1
|
Willocx D, D'Auria L, Walsh D, Scherer H, Alhayek A, Hamed MM, Borel F, Diamanti E, Hirsch AKH. Fragment Discovery by X-Ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas Aeruginosa IspD. Angew Chem Int Ed Engl 2025; 64:e202414615. [PMID: 39676054 PMCID: PMC11796317 DOI: 10.1002/anie.202414615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
With antimicrobial resistance (AMR) reaching alarming levels, new anti-infectives with unprecedented mechanisms of action are urgently needed. The 2-C-methylerythritol-D-erythritol-4-phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram-negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment-based compound class identified through crystallographic screening of PaIspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment-protein interactions was achieved through 1H saturation-transfer difference nuclear magnetic resonance (1H-STD NMR spectroscopy). Building upon these findings and insights from the co-crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for PaIspD. Our new fragment class targets PaIspD, displays promising affinity and favorable growth vectors for further optimization.
Collapse
Affiliation(s)
- Daan Willocx
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
- PharmaScienceHubCampus A 2.366123SaarbrückenGermany
| | - Lucia D'Auria
- Univ. Grenoble AlpesCEACNRS, IBSF-38000GrenobleFrance
| | - Danica Walsh
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Hugo Scherer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
- PharmaScienceHubCampus A 2.366123SaarbrückenGermany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
- PharmaScienceHubCampus A 2.366123SaarbrückenGermany
| | - Mostafa M. Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Franck Borel
- Univ. Grenoble AlpesCEACNRS, IBSF-38000GrenobleFrance
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
- PharmaScienceHubCampus A 2.366123SaarbrückenGermany
| |
Collapse
|
2
|
Willocx D, Diamanti E, Hirsch AKH. Targeting IspD for Anti-infective and Herbicide Development: Exploring Its Role, Mechanism, and Structural Insights. J Med Chem 2025; 68:886-901. [PMID: 39749898 PMCID: PMC11770629 DOI: 10.1021/acs.jmedchem.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/19/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Antimicrobial resistance (AMR) and herbicide resistance pose threats to society, necessitating novel anti-infectives and herbicides exploiting untapped modes of action like inhibition of IspD, the third enzyme in the MEP pathway. The MEP pathway is essential for a wide variety of human pathogens, including Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Plasmodium falciparum, as well as plants. Within the current perspective, we focused our attention on the third enzyme in this pathway, IspD, offering a comprehensive summary of the reported modes of inhibition and common trends, with the goal to inspire future research dedicated to this underexplored target. In addition, we included an overview of the history, catalytic mechanism, and structure of the enzyme to facilitate access to this attractive target.
Collapse
Affiliation(s)
- Daan Willocx
- Helmholtz
Institute for Pharmaceutical Research (HIPS)−Helmholtz Centre
for Infection Research (HZI), Saar-land
University, Campus E8.1, 66123Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123Saarbrücken, Germany
| | - Eleonora Diamanti
- Helmholtz
Institute for Pharmaceutical Research (HIPS)−Helmholtz Centre
for Infection Research (HZI), Saar-land
University, Campus E8.1, 66123Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research (HIPS)−Helmholtz Centre
for Infection Research (HZI), Saar-land
University, Campus E8.1, 66123Saarbrücken, Germany
- Helmholtz
International Lab for Anti-Infectives, Saarland
University, Campus E8.1, 66123Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8.1, 66123Saarbrücken, Germany
| |
Collapse
|
3
|
Wu X, Bu M, Yang Z, Ping H, Song C, Duan J, Zhang A. Design and synthesis of fosmidomycin analogs containing aza-linkers and their biological activity evaluation. PEST MANAGEMENT SCIENCE 2024; 80:846-856. [PMID: 37794283 DOI: 10.1002/ps.7810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway are attractive targets of a new mode of action for developing anti-infective drugs and herbicides, and inhibitors against 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC), the second key enzyme in the pathway, have been intensively investigated; however, few works are reported regarding IspC inhibitors designed for new herbicide discovery. RESULTS A series of fosmidomycin (FOS) analogs were designed with nitrogen-containing linkers replacing the trimethylene linker between the two active substructures of FOS, phosphonic acid and hydroxamic acid. Synthesis followed a facile three-step route of sequential aza-Michael addition of α-amino acids to dibenzyl vinylphosphonate, amidation of the amino acid carboxyl with O-benzyl hydroxylamine, and simultaneous removal of the benzyl protective groups. Biological activity evaluation of IspC and model plants revealed that some compounds had moderate enzyme and model plant growth inhibition effects. In particular, compound 10g, which has a N-(4-fluorophenylethyl) nitrogen-containing linker, exhibited the best plant inhibition activities, superior to the control FOS against the model plants Arabidopsis thaliana, Brassica napus L., Amaranthus retroflexus and Echinochloa crus-galli. A dimethylallyl pyrophosphate rescue assay on A. thaliana confirmed that both 10g and FOS exert their herbicidal activity by blocking the MEP pathway. This result consistent with molecular docking, which confirmed 10g and FOS binding to the IspC active site in a similar way. CONCLUSION Compound 10g has excellent herbicidal activity and represents the first herbicide lead structure of a new mode of action that targets IspC enzyme in the MEP pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Mengwei Bu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zili Yang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hongrui Ping
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Chunlin Song
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
Wang J, Wu W, Zhou Y, Han M, Zhou X, Sun Y, Zhang A. Design, synthesis and activity evaluation of pseudilin analogs against cyanobacteria as IspD inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105769. [PMID: 38458678 DOI: 10.1016/j.pestbp.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/10/2024]
Abstract
The discovery of safe, effective, and selective chemical algicides is the stringent need for the algicides development, and it is also one of the effective routes to control cyanobacteria harmful algal blooms and to meet the higher requirements of environmental and ecological. In this work, a series of novel bromo-N-phenyl-5-o-hydroxyphenylpyrazole-3-carboxyamides were rationally designed as pseudilin analogs by bioisosteric replacement and molecular hybridization strategies, in which the pyrrole unit of pseudilin was replaced with pyrazole and further combined with the dominant structural fragments of algicide diuron. The synthesis was carried out by a facile four-step routeincluding cyclization, amidation, transanulation, and halogenation. The biological activity evaluation on AtIspD, EcIspD, Synechocystis sp. PCC6803 and Microcystis aeruginosa FACHB905 revealed that most compounds had good EcIspD and excellent cyanobacteria inhibitory activity. In particular, compound 6bb exhibited potent algicidal activity against PCC6803 and FACHB905 with EC50 = 1.28 μM and 0.37 μM, respectively, 1.4-fold and 4.0-fold enhancement compared to copper sulfate (EC50 = 1.79 and 1.49 μM, respectively), and it also showed the best inhibitory activity of EcIspD. The binding of 6bb to EcIspD was explored by molecular docking, and it was confirmed that 6bb could bind to the EcIspD active site. Compound 6bb was proven to be a potential structure for the further development of novel algicides that targets IspD in the MEP pathway.
Collapse
Affiliation(s)
- Jili Wang
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Wenhai Wu
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Yaqing Zhou
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Mengying Han
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xin Zhou
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Yong Sun
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China.
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
5
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Sukhoverkov KV, Breese KJ, Debowski AW, Murcha MW, Stubbs KA, Mylne JS. Inhibition of chloroplast translation as a new target for herbicides. RSC Chem Biol 2022; 3:37-43. [PMID: 35128407 PMCID: PMC8729176 DOI: 10.1039/d1cb00192b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
The rise in herbicide resistance over recent decades threatens global agriculture and food security and so discovery of new modes of action is increasingly important. Here we reveal linezolid, an oxazolidinone antibiotic that inhibits microbial translation, is also herbicidal. To validate the herbicidal mode of action of linezolid we confirmed its micromolar inhibition is specific to chloroplast translation and did not affect photosynthesis directly. To assess the herbicide potential of linezolid, testing against a range of weed and crop species found it effective pre- and post-emergence. Using structure-activity analysis we identified the critical elements for herbicidal activity, but importantly also show, using antimicrobial susceptibility assays, that separation of antibacterial and herbicidal activities was possible. Overall these results validate chloroplast translation as a viable herbicidal target.
Collapse
Affiliation(s)
- Kirill V Sukhoverkov
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Karen J Breese
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Aleksandra W Debowski
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- School of Biomedical Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Monika W Murcha
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
| | - Keith A Stubbs
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway Crawley Perth 6009 Australia
- The ARC Centre of Excellence in Plant Energy Biology 35 Stirling Highway Crawley Perth 6009 Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
7
|
Wang J, Zhou Y, Wang X, Duan L, Duan J, Li W, Zhang A. Synthesis and Evaluation of Halogenated 5-(2-Hydroxyphenyl)pyrazoles as Pseudilin Analogues Targeting the Enzyme IspD in the Methylerythritol Phosphate Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3071-3078. [PMID: 32078770 DOI: 10.1021/acs.jafc.9b08057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports halogenated 5-(2-hydroxyphenyl)pyrazoles as pseudilin analogues with the potential to target the enzyme IspD in the methylerythritol phosphate (MEP) pathway. Such analogues were designed using the bioisosteric replacement of the pseudilin core structure and synthesized via an efficient three-step route. With AtIspD-based screening and pre- and post-emergence herbicidal tests, these compounds were demonstrated to have considerable activities against AtIspD, with IC50 up to 3.27 μM, and against model plants rape and barnyard grass, with moderate to excellent activities. At a rate of 150 g/ha in the greenhouse test, three compounds exhibited higher or comparable herbicidal activities than pseudilin. Molecular docking of representative compounds into the allosteric site of AtIspD revealed a binding mode similar to that of pseudilin. The established bioisosterism and synthesis method in this work may serve as an important tool for the development of new herbicides and antimicrobials targeting IspD in the MEP pathway.
Collapse
Affiliation(s)
- Jili Wang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yaqing Zhou
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Xiuwen Wang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Lixia Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiang Duan
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weiguo Li
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Aidong Zhang
- Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
8
|
Scaletti E, Jemth AS, Helleday T, Stenmark P. Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett 2019; 593:1863-1873. [PMID: 31127856 DOI: 10.1002/1873-3468.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is the major source of 1-carbon units required for nucleotide synthesis. Humans have cytosolic (SHMT1) and mitochondrial (SHMT2) isoforms, which are upregulated in numerous cancers, making the enzyme an attractive drug target. Here, we show that the antifolates lometrexol and pemetrexed are inhibitors of SHMT2 and solve the first SHMT2-antifolate structures. The antifolates display large differences in their hydrogen bond networks despite their similarity. Lometrexol was found to be the best hSHMT1/2 inhibitor from a panel antifolates. Comparison of apo hSHMT1 with antifolate bound hSHMT2 indicates a highly conserved active site architecture. This structural information offers insights as to how these compounds could be improved to produce more potent and specific inhibitors of this emerging anti-cancer drug target.
Collapse
Affiliation(s)
- Emma Scaletti
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Experimental Medical Science, Lund University, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, UK
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
9
|
Guo F, Iwakami S, Yamaguchi T, Uchino A, Sunohara Y, Matsumoto H. Role of CYP81A cytochrome P450s in clomazone metabolism in Echinochloa phyllopogon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:321-328. [PMID: 31128703 DOI: 10.1016/j.plantsci.2019.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/24/2018] [Accepted: 02/16/2019] [Indexed: 05/11/2023]
Abstract
Clomazone is a herbicide used in the cultivation of numerous crops due to its unique site of action and effectiveness on weeds. The differences in clomazone susceptibility among plants have been attributed to the differences in their complex clomazone metabolic pathways that are not fully understood. We previously identified two CYP81A cytochrome P450 monooxygenases that metabolize five chemically unrelated herbicides in multiple-herbicide resistant Echinochloa phyllopogon. Since the resistant E. phyllopogon have decreased clomazone susceptibility, involvement of these P450s in clomazone resistance was suggested. In this study, we revealed that each P450 gene endowed Arabidopsis thaliana (Arabidopsis) with clomazone resistance. Consistent with this, clomazone resistance co-segregated with resistance to other herbicides in F6 progenies of crosses between susceptible and resistant E. phyllopogon, suggesting that the P450s are involved in differential clomazone susceptibility in E. phyllopogon. Arabidopsis transformations of the other seven CYP81As of E. phyllopogon found that two more genes, CYP81A15 and CYP81A24, decreased Arabidopsis susceptibility to clomazone. Differences in substrate preference between clomazone and a herbicide that inhibits acetolactate synthase were suggested among the four CYP81A P450s. This study provides insights into clomazone metabolism in plants.
Collapse
Affiliation(s)
- Feng Guo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Takuya Yamaguchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Akira Uchino
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, 514-2392, Japan
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
10
|
Cabrera AC. Collaborative drug discovery and the Tres Cantos Antimalarial Set (TCAMS). Drug Discov Today 2019; 24:1304-1310. [PMID: 30980903 DOI: 10.1016/j.drudis.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 04/04/2019] [Indexed: 12/01/2022]
Abstract
Malaria affects a population of over 200 million people worldwide. New drugs are needed because of widespread resistance, and the hunt for such drugs involves a coordinated research effort from the scientific community. The release of the Tres Cantos Antimalarial Set (TCAMS) in 2010 represented a landmark in the field of collaborative drug discovery for malaria. This set of >13 000 molecules with confirmed activity against several strains of Plasmodium falciparum was publicly released with the goal of fostering additional research beyond the GlaxoSmithKline (GSK) network of collaborators. Here, we examine the outcomes realized from TCAMS over the past 8 years and whether the expectations surrounding this initiative have become a reality.
Collapse
Affiliation(s)
- Alvaro Cortes Cabrera
- Department of Pharmacology, Universidad de Alcalá, Crta Madrid-Zaragoza Km 33.6, Alcalá de Henares, Spain.
| |
Collapse
|
11
|
Synthesis and Kinetic evaluation of an azido analogue of methylerythritol phosphate: a Novel Inhibitor of E. coli YgbP/IspD. Sci Rep 2018; 8:17892. [PMID: 30559447 PMCID: PMC6297244 DOI: 10.1038/s41598-018-35586-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/05/2018] [Indexed: 12/04/2022] Open
Abstract
As multidrug resistant pathogenic microorganisms are a serious health menace, it is crucial to continuously develop novel medicines in order to overcome the emerging resistance. The methylerythritol phosphate pathway (MEP) is an ideal target for antimicrobial development as it is absent in humans but present in most bacteria and in the parasite Plasmodium falciparum. Here, we report the synthesis and the steady-state kinetics of a novel potent inhibitor (MEPN3) of Escherichia coli YgbP/IspD, the third enzyme of the MEP pathway. MEPN3 inhibits E. coli YgbP/IspD in mixed type mode regarding both substrates. Interestingly, MEPN3 shows the highest inhibitory activity when compared to known inhibitors of E. coli YgbP/IspD. The mechanism of this enzyme was also studied by steady-state kinetic analysis and it was found that the substrates add to the enzyme in sequential manner.
Collapse
|
12
|
Bartee D, Freel Meyers CL. Toward Understanding the Chemistry and Biology of 1-Deoxy-d-xylulose 5-Phosphate (DXP) Synthase: A Unique Antimicrobial Target at the Heart of Bacterial Metabolism. Acc Chem Res 2018; 51:2546-2555. [PMID: 30203647 DOI: 10.1021/acs.accounts.8b00321] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotics are the cornerstone of modern healthcare. The 20th century discovery of sulfonamides and β-lactam antibiotics altered human society immensely. Simple bacterial infections were no longer a leading cause of morbidity and mortality, and antibiotic prophylaxis greatly reduced the risk of infection from surgery. The current healthcare system requires effective antibiotics to function. However, antibiotic-resistant infections are becoming increasingly prevalent, threatening the emergence of a postantibiotic era. To prevent this public health crisis, antibiotics with novel modes of action are needed. Currently available antibiotics target just a few cellular processes to exert their activity: DNA, RNA, protein, and cell wall biosynthesis. Bacterial central metabolism is underexploited, offering a wealth of potential new targets that can be pursued toward expanding the armamentarium against microbial infections. Discovered in 1997 as the first enzyme in the methylerythritol phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate (DXP) synthase is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylative condensation of pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to form DXP. This five-carbon metabolite feeds into three separate essential pathways for bacterial central metabolism: ThDP synthesis, pyridoxal phosphate (PLP) synthesis, and the MEP pathway for isoprenoid synthesis. While it has long been identified as a target for the development of antimicrobial agents, limited progress has been made toward developing selective inhibitors of the enzyme. This Account highlights advances from our lab over the past decade to understand this important and unique enzyme. Unlike all other known ThDP-dependent enzymes, DXP synthase uses a random-sequential mechanism that requires the formation of a ternary complex prior to decarboxylation of the lactyl-ThDP intermediate. Its large active site accommodates a variety of acceptor substrates, lending itself to a number of alternative activities, such as the production of α-hydroxy ketones, hydroxamates, amides, acetolactate, and peracetate. Knowledge gained from mechanistic and substrate-specificity studies has guided the development of selective inhibitors with antibacterial activity and provides a biochemical foundation toward understanding DXP synthase function in bacterial cells. Although it is a promising drug target, the centrality of DXP synthase in bacterial metabolism imparts specific challenges to assessing antibacterial activity of DXP synthase inhibitors, and the susceptibility of most bacteria to current DXP synthase inhibitors is remarkably culture-medium-dependent. Despite these challenges, the study of DXP synthase is poised to reveal the role of DXP synthase in bacterial metabolic adaptability during infection, ultimately providing a more complete picture of how inhibiting this crucial enzyme can be used to develop novel antibiotics.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
13
|
Schwab A, Illarionov B, Frank A, Kunfermann A, Seet M, Bacher A, Witschel MC, Fischer M, Groll M, Diederich F. Mechanism of Allosteric Inhibition of the Enzyme IspD by Three Different Classes of Ligands. ACS Chem Biol 2017; 12:2132-2138. [PMID: 28686408 DOI: 10.1021/acschembio.7b00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes of the nonmevalonate pathway of isoprenoid biosynthesis are attractive targets for the development of herbicides and drugs against infectious diseases. While this pathway is essential for many pathogens and plants, mammals do not depend on it for the synthesis of isoprenoids. IspD, the third enzyme of the nonmevalonate pathway, is unique in that it has an allosteric regulatory site. We elucidated the binding mode of phenylisoxazoles, a new class of allosteric inhibitors. Allosteric inhibition is effected by large conformational changes of a loop region proximal to the active site. We investigated the different roles of residues in this loop by mutation studies and identified repulsive interactions with Asp291 and Asp292 to be responsible for inhibition. Crystallographic data and the response of mutant enzymes to three different classes of allosteric inhibitors provide an in-depth understanding of the allosteric mechanism. The obtained mutant enzymes show selective resistance to allosteric inhibitors and provide conceptually valuable information for future engineering of herbicide-resistant crops. We found that the isoprenoid precursors IPP and DMAPP are natural inhibitors of Arabidopsis thaliana IspD; however, they do not seem to bind to the allosteric site.
Collapse
Affiliation(s)
- Anatol Schwab
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Boris Illarionov
- Hamburg
School of Food Science, Universität Hamburg Grindelallee
117, 20146 Hamburg, Germany
| | - Annika Frank
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Andrea Kunfermann
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Michael Seet
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Adelbert Bacher
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | | | - Markus Fischer
- Hamburg
School of Food Science, Universität Hamburg Grindelallee
117, 20146 Hamburg, Germany
| | - Michael Groll
- Center
for Integrated Protein Science Munich, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - François Diederich
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Conformational dynamics of 1-deoxy-d-xylulose 5-phosphate synthase on ligand binding revealed by H/D exchange MS. Proc Natl Acad Sci U S A 2017; 114:9355-9360. [PMID: 28808005 DOI: 10.1073/pnas.1619981114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) is a key enzyme in the methylerythritol 4-phosphate pathway and is a target for the development of antibiotics, herbicides, and antimalarial drugs. DXPS catalyzes the formation of 1-deoxy-d-xylulose 5-phosphate (DXP), a branch point metabolite in isoprenoid biosynthesis, and is also used in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6). Previously, we found that DXPS is unique among the superfamily of thiamin diphosphate (ThDP)-dependent enzymes in stabilizing the predecarboxylation intermediate, C2-alpha-lactyl-thiamin diphosphate (LThDP), which has subsequent decarboxylation that is triggered by d-glyceraldehyde 3-phosphate (GAP). Herein, we applied hydrogen-deuterium (H/D) exchange MS (HDX-MS) of full-length Escherichia coli DXPS to provide a snapshot of the conformational dynamics of this enzyme, leading to the following conclusions. (i) The high sequence coverage of DXPS allowed us to monitor structural changes throughout the entire enzyme, including two segments (spanning residues 183-238 and 292-317) not observed by X-ray crystallography. (ii) Three regions of DXPS (spanning residues 42-58, 183-199, and 278-298) near the active center displayed both EX1 (monomolecular) and EX2 (bimolecuar) H/D exchange (HDX) kinetic behavior in both ligand-free and ligand-bound states. All other peptides behaved according to the common EX2 kinetic mechanism. (iii) The observation of conformational changes on DXPS provides support for the role of conformational dynamics in the DXPS mechanism: The closed conformation of DXPS is critical for stabilization of LThDP, whereas addition of GAP converts DXPS to the open conformation that coincides with decarboxylation of LThDP and DXP release.
Collapse
|
15
|
Watkins SM, Hagen TJ, Perkins TS, Zheng C. ( Z)-4-Chloro- N-{3-[(4-chlorophenyl)sulfonyl]-2,3-dihydrobenzo[ d]thiazol-2-ylidene}benzene-sulfonamide. IUCRDATA 2017; 2:x170865. [PMID: 29445777 PMCID: PMC5808994 DOI: 10.1107/s2414314617008653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/09/2017] [Indexed: 11/10/2022] Open
Abstract
The title compound, C19H12Cl2N2O4S3, is related to a ditosylated 2-iminobenzothiazole with the two methyl groups on the two phenyl rings replaced by chlorine. There is a weak intramolecular π-π contact between the two phenyl rings, with a centroid-to-centroid distance of 4.004 (2) Å. The dihedral angle between the rings is 9.96 (13)°. An intramolecular C-H⋯O hydrogen bond stabilizes the molecular conformation.
Collapse
Affiliation(s)
- Sydney M. Watkins
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Timothy J. Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Timothy S. Perkins
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Chong Zheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
16
|
Clough JM, Dale RP, Elsdon B, Hawkes TR, Hogg BV, Howell A, Kloer DP, Lecoq K, McLachlan MM, Milnes PJ, O'Riordan TJ, Ranasinghe S, Shanahan SE, Sumner KD, Tayab S. Synthesis and evaluation of hydroxyazolopyrimidines as herbicides; the generation of amitrole in planta. PEST MANAGEMENT SCIENCE 2016; 72:2254-2272. [PMID: 26918632 DOI: 10.1002/ps.4264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Exploiting novel herbicidal modes of action is an important method to overcome the challenges faced by increasing resistance and regulatory pressure on existing commercial herbicides. Recent reports of inhibitors of enzymes in the non-mevalonate pathway of isoprenoid biosynthesis led to the design of a novel class of azolopyrimidines which were assessed for their herbicidal activity. Studies were also undertaken to determine the mode of action responsible for the observed herbicidal activity. RESULTS In total, 30 novel azolopyrimidines were synthesised and their structures were unambiguously determined by 1 H NMR, mass spectroscopy and X-ray crystallographic analysis. The herbicidal activity of this new chemical class was assessed against six common weed species, with compounds from this series displaying bleaching symptomology in post-emergence tests. A structure-activity relationship for the novel compounds was determined, which showed that only those belonging to the hydroxytriazolopyrimidine subclass displayed significant herbicidal activity. Observed similarities between the bleaching symptomology displayed by these herbicides and amitrole suggested that hydroxytriazolopyrimidines could be acting as elaborate propesticides of amitrole, and this was subsequently demonstrated in plant metabolism studies using Amaranthus retroflexus. It was shown that selected hydroxytriazolopyrimidines that displayed promising herbicidal activity generated amitrole, with peak concentrations of amitrole generally being observed 1 day after application. Additionally, the herbicidal activity of selected compounds was profiled against tobacco plants engineered to overexpress 4-diphosphocytidyl-2C-methyl-d-erythritol synthase (IspD) or lycopene β-cyclase, and the results suggested that, where significant herbicidal activity was observed, inhibition of IspD was not responsible for the activity. Tobacco plants overexpressing lycopene β-cyclase showed tolerance to amitrole and the two most herbicidally active triazolopyrimidines. CONCLUSIONS Inhibition of IspD leading to herbicidal activity has been ruled out as the mode of action for the hydroxytriazolopyrimidine class of herbicides. Additionally, tobacco plants overexpressing lycopene β-cyclase showed tolerance to amitrole, which indicates that this is the main herbicidal mode of action for amitrole. Results from the metabolic fate study of selected hydroxytriazolopyrimidines suggested that the herbicidal activity displayed by these compounds is due to amitrole production, which was confirmed when tobacco plants overexpressing lycopene β-cyclase also showed tolerance towards two triazolopyrimidines from this study. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- John M Clough
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Richard P Dale
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Barry Elsdon
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Timothy R Hawkes
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Bridget V Hogg
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Anushka Howell
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Daniel P Kloer
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Karine Lecoq
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | | | - Phillip J Milnes
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | | | - Saranga Ranasinghe
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Stephen E Shanahan
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Karen D Sumner
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| | - Shanaaz Tayab
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks, UK
| |
Collapse
|
17
|
Price KE, Armstrong CM, Imlay LS, Hodge DM, Pidathala C, Roberts NJ, Park J, Mikati M, Sharma R, Lawrenson AS, Tolia NH, Berry NG, O'Neill PM, John ARO. Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Sci Rep 2016; 6:36777. [PMID: 27857147 PMCID: PMC5114681 DOI: 10.1038/srep36777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023] Open
Abstract
The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria.
Collapse
Affiliation(s)
- Kathryn E Price
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Christopher M Armstrong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leah S Imlay
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dana M Hodge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - C Pidathala
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Natalie J Roberts
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Jooyoung Park
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwa Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raman Sharma
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | | | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Bartee D, Morris F, Al-Khouja A, Freel Meyers CL. Hydroxybenzaldoximes Are D-GAP-Competitive Inhibitors of E. coli 1-Deoxy-D-Xylulose-5-Phosphate Synthase. Chembiochem 2015; 16:1771-81. [PMID: 26174207 PMCID: PMC4609000 DOI: 10.1002/cbic.201500119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/05/2022]
Abstract
1-Deoxy-D-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low-micromolar inhibitors, competitive against D-glyceraldehyde 3-phosphate (D-GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of D-GAP-competitive DXP synthase inhibitors, offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 (USA)
| | - Francine Morris
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 (USA)
- Present address: Albert Einstein College of Medicine, Department of Biochemistry, 1301 Morris Park Avenue, Bronx, NY 10461 (USA)
| | - Amer Al-Khouja
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 (USA)
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 (USA).
| |
Collapse
|
19
|
Rao H, Huangfu C, Wang Y, Wang X, Tang T, Zeng X, Li Z, Chen Y. Physicochemical Profiles of the Marketed Agrochemicals and Clues for Agrochemical Lead Discovery and Screening Library Development. Mol Inform 2015; 34:331-8. [DOI: 10.1002/minf.201400143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/21/2015] [Indexed: 12/31/2022]
|
20
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
22
|
Masini T, Hirsch AKH. Development of Inhibitors of the 2C-Methyl-d-erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents. J Med Chem 2014; 57:9740-63. [DOI: 10.1021/jm5010978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh
7, NL-9747
AG Groningen, The Netherlands
| |
Collapse
|
23
|
Corniani N, Velini ED, Silva FML, Nanayakkara NPD, Witschel M, Dayan FE. Novel bioassay for the discovery of inhibitors of the 2-C-methyl-D-erythritol 4-phosphate (MEP) and terpenoid pathways leading to carotenoid biosynthesis. PLoS One 2014; 9:e103704. [PMID: 25077957 PMCID: PMC4117606 DOI: 10.1371/journal.pone.0103704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.
Collapse
Affiliation(s)
- Natália Corniani
- São Paulo State University, Faculty of Agronomic Sciences, Botucatu, SP, Brazil
| | - Edivaldo D. Velini
- São Paulo State University, Faculty of Agronomic Sciences, Botucatu, SP, Brazil
| | | | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, United States of America
| | | | - Franck E. Dayan
- USDA-ARS Natural Products Utilization Research Unit, University, MS, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kunfermann A, Witschel M, Illarionov B, Martin R, Rottmann M, Höffken HW, Seet M, Eisenreich W, Knölker HJ, Fischer M, Bacher A, Groll M, Diederich F. Pseudiline: halogenierte, allosterische Inhibitoren des Enzyms IspD aus dem Mevalonat-unabhängigen Biosyntheseweg. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Kunfermann A, Witschel M, Illarionov B, Martin R, Rottmann M, Höffken HW, Seet M, Eisenreich W, Knölker HJ, Fischer M, Bacher A, Groll M, Diederich F. Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD. Angew Chem Int Ed Engl 2014; 53:2235-9. [DOI: 10.1002/anie.201309557] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/15/2013] [Indexed: 01/10/2023]
|
26
|
Cutulle MA, Armel GR, Brosnan JT, Best MD, Kopsell DA, Bruce BD, Bostic HE, Layton DS. Synthesis and evaluation of heterocyclic analogues of bromoxynil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:329-36. [PMID: 24354444 DOI: 10.1021/jf404209d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
One attractive strategy to discover more active and/or crop-selective herbicides is to make structural changes to currently registered compounds. This strategy is especially appealing for those compounds with limited herbicide resistance and whose chemistry is accompanied with transgenic tools to enable herbicide tolerance in crop plants. Bromoxynil is a photosystem II (PSII) inhibitor registered for control of broadleaf weeds in several agronomic and specialty crops. Recently at the University of Tennessee-Knoxville several analogues of bromoxynil were synthesized including a previously synthesized pyridine (2,6-dibromo-5-hydroxypyridine-2-carbonitrile sodium salt), a novel pyrimidine (4,6-dibromo-5-hydroxypyrimidine-2-carbonitrile sodium salt), and a novel pyridine N-oxide (2,6-dibromo-1-oxidopyridin-1-ium-4-carbonitrile). These new analogues of bromoxynil were also evaluated for their herbicidal activity on soybean (Glycine max), cotton (Gossypium hirsutum), redroot pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), large crabgrass (Digitaria sanguinalis), and pitted morningglory ( Ipomoea lacunose ) when applied at 0.28 kg ha(-1). A second study was conducted on a glyphosate-resistant weed (Amaranthus palmeri) with the compounds being applied at 0.56 kg ha(-1). Although all compounds were believed to inhibit PSII by binding in the quinone binding pocket of D1, the pyridine and pyridine-N-oxide analogues were clearly more potent than bromoxynil on Amaranthus retroflexus. However, application of the pyrimidine herbicide resulted in the least injury to all species tested. These variations in efficacy were investigated using molecular docking simulations, which indicate that the pyridine analogue may form a stronger hydrogen bond in the pocket of the D1 protein than the original bromoxynil. A pyridine analogue was able to control the glyphosate-resistant Amaranthus palmeri with >80% efficacy. The pyridine analogues of bromoxynil showed potential to have a different weed control spectrum compared to bromoxynil. A pyridine analogue of bromoxynil synthesized in this research controlled several weed species greater than bromoxynil itself, potentially due to enhanced binding within the PSII binding pocket. Future research should compare this analogue to bromoxynil using optimized formulations at higher application rates.
Collapse
Affiliation(s)
- Matthew A Cutulle
- Department of Plant Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lamberth C, Jeanmart S, Luksch T, Plant A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013; 341:742-6. [DOI: 10.1126/science.1237227] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Crop protection chemistry has come a long way from its “alchemic” beginnings in the late 19th century to a high-tech science that supports the sustainable production of food, feed, and fiber for a rapidly growing population. Cutting-edge developments in the design and synthesis of agrochemicals help to tackle today’s challenges of weed and pest resistance, higher regulatory safety margins, and higher cost of goods with the invention of selective, environmentally benign, low use rate, and cost-effective active ingredients.
Collapse
Affiliation(s)
- Clemens Lamberth
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Stephane Jeanmart
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Torsten Luksch
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Andrew Plant
- Syngenta Crop Protection AG, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|