homology to ABCC10) were highly expressed in all resistant plants. CONCLUSION The mechanism of TM resistance in M. aquaticum is controlled by NTSR rather than TSR. Four genes, CYP734A1, CYP76C1, CYP86B1, and ABCC10 could play essential role in metabolic resistance to TM and justify further functional studies. To our knowledge, this is the first large-scale transcriptome analysis of genes associated with NTSR in M. aquaticum using the Illumina platform. Our data provide resource for M. aquaticum biology, and will facilitate the study of herbicide resistance mechanism at the molecular level in this species as well as in other weeds.
Collapse
Affiliation(s)
- Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Shuang Bai
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Ning Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Sisi Jia
- Taian Customs, Taian, 271000 Shandong China
| | - Wei Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Lele Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
19
|
Vera Hernández FP, Martínez Núñez M, Ruiz Rivas M, Vázquez Portillo RE, Bibbins Martínez MD, Luna Suárez S, Rosas Cárdenas FDF. Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:713-721. [PMID: 29603549 DOI: 10.1111/plb.12725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Studies of gene expression are very important for the identification of genes that participate in different biological processes. Currently, reverse transcription quantitative real-time PCR (RT-qPCR) is a high-throughput, sensitive and widely used method for gene expression analysis. Nevertheless, RT-qPCR requires precise normalisation of data to avoid the misinterpretation of experimental data. In this sense, the selection of reference genes is critical for gene expression analysis. At this time, several studies focus on the selection of reference genes in several species. However, the identification and validation of reference genes for the normalisation of RT-qPCR have not been described in amaranth. A set of seven housekeeping genes were analysed using RT-qPCR, to determine the most stable reference genes in amaranth for normalisation of gene expression analysis. Transcript stability and gene expression level of candidate reference genes were analysed in different tissues, at different developmental stages and under different types of stress. The data were compared using the geNorm, NormFinder and Bestkeeper statistical methods. The reference genes optimum for normalisation of data varied with respect to treatment. The results indicate that AhyMDH, AhyGAPDH, AhyEF-1α and AhyACT would be optimum for accurate normalisation of experimental data, when all treatment are analysed in the same experiment. This study presents the most stable reference genes for normalisation of gene expression analysis in amaranth, which will contribute significantly to future gene studies of this species.
Collapse
Affiliation(s)
- F P Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Ruiz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - R E Vázquez Portillo
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M D Bibbins Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - S Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - F de F Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| |
Collapse
|
20
|
Tétard‐Jones C, Sabbadin F, Moss S, Hull R, Neve P, Edwards R. Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:709-720. [PMID: 29575327 PMCID: PMC5969246 DOI: 10.1111/tpj.13892] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 05/02/2023]
Abstract
Herbicide resistance in grass weeds is now one of the greatest threats to sustainable cereal production in Northern Europe. Multiple-herbicide resistance (MHR), a poorly understood multigenic and quantitative trait, is particularly problematic as it provides tolerance to most classes of chemistries currently used for post-emergence weed control. Using a combination of transcriptomics and proteomics, the evolution of MHR in populations of the weed blackgrass (Alopecurus myosuroides) has been investigated. While over 4500 genes showed perturbation in their expression in MHR versus herbicide sensitive (HS) plants, only a small group of proteins showed >2-fold changes in abundance, with a mere eight proteins consistently associated with this class of resistance. Of the eight, orthologues of three of these proteins are also known to be associated with multiple drug resistance (MDR) in humans, suggesting a cross-phyla conservation in evolved tolerance to chemical agents. Proteomics revealed that MHR could be classified into three sub-types based on the association with resistance to herbicides with differing modes of action (MoA), being either global, specific to diverse chemistries acting on one MoA, or herbicide specific. Furthermore, the proteome of MHR plants were distinct from that of HS plants exposed to a range of biotic (insect feeding, plant-microbe interaction) and abiotic (N-limitation, osmotic, heat, herbicide safening) challenges commonly encountered in the field. It was concluded that MHR in blackgrass is a uniquely evolving trait(s), associated with changes in the proteome that are distinct from responses to conventional plant stresses, but sharing common features with MDR in humans.
Collapse
Affiliation(s)
- Catherine Tétard‐Jones
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| | | | - Stephen Moss
- Stephen Moss Consulting7 Alzey GardensHarpendenHertfordshireAL5 5SZUK
| | - Richard Hull
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Paul Neve
- Rothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon‐TyneNE1 7RUUK
| |
Collapse
|
21
|
Evans AF, O'Brien SR, Ma R, Hager AG, Riggins CW, Lambert KN, Riechers DE. Biochemical characterization of metabolism-based atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1238-1249. [PMID: 28218978 PMCID: PMC5595711 DOI: 10.1111/pbi.12711] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S-transferase (GST) activity. In previous research, two atrazine-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine-glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity-purified fractions compared to an atrazine-sensitive population (WCS). One-dimensional electrophoresis of these fractions displayed an approximate 26-kDa band, typical of GST subunits. Several phi- and tau-class GSTs were identified by LC-MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi-class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.
Collapse
Affiliation(s)
- Anton F. Evans
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Sarah R. O'Brien
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Rong Ma
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Aaron G. Hager
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Chance W. Riggins
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Kris N. Lambert
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Dean E. Riechers
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
22
|
Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ. Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 2017; 15:74. [PMID: 28854926 PMCID: PMC5577786 DOI: 10.1186/s12915-017-0412-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Amaranth (Amaranthus hypochondriacus) was a food staple among the ancient civilizations of Central and South America that has recently received increased attention due to the high nutritional value of the seeds, with the potential to help alleviate malnutrition and food security concerns, particularly in arid and semiarid regions of the developing world. Here, we present a reference-quality assembly of the amaranth genome which will assist the agronomic development of the species. Results Utilizing single-molecule, real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C) to close assembly gaps and scaffold contigs, respectively, we improved our previously reported Illumina-based assembly to produce a chromosome-scale assembly with a scaffold N50 of 24.4 Mb. The 16 largest scaffolds contain 98% of the assembly and likely represent the haploid chromosomes (n = 16). To demonstrate the accuracy and utility of this approach, we produced physical and genetic maps and identified candidate genes for the betalain pigmentation pathway. The chromosome-scale assembly facilitated a genome-wide syntenic comparison of amaranth with other Amaranthaceae species, revealing chromosome loss and fusion events in amaranth that explain the reduction from the ancestral haploid chromosome number (n = 18) for a tetraploid member of the Amaranthaceae. Conclusions The assembly method reported here minimizes cost by relying primarily on short-read technology and is one of the first reported uses of in vivo Hi-C for assembly of a plant genome. Our analyses implicate chromosome loss and fusion as major evolutionary events in the 2n = 32 amaranths and clearly establish the homoeologous relationship among most of the subgenome chromosomes, which will facilitate future investigations of intragenomic changes that occurred post polyploidization. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0412-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D J Lightfoot
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), KAUST Environmental Epigenetic Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - D E Jarvis
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - T Ramaraj
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - R Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA
| | - E N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA
| | - P J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 5144 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
23
|
Chen J, Huang Z, Huang H, Wei S, Liu Y, Jiang C, Zhang J, Zhang C. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress. Sci Rep 2017; 7:46494. [PMID: 28429727 PMCID: PMC5399354 DOI: 10.1038/srep46494] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/17/2017] [Indexed: 01/17/2023] Open
Abstract
Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.
Collapse
Affiliation(s)
- Jingchao Chen
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Zhaofeng Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Hongjuan Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Shouhui Wei
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yan Liu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, P. R. China
| | - Cuilan Jiang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Chaoxian Zhang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
24
|
Morales A, Zurita-Silva A, Maldonado J, Silva H. Transcriptional Responses of Chilean Quinoa ( Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns. FRONTIERS IN PLANT SCIENCE 2017; 8:216. [PMID: 28337209 PMCID: PMC5340777 DOI: 10.3389/fpls.2017.00216] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 05/06/2023]
Abstract
HIGHLIGHTS R49 genotype displayed best performance on selected physiological parameters and highest tolerance to drought.R49 drought over-represented transcripts has exhibited 19% of genes (306 contigs) that presented no homology to published databases.Expression pattern for canonical responses to drought such as ABA biosynthesis and other genes induced in response to drought were assessed by qPCR. Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (Fv/Fm) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.
Collapse
Affiliation(s)
- Andrea Morales
- Centro de Estudios Avanzados en Zonas Áridas, Universidad de La SerenaLa Serena, Chile
| | - Andres Zurita-Silva
- Instituto de Investigaciones Agropecuarias, Centro de Investigación IntihuasiLa Serena, Chile
| | - Jonathan Maldonado
- Laboratorio de Genómica Funcional & Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de ChileSantiago, Chile
| | - Herman Silva
- Laboratorio de Genómica Funcional & Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de ChileSantiago, Chile
| |
Collapse
|
25
|
Babineau M, Mahmood K, Mathiassen SK, Kudsk P, Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genomics 2017; 18:128. [PMID: 28166737 PMCID: PMC5294808 DOI: 10.1186/s12864-017-3538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Loose silky bentgrass (Apera spica-venti) is an important weed in Europe with a recent increase in herbicide resistance cases. The lack of genetic information about this noxious weed limits its biological understanding such as growth, reproduction, genetic variation, molecular ecology and metabolic herbicide resistance. This study produced a reference transcriptome for A. spica-venti from different tissues (leaf, root, stem) and various growth stages (seed at phenological stages 05, 07, 08, 09). The de novo assembly was performed on individual and combined dataset followed by functional annotations. Individual transcripts and gene families involved in metabolic based herbicide resistance were identified. RESULTS Eight separate transcriptome assemblies were performed and compared. The combined transcriptome assembly consists of 83,349 contigs with an N50 and average contig length of 762 and 658 bp, respectively. This dataset contains 74,724 transcripts consisting of total 54,846,111 bp. Among them 94% had a homologue to UniProtKB, 73% retrieved a GO mapping, and 50% were functionally annotated. Compared with other grass species, A. spica-venti has 26% proteins in common to Brachypodium distachyon, and 41% to Lolium spp. Glycosyltransferases had the highest number of transcripts in each tissue followed by the cytochrome P450s. The GSTF1 and CYP89A2 transcripts were recovered from the majority of tissues and aligned at a maximum of 66 and 30% to proven herbicide resistant allele from Alopecurus myosuroides and Lolium rigidum, respectively. CONCLUSIONS De novo transcriptome assembly enabled the generation of the first reference transcriptome of A. spica-venti. This can serve as stepping stone for understanding the metabolic herbicide resistance as well as the general biology of this problematic weed. Furthermore, this large-scale sequence data is a valuable scientific resource for comparative transcriptome analysis for Poaceae grasses.
Collapse
Affiliation(s)
- Marielle Babineau
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Khalid Mahmood
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | | | - Per Kudsk
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| | - Michael Kristensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, 4200 Denmark
| |
Collapse
|
26
|
Yang X, Zhang Z, Gu T, Dong M, Peng Q, Bai L, Li Y. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass ( Echinochloa crus-galli L.). J Proteomics 2017; 150:160-169. [DOI: 10.1016/j.jprot.2016.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
|
27
|
Chen J, Huang H, Wei S, Huang Z, Wang X, Zhang C. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:407-415. [PMID: 27743420 DOI: 10.1111/tpj.13395] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass.
Collapse
Affiliation(s)
- Jingchao Chen
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongjuan Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shouhui Wei
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaofeng Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xu Wang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaoxian Zhang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
28
|
Zhao N, Li W, Bai S, Guo W, Yuan G, Wang F, Liu W, Wang J. Transcriptome Profiling to Identify Genes Involved in Mesosulfuron-Methyl Resistance in Alopecurus aequalis. FRONTIERS IN PLANT SCIENCE 2017; 8:1391. [PMID: 28848590 PMCID: PMC5552757 DOI: 10.3389/fpls.2017.01391] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 05/04/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides is a worldwide concern for weed control. However, as the dominant NTSR mechanism in weeds, metabolic resistance is not yet well-characterized at the genetic level. For this study, we have identified a shortawn foxtail (Alopecurus aequalis Sobol.) population displaying both TSR and NTSR to mesosulfuron-methyl and fenoxaprop-P-ethyl, yet the molecular basis for this NTSR remains unclear. To investigate the mechanisms of metabolic resistance, an RNA-Seq transcriptome analysis was used to find candidate genes that may confer metabolic resistance to the herbicide mesosulfuron-methyl in this plant population. The RNA-Seq libraries generated 831,846,736 clean reads. The de novo transcriptome assembly yielded 95,479 unigenes (averaging 944 bp in length) that were assigned putative annotations. Among these, a total of 29,889 unigenes were assigned to 67 GO terms that contained three main categories, and 14,246 unigenes assigned to 32 predicted KEGG metabolic pathways. Global gene expression was measured using the reads generated from the untreated control (CK), water-only control (WCK), and mesosulfuron-methyl treatment (T) of R and susceptible (S). Contigs that showed expression differences between mesosulfuron-methyl-treated R and S biotypes, and between mesosulfuron-methyl-treated, water-treated and untreated R plants were selected for further quantitative real-time PCR (qRT-PCR) validation analyses. Seventeen contigs were consistently highly expressed in the resistant A. aequalis plants, including four cytochrome P450 monooxygenase (CytP450) genes, two glutathione S-transferase (GST) genes, two glucosyltransferase (GT) genes, two ATP-binding cassette (ABC) transporter genes, and seven additional contigs with functional annotations related to oxidation, hydrolysis, and plant stress physiology. These 17 contigs could serve as major candidate genes for contributing to metabolic mesosulfuron-methyl resistance; hence they deserve further functional study. This is the first large-scale transcriptome-sequencing study to identify NTSR genes in A. aequalis that uses the Illumina platform. This work demonstrates that NTSR is likely driven by the differences in the expression patterns of a set of genes. The assembled transcriptome data presented here provide a valuable resource for A. aequalis biology, and should facilitate the study of herbicide resistance at the molecular level in this and other weed species.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Wei Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Shuang Bai
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Wenlei Guo
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Guohui Yuan
- Eco-environment and Plant Protection Research Institute, Shanghai Academy of Agricultural SciencesShanghai, China
| | - Fan Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Jinxin Wang
| |
Collapse
|
29
|
Bazakos C, Manioudaki ME, Sarropoulou E, Spano T, Kalaitzis P. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity. PLoS One 2015; 10:e0143000. [PMID: 26576008 PMCID: PMC4648586 DOI: 10.1371/journal.pone.0143000] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.
Collapse
Affiliation(s)
- Christos Bazakos
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), Crete, Greece
- Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria E. Manioudaki
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), Crete, Greece
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Thodhoraq Spano
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), Crete, Greece
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), Crete, Greece
- * E-mail:
| |
Collapse
|
30
|
Chen S, McElroy JS, Flessner ML, Dane F. Utilizing next-generation sequencing to study homeologous polymorphisms and herbicide-resistance-endowing mutations in Poa annua acetolactate synthase genes. PEST MANAGEMENT SCIENCE 2015; 71:1141-8. [PMID: 25180862 DOI: 10.1002/ps.3897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Detection of single nucleotide polymorphisms (SNPs) related to herbicide resistance in non-model polyploid weed species is fraught with difficulty owing to the gene duplication and lack of reference sequences. Our research seeks to overcome these obstacles by Illumina HiSeq read mapping, SNP calling and allele frequency determinations. Our focus is on the acetolactate synthase (ALS) gene, the target site of ALS-inhibiting herbicides, in Poa annua, an allotetraploid weed species originating from two diploid parents, P. supina and P. infirma. RESULTS ALS contigs with complete coding regions of P. supina, P. infirma and P. annua were assembled and compared with ALS genes from other plant species. The ALS infirma-homeolog of P. annua showed higher levels of nucleotide sequence variability than the supina-homeolog. Comparisons of read mappings of P. annua and a simulated P. supina × P. infirma hybrid showed high resemblance. Two homeolog-specific primer pairs were designed and used to amplify a 1860 bp region covering all resistance-conferring codons in the ALS gene. Four P. annua populations, GN, RB, GW and LG, showed high resistance to two ALS inhibitors, bispyribac-sodium and foramsulfuron, and two populations, HD and RS, showed lower resistance in the rate-response trial. Mutations conferring Trp-574-Leu substitution were observed in the infirma-homeolog of GN and RB and in the supina-homeolog of GW and LG, but no resistance-conferring mutation was observed in the two populations of lower resistance, HD and RS. CONCLUSION In this study we have demonstrated the use of NGS data to study homeologous polymorphisms, parentage and herbicide resistance in an allotetraploid weed species, P. annua. Complete coding sequences of the ALS gene were assembled for P. infirma, P. supina, infirma-homeolog and supina-homeolog in P. annua. A pipeline consisting of read mapping, SNP calling and allele frequency calculation was developed to study the parentage of P. annua, which provided a new perspective on this topic besides the views of morphology, karyotype and phylogeny. Our two homeolog-specific primer pairs can be utilized in future research to separate the homeologs of the ALS gene in P. annua and cover all the codons that have been reported to confer herbicide resistance.
Collapse
Affiliation(s)
- Shu Chen
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA
| | - Michael L Flessner
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, AL, USA
| | - Fenny Dane
- Department of Horticulture, Auburn University, Auburn, AL, USA
| |
Collapse
|
31
|
RNA-Seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. Int J Mol Sci 2015; 16:5975-89. [PMID: 25782159 PMCID: PMC4394515 DOI: 10.3390/ijms16035975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/28/2023] Open
Abstract
Postemergence applications of nicosulfuron can cause great damage to certain maize inbred lines and hybrids. Variation among different responses to nicosulfuron may be attributed to differential rates of herbicide metabolism. We employed RNA-Seq analysis to compare transcriptome responses between nicosulfuron-treated and untreated in both tolerant and susceptible maize plants. A total of 71.8 million paired end Illumina RNA-Seq reads were generated, representing the transcription of around 40,441 unique reads. About 345,171 gene ontology (GO) term assignments were conducted for the annotation in terms of biological process, cellular component and molecular function categories, and 6413 sequences with 108 enzyme commission numbers were assigned to 134 predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed within the susceptible and tolerant maize between the nicosulfuron-treated and untreated conditions, 13 genes were selected as the candidates most likely involved in herbicide metabolism, and quantitative RT-PCR validated the RNA-Seq results for eight genes. This transcriptome data may provide opportunities for the study of sulfonylurea herbicides susceptibility emergence of Zea mays.
Collapse
|
32
|
Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M, O'Geen H, Kim RW, Sammons RD, Rieseberg LH, Stewart CN. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. PLANT PHYSIOLOGY 2014; 166:1241-54. [PMID: 25209985 PMCID: PMC4226366 DOI: 10.1104/pp.114.247668] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 05/20/2023]
Abstract
Horseweed (Conyza canadensis), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n = 2x = 18), with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic bases of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000, and PacBio RS) using various libraries with different insertion sizes (approximately 350 bp, 600 bp, 3 kb, and 10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (approximately 350× coverage) of data, the genome was assembled into 13,966 scaffolds with 50% of the assembly = 33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (approximately 153 kb) and a nearly complete mitochondrial genome (approximately 450 kb in 120 scaffolds). The nuclear genome is composed of 44,592 protein-coding genes. Genome resequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single-nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or -susceptible biotypes. The draft genome will be useful to better understand weediness and the evolution of herbicide resistance and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this article represents the first published draft genome of an agricultural weed.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Zhao Lai
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Thomas Lane
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Madhugiri Nageswara-Rao
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Miki Okada
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Marie Jasieniuk
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Henriette O'Geen
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Ryan W Kim
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - R Douglas Sammons
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Loren H Rieseberg
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - C Neal Stewart
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| |
Collapse
|
33
|
Sammons RD, Gaines TA. Glyphosate resistance: state of knowledge. PEST MANAGEMENT SCIENCE 2014; 70:1367-77. [PMID: 25180399 PMCID: PMC4260172 DOI: 10.1002/ps.3743] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/17/2014] [Accepted: 01/25/2014] [Indexed: 05/18/2023]
Abstract
Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance.
Collapse
Affiliation(s)
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
34
|
Sunil M, Hariharan AK, Nayak S, Gupta S, Nambisan SR, Gupta RP, Panda B, Choudhary B, Srinivasan S. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal. DNA Res 2014; 21:585-602. [PMID: 25071079 PMCID: PMC4263292 DOI: 10.1093/dnares/dsu021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution.
Collapse
Affiliation(s)
- Meeta Sunil
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Arun K Hariharan
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Soumya Nayak
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Saurabh Gupta
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Suran R Nambisan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Ravi P Gupta
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Binay Panda
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| |
Collapse
|
35
|
Liu S, Kuang H, Lai Z. Transcriptome analysis by Illumina high-throughout paired-end sequencing reveals the complexity of differential gene expression during in vitro plantlet growth and flowering in Amaranthus tricolor L. PLoS One 2014; 9:e100919. [PMID: 24963660 PMCID: PMC4071066 DOI: 10.1371/journal.pone.0100919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Amaranthus tricolor L. is a C4 plant, which is consumed as a major leafy vegetable in some tropical countries. Under conditions of high temperature and short daylight, Am. tricolor readily bolts and blooms, degrading leaf quality. A preliminary in vitro flowering study demonstrated that the flowering control pathway in Am. tricolor may differ from that of Arabidopsis. Nevertheless, no transcriptome analysis of the flowering process in Amaranthus has been conducted. To study Am. tricolor floral regulatory mechanisms, we conducted a large-scale transcriptome analysis--based on Illumina HiSeq sequencing of cDNA libraries generated from Am. tricolor at young seedling (YSS), adult seedling (ASS), flower bud (FBS), and flowering (FS) stages. A total of 99,312 unigenes were obtained. Using BLASTX, 43,088 unigenes (43.39%) were found to have significant similarity with accessions in Nr, Nt, and Swiss-Prot databases. Of these unigenes, 11,291 were mapped to 266 KEGG pathways. Further analysis of the four digital transcriptomes revealed that 735, 17,184, 274, and 206 unigenes were specifically expressed during YSS, ASS, FBS, and FS, respectively, with 59,517 unigenes expressed throughout the four stages. These unigenes were involved in many metabolic pathways related to in vitro flowering. Among these pathways, 259 unigenes were associated with ubiquitin-mediated proteolysis, indicating its importance for in vitro flowering in Am. tricolor. Other pathways, such as circadian rhythm and cell cycle, also had important roles. Finally, 26 unigenes were validated by qRT-PCR in samples from Am. tricolor at YSS, ASS, FBS, and FS; their differential expressions at the various stages indicate their possible roles in Am. tricolor growth and development, but the results were somewhat similar to Arabidopsis. Because unigenes involved in many metabolic pathways or of unknown function were revealed to regulate in vitro plantlet growth and flowering in Am. tricolor, the process appears to be highly complex in this species.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huaqin Kuang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
36
|
Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC, Han H, Busi R, Yu Q, Powles SB, Beffa R. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:865-76. [PMID: 24654891 DOI: 10.1111/tpj.12514] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Weed control failures due to herbicide resistance are an increasing and worldwide problem that significantly affect crop yields. Metabolism-based herbicide resistance (referred to as metabolic resistance) in weeds is not well characterized at the genetic level. An RNA-Seq transcriptome analysis was used to find candidate genes that conferred metabolic resistance to the herbicide diclofop in a diclofop-resistant population (R) of the major global weed Lolium rigidum. A reference cDNA transcriptome (19 623 contigs) was assembled and assigned putative annotations. Global gene expression was measured using Illumina reads from untreated control, adjuvant-only control, and diclofop treatment of R and susceptible (S). Contigs that showed constitutive expression differences between untreated R and untreated S were selected for further validation analysis, including 11 contigs putatively annotated as cytochrome P450 (CytP450), glutathione transferase (GST), or glucosyltransferase (GT), and 17 additional contigs with annotations related to metabolism or signal transduction. In a forward genetics validation experiment, nine contigs had constitutive up-regulation in R individuals from a segregating F2 population, including three CytP450, one nitronate monooxygenase (NMO), three GST, and one GT. Principal component analysis using these nine contigs differentiated F2 -R from F2 -S individuals. In a physiological validation experiment in which 2,4-D pre-treatment induced diclofop protection in S individuals due to increased metabolism, seven of the nine genetically validated contigs were induced significantly. Four contigs (two CytP450, NMO, and GT) were consistently highly expressed in nine field-evolved metabolic resistant L. rigidum populations. These four contigs were strongly associated with the resistance phenotype and are major candidates for contributing to metabolic diclofop resistance.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative (AHRI), School of Plant Biology, University of Western Australia, Crawley, 6009, Western Australia, Australia; Bayer CropScience, Weed Resistance Research, 65926, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Délye C, Jasieniuk M, Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet 2013; 29:649-58. [DOI: 10.1016/j.tig.2013.06.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/17/2013] [Accepted: 06/03/2013] [Indexed: 11/27/2022]
|
38
|
Ma R, Kaundun SS, Tranel PJ, Riggins CW, McGinness DL, Hager AG, Hawkes T, McIndoe E, Riechers DE. Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp. PLANT PHYSIOLOGY 2013; 163:363-77. [PMID: 23872617 PMCID: PMC3762656 DOI: 10.1104/pp.113.223156] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/17/2013] [Indexed: 05/19/2023]
Abstract
Previous research reported the first case of resistance to mesotrione and other 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides in a waterhemp (Amaranthus tuberculatus) population designated MCR (for McLean County mesotrione- and atrazine-resistant). Herein, experiments were conducted to determine if target site or nontarget site mechanisms confer mesotrione resistance in MCR. Additionally, the basis for atrazine resistance was investigated in MCR and an atrazine-resistant but mesotrione-sensitive population (ACR for Adams County mesotrione-sensitive but atrazine-resistant). A standard sensitive population (WCS for Wayne County herbicide-sensitive) was also used for comparison. Mesotrione resistance was not due to an alteration in HPPD sequence, HPPD expression, or reduced herbicide absorption. Metabolism studies using whole plants and excised leaves revealed that the time for 50% of absorbed mesotrione to degrade in MCR was significantly shorter than in ACR and WCS, which correlated with previous phenotypic responses to mesotrione and the quantity of the metabolite 4-hydroxy-mesotrione in excised leaves. The cytochrome P450 monooxygenase inhibitors malathion and tetcyclacis significantly reduced mesotrione metabolism in MCR and corn (Zea mays) excised leaves but not in ACR. Furthermore, malathion increased mesotrione activity in MCR seedlings in greenhouse studies. These results indicate that enhanced oxidative metabolism contributes significantly to mesotrione resistance in MCR. Sequence analysis of atrazine-resistant (MCR and ACR) and atrazine-sensitive (WCS) waterhemp populations detected no differences in the psbA gene. The times for 50% of absorbed atrazine to degrade in corn, MCR, and ACR leaves were shorter than in WCS, and a polar metabolite of atrazine was detected in corn, MCR, and ACR that cochromatographed with a synthetic atrazine-glutathione conjugate. Thus, elevated rates of metabolism via distinct detoxification mechanisms contribute to mesotrione and atrazine resistance within the MCR population.
Collapse
|
39
|
Zhu J, Huang X, Gao H, Bao Q, Zhao Y, Hu JF, Xia G. A novel glucagon-like peptide 1 peptide identified from Ophisaurus harti. J Pept Sci 2013; 19:598-605. [PMID: 23893560 DOI: 10.1002/psc.2538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/06/2022]
Abstract
Glucagon-like peptide 1 receptor (GLP1R) is a promising target for the treatment of type 2 diabetes. Because of the short half-life of endogenous GLP1 peptide, other GLP1R agonists are considered to be appealing therapeutic candidates. A high-throughput assay has been established to screen for GLP1R agonists in a 60 000-well natural product compound library fractionated from 670 different herbs/materials widely used in traditional Chinese medicines (TCMs). The screening is based on primary screen of GLP1R⁺ reporter gene assay with the counter screen in GLP1R⁻ cell line. An active fraction, A089-147, was identified from the screening. Fraction A089-147 was isolated from dried Ophisaurus harti, and the fact that its GLP1R agonist activity was sensitive to trypsin treatment indicates its peptidic nature. The active ingredient of A089-147 was later identified as O. harti GLP1 through transcriptome analysis. Chemically synthesized O. harti GLP1 showed GLP1R agonist activity and sensitivity to dipeptidase IV digestion. This study illustrated a comprehensive screening strategy to identify novel GLP1R agonists from TCMs libraries and at the same time underlined the difficulty of identifying a non-peptidic GLP1R agonist. The novel O. harti GLP1 peptide yielded from this study confirmed broader application of TCMs libraries in active peptide identification.
Collapse
Affiliation(s)
- Jingjing Zhu
- Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | | | |
Collapse
|
40
|
De novo assembly and characterization of the Barnyardgrass (Echinochloa crus-galli) transcriptome using next-generation pyrosequencing. PLoS One 2013; 8:e69168. [PMID: 23874903 PMCID: PMC3707877 DOI: 10.1371/journal.pone.0069168] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022] Open
Abstract
Background Barnyardgrass (Echinochloa crus-galli) is an important weed that is a menace to rice cultivation and production. Rapid evolution of herbicide resistance in this weed makes it one of the most difficult to manage using herbicides. Since genome-wide sequence data for barnyardgrass is limited, we sequenced the transcriptomes of susceptible and resistant barnyardgrass biotypes using the 454 GS-FLX platform. Results 454 pyrosequencing generated 371,281 raw reads with an average length of 341.8 bp, which made a total length of 126.89 Mb (SRX160526). De novo assembly produced 10,142 contigs (∼5.92 Mb) with an average length of 583 bp and 68,940 singletons (∼22.13 Mb) with an average length of 321 bp. About 244,653 GO term assignments to the biological process, cellular component and molecular function categories were obtained. A total of 6,092 contigs and singletons with 2,515 enzyme commission numbers were assigned to 151 predicted KEGG metabolic pathways. Digital abundance analysis using Illumina sequencing identified 78,124 transcripts among susceptible, resistant, herbicide-treated susceptible and herbicide-treated resistant barnyardgrass biotypes. From these analyses, eight herbicide target-site gene groups and four non-target-site gene groups were identified in the resistant biotype. These could be potential candidate genes involved in the herbicide resistance of barnyardgrass and could be used for further functional genomics research. C4 photosynthesis genes including RbcS, RbcL, NADP-me and MDH with complete CDS were identified using PCR and RACE technology. Conclusions This is the first large-scale transcriptome sequencing of E. crus-galli performed using the 454 GS-FLX platform. Potential candidate genes involved in the evolution of herbicide resistance were identified from the assembled sequences. This transcriptome data may serve as a reference for further gene expression and functional genomics studies, and will facilitate the study of herbicide resistance at the molecular level in this species as well as other weeds.
Collapse
|
41
|
Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. PEST MANAGEMENT SCIENCE 2013; 69:176-87. [PMID: 22614948 DOI: 10.1002/ps.3318] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/24/2012] [Accepted: 03/15/2012] [Indexed: 05/08/2023]
Abstract
Non-target-site-based resistance (NTSR) can confer unpredictable cross-resistance to herbicides. However, the genetic determinants of NTSR remain poorly known. The current, urgent challenge for weed scientists is thus to elucidate the bases of NTSR so that detection tools are developed, the evolution of NTSR is understood, the efficacy of the shrinking herbicide portfolio is maintained and integrated weed management strategies, including fully effective herbicide applications, are designed and implemented. In this paper, the importance of NTSR in resistance to herbicides is underlined. The most likely way in which NTSR evolves-by accumulation of different mechanisms within individual plants-is described. The NTSR mechanisms, which can interfere with herbicide penetration, translocation and accumulation at the target site, and/or protect the plant against the consequences of herbicide action, are then reviewed. NTSR is a part of the plant stress response. As such, NTSR is a dynamic process unrolling over time that involves 'protectors' directly interfering with herbicide action, and also regulators controlling 'protector' expression. NTSR is thus a quantitative trait. On this basis, a three-step procedure is proposed, based on the use of the 'omics' (genomics, transcriptomics, proteomics or metabolomics), to unravel the genetic bases of NTSR.
Collapse
|
42
|
Müller T, Ensminger I, Schmid KJ. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. BMC Genomics 2012. [PMID: 23190494 PMCID: PMC3637476 DOI: 10.1186/1471-2164-13-673] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Douglas-fir (Pseudotsuga menziesii) extends over a wide range of contrasting environmental conditions, reflecting substantial local adaptation. For this reason, it is an interesting model species to study plant adaptation and the effects of global climate change such as increased temperatures and significant periods of drought on individual trees and the forest landscape in general. However, genomic data and tools for studying genetic variation in natural populations to understand the genetic and physiological mechanisms of adaptation are currently missing for Douglas-fir. This study represents a first step towards characterizing the Douglas-fir transcriptome based on 454 sequencing of twelve cDNA libraries. The libraries were constructed from needle and wood tissue of coastal and interior provenances subjected to drought stress experiments. Results The 454 sequencing of twelve normalized cDNA libraries resulted in 3.6 million reads from which a set of 170,859 putative unique transcripts (PUTs) was assembled. Functional annotation by BLAST searches and Gene Ontology mapping showed that the composition of functional classes is very similar to other plant transcriptomes and demonstrated that a large fraction of the Douglas-fir transcriptome is tagged by the PUTs. Based on evolutionary conservation, we identified about 1,000 candidate genes related to drought stress. A total number of 187,653 single nucleotide polymorphisms (SNPs) were detected by three SNP detection tools. However, only 27,688 SNPs were identified by all three methods, indicating that SNP detection depends on the particular method used. The two alleles of about 60% of the 27,688 SNPs are segregating simultaneously in both coastal and interior provenances, which indicates a high proportion of ancestral shared polymorphisms or a high level of gene flow between these two ecologically and phenotypically different varieties. Conclusions We established a catalogue of PUTs and large SNP database for Douglas-fir. Both will serve as a useful resource for the further characterization of the genome and transcriptome of Douglas-fir and for the analysis of genetic variation using genotyping or resequencing methods.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Crop Biodiversity and Breeding Informatics, University of Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
43
|
Zhang X, Ye N, Liang C, Mou S, Fan X, Xu J, Xu D, Zhuang Z. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems. BMC Genomics 2012; 13:565. [PMID: 23098051 PMCID: PMC3532339 DOI: 10.1186/1471-2164-13-565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 10/20/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta) is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. RESULTS De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC) numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur) were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins, such as glutamate dehydrogenase, superoxide dismutases, ascorbate peroxidase, catalase and heat-shock proteins, may also contribute to colonization of U. linza under stress conditions. CONCLUSIONS The transcriptome of U. linza uncovers some potential genomic mechanisms that might explain its ability to rapidly and successfully colonize coastal ecosystems, including the land-specific genes; special photoprotective mechanism based on both LhcSR and PsbS; development of C4-like carbon-concentrating mechanisms; muti-origin transporters for essential inorganic nutrients; multiple and complex P450s; and glutamate dehydrogenase, superoxide dismutases, ascorbate peroxidase, catalase, and heat-shock proteins that are related to stress resistance.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chengwei Liang
- Qingdao University of Science > Technology, Qingdao, 266042, China
| | - Shanli Mou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianfang Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic administration (SOA), Qingdao, 266061, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
44
|
Mundry M, Bornberg-Bauer E, Sammeth M, Feulner PGD. Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach. PLoS One 2012; 7:e31410. [PMID: 22384018 PMCID: PMC3288049 DOI: 10.1371/journal.pone.0031410] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/10/2012] [Indexed: 01/24/2023] Open
Abstract
Background The quantity of transcriptome data is rapidly increasing for non-model organisms. As sequencing technology advances, focus shifts towards solving bioinformatic challenges, of which sequence read assembly is the first task. Recent studies have compared the performance of different software to establish a best practice for transcriptome assembly. Here, we adapted a simulation approach to evaluate specific features of assembly programs on 454 data. The novelty of our study is that the simulation allows us to calculate a model assembly as reference point for comparison. Findings The simulation approach allows us to compare basic metrics of assemblies computed by different software applications (CAP3, MIRA, Newbler, and Oases) to a known optimal solution. We found MIRA and CAP3 are conservative in merging reads. This resulted in comparably high number of short contigs. In contrast, Newbler more readily merged reads into longer contigs, while Oases produced the overall shortest assembly. Due to the simulation approach, reads could be traced back to their correct placement within the transcriptome. Together with mapping reads onto the assembled contigs, we were able to evaluate ambiguity in the assemblies. This analysis further supported the conservative nature of MIRA and CAP3, which resulted in low proportions of chimeric contigs, but high redundancy. Newbler produced less redundancy, but the proportion of chimeric contigs was higher. Conclusion Our evaluation of four assemblers suggested that MIRA and Newbler slightly outperformed the other programs, while showing contrasting characteristics. Oases did not perform very well on the 454 reads. Our evaluation indicated that the software was either conservative (MIRA) or liberal (Newbler) about merging reads into contigs. This suggested that in choosing an assembly program researchers should carefully consider their follow up analysis and consequences of the chosen approach to gain an assembly.
Collapse
Affiliation(s)
- Marvin Mundry
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
| | - Michael Sammeth
- Functional Bioinformatics, Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Philine G. D. Feulner
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfaelische-Wilhelms-University, Muenster, Germany
- * E-mail:
| |
Collapse
|
45
|
Liang Y, Chen SY, Liu GS. [Application of next generation sequencing techniques in plant transcriptome]. YI CHUAN = HEREDITAS 2012; 33:1317-26. [PMID: 22207377 DOI: 10.3724/sp.j.1005.2011.01317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With the development of DNA sequencing techniques, the next-generation sequencing (NGS) techniques with the characteristics of high-throughput and low cost have become the first choice for more and more researchers to carry out the biological researches. Among the next-generation sequencing techniques, the 454 sequencing platform is the first commercially available and relatively mature one and widely used in various fields of biological research. Taking 454 sequencing platform as an example, we illustrate the advantages and disadvantages of NGS technical principles, review their applications in plant transcriptome, and outlook their future development and applications in plant research field.
Collapse
Affiliation(s)
- Ye Liang
- Institute of Bontany, Chinese Acdemy of Sciences, Beijing, China.
| | | | | |
Collapse
|
46
|
Strickler SR, Bombarely A, Mueller LA. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. AMERICAN JOURNAL OF BOTANY 2012; 99:257-66. [PMID: 22268224 DOI: 10.3732/ajb.1100292] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The application of next-generation sequencing (NGS) to transcriptomics, commonly called RNA-seq, allows the nearly complete characterization of transcriptomic events occurring in a specific tissue. It has proven particularly useful in nonmodel species, which often lack the resources available for sequenced organisms. Mainly, RNA-seq does not require a reference genome to gain useful transcriptomic information. In this review, the application of RNA-seq to nonmodel plant species will be addressed. Important experimental considerations from presequencing issues to postsequencing analysis, including sample and platform selection, and useful bioinformatics tools for assembly and data analysis, are covered. Methods of assembling RNA-seq data and analyses commonly performed with RNA-seq data, including single nucleotide polymorphism detection and analysis of differential expression, are explored. In addition, studies that have used RNA-seq to elucidate nonmodel plant transcriptomics are highlighted.
Collapse
Affiliation(s)
- Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
47
|
Schliesky S, Gowik U, Weber APM, Bräutigam A. RNA-Seq Assembly - Are We There Yet? FRONTIERS IN PLANT SCIENCE 2012; 3:220. [PMID: 23056003 PMCID: PMC3457010 DOI: 10.3389/fpls.2012.00220] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/05/2012] [Indexed: 05/20/2023]
Abstract
Transcriptomic sequence resources represent invaluable assets for research, in particular for non-model species without a sequenced genome. To date, the Next Generation Sequencing technologies 454/Roche and Illumina have been used to generate transcriptome sequence databases by mRNA-Seq for more than fifty different plant species. While some of the databases were successfully used for downstream applications, such as proteomics, the assembly parameters indicate that the assemblies do not yet accurately reflect the actual plant transcriptomes. Two different assembly strategies have been used, overlap consensus based assemblers for long reads and Eulerian path/de Bruijn graph assembler for short reads. In this review, we discuss the challenges and solutions to the transcriptome assembly problem. A list of quality control parameters and the necessary scripts to produce them are provided.
Collapse
Affiliation(s)
- Simon Schliesky
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Udo Gowik
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Developmental and Molecular Biology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Andreas P. M. Weber
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Andrea Bräutigam
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
- *Correspondence: Andrea Bräutigam, Institute for Plant Biochemistry, 26.03.01.Room 32, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
48
|
Gaines TA, Ward SM, Bukun B, Preston C, Leach JE, Westra P. Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species. Evol Appl 2011; 5:29-38. [PMID: 25568027 PMCID: PMC3353331 DOI: 10.1111/j.1752-4571.2011.00204.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 11/30/2022] Open
Abstract
A previously unknown glyphosate resistance mechanism, amplification of the 5-enolpyruvyl shikimate-3-phosphate synthase gene, was recently reported in Amaranthus palmeri. This evolved mechanism could introgress to other weedy Amaranthus species through interspecific hybridization, representing an avenue for acquisition of a novel adaptive trait. The objective of this study was to evaluate the potential for this glyphosate resistance trait to transfer via pollen from A. palmeri to five other weedy Amaranthus species (Amaranthus hybridus, Amaranthus powellii, Amaranthus retroflexus, Amaranthus spinosus, and Amaranthus tuberculatus). Field and greenhouse crosses were conducted using glyphosate-resistant male A. palmeri as pollen donors and the other Amaranthus species as pollen recipients. Hybridization between A. palmeri and A. spinosus occurred with frequencies in the field studies ranging from <0.01% to 0.4%, and 1.4% in greenhouse crosses. A majority of the A. spinosus × A. palmeri hybrids grown to flowering were monoecious and produced viable seed. Hybridization occurred in the field study between A. palmeri and A. tuberculatus (<0.2%), and between A. palmeri and A. hybridus (<0.01%). This is the first documentation of hybridization between A. palmeri and both A. spinosus and A. hybridus.
Collapse
Affiliation(s)
- Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University Fort Collins, CO, USA
| | - Sarah M Ward
- Department of Soil and Crop Sciences, Colorado State University Fort Collins, CO, USA
| | - Bekir Bukun
- Department of Bioagricultural Sciences and Pest Management, Colorado State University Fort Collins, CO, USA
| | - Christopher Preston
- School of Agriculture, Food, and Wine, University of Adelaide Glen Osmond, SA, Australia
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University Fort Collins, CO, USA
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University Fort Collins, CO, USA
| |
Collapse
|
49
|
Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 2011; 12:363. [PMID: 21752295 PMCID: PMC3146458 DOI: 10.1186/1471-2164-12-363] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. RESULTS A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). CONCLUSIONS This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.
Collapse
Affiliation(s)
- John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Hamlet Avilés-Arnaut
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Kena Casarrubias-Castillo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Gabriela Casique-Arroyo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Paula A Castrillón-Arbeláez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Génomica para la Biodiversidad, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Julio Massange-Sánchez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Norma A Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Fannie I Parra-Cota
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Erandi Vargas-Ortiz
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - María G Estrada-Hernández
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
- Department of Entomology, College of Agricultural Sciences. Penn State University, University Park, PA 16802, USA
| |
Collapse
|
50
|
Demidenko NV, Logacheva MD, Penin AA. Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 2011; 6:e19434. [PMID: 21589908 PMCID: PMC3093374 DOI: 10.1371/journal.pone.0019434] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/29/2011] [Indexed: 11/18/2022] Open
Abstract
Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species.
Collapse
Affiliation(s)
- Natalia V. Demidenko
- Department of Genetics, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maria D. Logacheva
- Department of Evolutionary Biochemistry, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Evolutionary Genomics Laboratory, Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
| | - Aleksey A. Penin
- Department of Genetics, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Evolutionary Genomics Laboratory, Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Science, Moscow, Russia
- * E-mail:
| |
Collapse
|