1
|
López-de-Felipe M, Alarcón-Elbal PM, García-Masiá I, Flor-Sánchez A, Mateo-Herrero P, Serna-Mompeán JP, Orán-Cáceres JP, Bueno-Marí R, Gil-Torró I. Integrated Control of Aedes albopictus in a Residential Area Through a Community-Based Approach: NESCOTIGER, a Large-Scale Field Trial in Valencia, Spain. Pathogens 2025; 14:367. [PMID: 40333141 PMCID: PMC12030618 DOI: 10.3390/pathogens14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Aedes albopictus has established populations in several European countries with a sustained spreading pattern through the continent. This invasive mosquito is a public health threat due to its vector competence for multiple arboviruses. Notably, the peri-domestic habits of this hematophagous insect greatly diminish the efficacy of regular control activities, as individuals may harbor in private areas. The oviposition behavior can be exploited for targeting adults and immature stages through different types of traps. An experimental integrated control program, which included a community-based mass trapping intervention in private areas, control of public street-catch basins, and an educational campaign, was developed in an infested residential area in Valencia (Eastern Spain). Focusing on mass trapping, participating residents deployed traps belonging to three modes of action in their gardens during the mosquito season. A total of 1028 families participated in the project, and 2884 traps were deployed. The study sector where adult lethal ovitraps were used showed the lowest adult collections, and residents living in this sector reported the highest satisfaction rates in a perception survey. The mass deployment through a community-based approach of the adulticidal oviposition trap type appears to be a promising tool for controlling Ae. albopictus in residential areas.
Collapse
Affiliation(s)
- Marcos López-de-Felipe
- R&D Department, Laboratorios Lokímica S.A., Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain; (M.L.-d.-F.); (I.G.-M.); (J.P.S.-M.); (J.P.O.-C.); (R.B.-M.)
- Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, Ctra. de Pozuelo, 28, 28222 Majadahonda, Madrid, Spain
| | - Pedro María Alarcón-Elbal
- R&D Department, Laboratorios Lokímica S.A., Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain; (M.L.-d.-F.); (I.G.-M.); (J.P.S.-M.); (J.P.O.-C.); (R.B.-M.)
- Research Group on Vector-Borne Zoonoses (ZOOVEC), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), School of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, c/Santiago Ramón y Cajal, 46115 Alfara del Patriarca, Valencia, Spain
| | - Isaac García-Masiá
- R&D Department, Laboratorios Lokímica S.A., Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain; (M.L.-d.-F.); (I.G.-M.); (J.P.S.-M.); (J.P.O.-C.); (R.B.-M.)
- European Center of Excellence for Vector Control, Rentokil Initial, Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain
| | | | - Pilar Mateo-Herrero
- R&D Department, Inesfly Corporation S.L., Cno. Pascualeta, 5, 46200 Paiporta, Valencia, Spain; (P.M.-H.); (I.G.-T.)
| | - Juan Pablo Serna-Mompeán
- R&D Department, Laboratorios Lokímica S.A., Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain; (M.L.-d.-F.); (I.G.-M.); (J.P.S.-M.); (J.P.O.-C.); (R.B.-M.)
| | - Juan Pablo Orán-Cáceres
- R&D Department, Laboratorios Lokímica S.A., Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain; (M.L.-d.-F.); (I.G.-M.); (J.P.S.-M.); (J.P.O.-C.); (R.B.-M.)
| | - Rubén Bueno-Marí
- R&D Department, Laboratorios Lokímica S.A., Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain; (M.L.-d.-F.); (I.G.-M.); (J.P.S.-M.); (J.P.O.-C.); (R.B.-M.)
- European Center of Excellence for Vector Control, Rentokil Initial, Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain
- Parasite & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Av. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Ignacio Gil-Torró
- R&D Department, Inesfly Corporation S.L., Cno. Pascualeta, 5, 46200 Paiporta, Valencia, Spain; (P.M.-H.); (I.G.-T.)
- Research Group on Vector-Borne Zoonoses (ZOOVEC), Department of Pharmacy, School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, c/Santiago Ramón y Cajal, 46115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
2
|
Rique HL, Menezes HSG, Melo-Santos MAV, Silva-Filha MHNL. Evaluation of a long-lasting microbial larvicide against Culex quinquefasciatus and Aedes aegypti under laboratory and a semi-field trial. Parasit Vectors 2024; 17:391. [PMID: 39272177 PMCID: PMC11401406 DOI: 10.1186/s13071-024-06465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. METHODS The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. RESULTS The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. CONCLUSIONS Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance.
Collapse
Affiliation(s)
- Hyago Luiz Rique
- Departament of Entomology, Instituto Aggeu Magalhães-Fiocruz, Av. Moraes Rego S/N, Recife, PE, 50740-465, Brazil
| | | | | | | |
Collapse
|
3
|
Da Re D, Marini G, Bonannella C, Laurini F, Manica M, Anicic N, Albieri A, Angelini P, Arnoldi D, Blaha M, Bertola F, Caputo B, De Liberato C, Della Torre A, Flacio E, Franceschini A, Gradoni F, Kadriaj P, Lencioni V, Del Lesto I, La Russa F, Lia RP, Montarsi F, Otranto D, L'Ambert G, Rizzoli A, Rombolà P, Romiti F, Stancher G, Torina A, Velo E, Virgillito C, Zandonai F, Rosà R. VectAbundance: a spatio-temporal database of Aedes mosquitoes observations. Sci Data 2024; 11:636. [PMID: 38879616 PMCID: PMC11180130 DOI: 10.1038/s41597-024-03482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024] Open
Abstract
Modelling approaches play a crucial role in supporting local public health agencies by estimating and forecasting vector abundance and seasonality. However, the reliability of these models is contingent on the availability of standardized, high-quality data. Addressing this need, our study focuses on collecting and harmonizing egg count observations of the mosquito Aedes albopictus, obtained through ovitraps in monitoring and surveillance efforts across Albania, France, Italy, and Switzerland from 2010 to 2022. We processed the raw observations to obtain a continuous time series of ovitraps observations allowing for an extensive geographical and temporal coverage of Ae. albopictus population dynamics. The resulting post-processed observations are stored in the open-access database VectAbundance.This initiative addresses the critical need for accessible, high-quality data, enhancing the reliability of modelling efforts and bolstering public health preparedness.
Collapse
Affiliation(s)
- Daniele Da Re
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
| | - Carmelo Bonannella
- OpenGeoHub Foundation, Doorwerth, The Netherlands
- Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, The Netherlands
| | - Fabrizio Laurini
- Department of Economics and Management, University of Parma, Parma, Italy
| | - Mattia Manica
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
- Bruno Kessler Foundation, Trento, Italy
| | - Nikoleta Anicic
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | | | | | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Marharyta Blaha
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Viterbo, Italy
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eleonora Flacio
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | | | | | | | | | - Irene Del Lesto
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Viterbo, Italy
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | | | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | | | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
| | - Pasquale Rombolà
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Viterbo, Italy
| | - Federico Romiti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Viterbo, Italy
| | | | | | | | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
4
|
Alarcón-Elbal PM, López-de-Felipe M, Gil-Torró I, García-Masiá I, Mateo-Herrero P, Bueno-Marí R. Where does Aedes albopictus (Diptera: Culicidae) really breed in a Mediterranean residential area? Results from a field study in Valencia, Eastern Spain. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:383-392. [PMID: 38812069 DOI: 10.1017/s0007485324000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Since its introduction in Spain in 2004, Aedes albopictus has rapidly spread across the country. Its aggressive biting behaviour causes nuisance, limiting outdoor activities. Also, its role as a vector of several arboviruses implies a major public health risk, with several cases of autochthonous dengue having been reported nationwide over the past few years. Control strategies usually focus on interventions in breeding sites. As such, accurate knowledge of the main larval habitats becomes a major priority in infested areas. A detailed identification of breeding sites of Ae. albopictus was carried out in the outdoors of 60 residential properties during July-August 2022 in El Vedat de Torrent (Valencia, Eastern Spain), an area recently colonised by this species. A total of 1444 real and potential breeding sites were examined. The most abundant potential larval habitat were plant pot plates (6.48 units/house), although a low infestation level was found, both for larvae (2.06% positivity, x̄ = 30.5 larvae/container), and pupae (0.51%, x̄ = 2.5 pupae/container). A total of 7715 larvae and 205 pupae were found in a disused flooded water pool depuration system. Animal drinkers, buckets and irrigation water containers were found to be the most common positive containers. No statistical difference was observed among the different container materials. A general statistical increase of 1 larva per 11.7 ml of water in breeding sites was detected. Breeding sites of other species such as Culex pipiens (n = 2) and Culex modestus (n = 1) were also rarely found in this residential area. To our knowledge, this is the first aedic index study carried out in Europe, and it provides valuable information about the main domestic breeding habitats of Ae. albopictus, which can greatly improve control programmes.
Collapse
Affiliation(s)
- Pedro María Alarcón-Elbal
- R&D Department, Laboratorios Lokímica, SA. Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain
- Research Group on Vector-Borne Zoonoses (ZOOVEC), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Marcos López-de-Felipe
- R&D Department, Laboratorios Lokímica, SA. Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain
- Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ignacio Gil-Torró
- R&D Department, Inesfly Corporation SL, Camí Pascualeta, 5, 46200 Paiporta, Valencia, Spain
| | - Isaac García-Masiá
- R&D Department, Laboratorios Lokímica, SA. Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain
- European Center of Excellence for Vector Control, Rentokil Initial, Valencia, Spain
| | - Pilar Mateo-Herrero
- R&D Department, Inesfly Corporation SL, Camí Pascualeta, 5, 46200 Paiporta, Valencia, Spain
| | - Rubén Bueno-Marí
- R&D Department, Laboratorios Lokímica, SA. Ronda Auguste y Louis Lumière, 23, Nave 10, 46980 Paterna, Valencia, Spain
- European Center of Excellence for Vector Control, Rentokil Initial, Valencia, Spain
- Parasite & Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Vasquez MI, Notarides G, Meletiou S, Patsoula E, Kavran M, Michaelakis A, Bellini R, Toumazi T, Bouyer J, Petrić D. Two invasions at once: update on the introduction of the invasive species Aedes aegypti and Aedes albopictus in Cyprus - a call for action in Europe. Parasite 2023; 30:41. [PMID: 37772845 PMCID: PMC10540676 DOI: 10.1051/parasite/2023043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Aedes aegypti, the yellow fever mosquito and Aedes albopictus, the tiger mosquito, continue to expand their geographical distribution, reshaping the European epidemiological risks for mosquito-borne diseases. The reintroduction of Aedes aegypti near the airport and port in Larnaka and the detection of Aedes albopictus near the marina and old port of the Limassol area in Cyprus are reported herein. The measures taken to investigate these events included (i) communication to health authorities, (ii) expert on-site visits and verification of findings, (iii) enhanced active surveillance, and (iv) development of an Emergency Action Plan followed by a Contingency Plan. These emergency action plans were developed to delimitate the infested areas and to prevent the spreading of the mosquito populations into new areas. The general principles are presented along with their rationale to serve as guidelines for other geographical regions targeting suppression/eradication with a sterile insect technique component. In parallel, this manuscript serves as a call for action at the European level to impede the further spread of these species and support the activities being undertaken in Cyprus to combat the incursions of Aedes invasive species.
Collapse
Affiliation(s)
- Marlen Ines Vasquez
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Gregoris Notarides
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Sotiris Meletiou
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Eleni Patsoula
-
Faculty of Public Health Policy, Laboratory for Surveillance of Infectious Diseases, School of Public Health, University of West Attica 11521 Athens Greece
| | - Mihaela Kavran
-
University of Novi Sad, Faculty of Agriculture, Center of Excellence One Health – Vectors and Climate 21101 Novi Sad Serbia
| | - Antonios Michaelakis
-
Laboratory of Insects and Parasites of Medical Importance, Benaki Phytopathological Institute 14561 Athens Greece
| | - Romeo Bellini
-
Centro Agricoltura Ambiente “G. Nicoli” 40014 Crevalcore Italy
| | - Toumazis Toumazi
-
Department of Chemical Engineering, Cyprus University of Technology 3020 Limassol Cyprus
| | - Jeremy Bouyer
-
UMR Astre (Animals, Health, Territories, Risks, Ecosystems), Cirad, Inrae, Univ. Montpellier 34398 Montpellier France
-
Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency A-1400 Vienna Austria
| | - Dušan Petrić
-
University of Novi Sad, Faculty of Agriculture, Center of Excellence One Health – Vectors and Climate 21101 Novi Sad Serbia
| |
Collapse
|
6
|
MosChito rafts as effective and eco-friendly tool for the delivery of a Bacillus thuringiensis-based insecticide to Aedes albopictus larvae. Sci Rep 2023; 13:3041. [PMID: 36810640 PMCID: PMC9944263 DOI: 10.1038/s41598-023-29501-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Adult mosquito females, through their bites, are responsible for the transmission of different zoonotic pathogens. Although adult control represents a pillar for the prevention of disease spread, larval control is also crucial. Herein we characterized the effectiveness of a suitable tool, named "MosChito raft", for the aquatic delivery of a Bacillus thuringiensis var. israelensis (Bti) formulate, a bioinsecticide active by ingestion against mosquito larvae. MosChito raft is a floating tool composed by chitosan cross-linked with genipin in which a Bti-based formulate and an attractant have been included. MosChito rafts (i) resulted attractive for the larvae of the Asian tiger mosquito Aedes albopictus, (ii) induced larval mortality within a few hours of exposure and, more importantly, (iii) protected the Bti-based formulate, whose insecticidal activity was maintained for more than one month in comparison to the few days residual activity of the commercial product. The delivery method was effective in both laboratory and semi-field conditions, demonstrating that MosChito rafts may represent an original, eco-based and user-friendly solution for larval control in domestic and peri-domestic aquatic habitats such as saucers and artificial containers in residential or urban environments.
Collapse
|
7
|
Giatropoulos A, Bellini R, Pavlopoulos DT, Balatsos G, Karras V, Mourafetis F, Papachristos DP, Karamaouna F, Carrieri M, Veronesi R, Haroutounian SA, Michaelakis A. Efficacy Evaluation of Oregano Essential Oil Mixed with Bacillus thuringiensis israelensis and Diflubenzuron against Culex pipiens and Aedes albopictus in Road Drains of Italy. INSECTS 2022; 13:insects13110977. [PMID: 36354801 PMCID: PMC9698153 DOI: 10.3390/insects13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/12/2023]
Abstract
Mosquito management programs in the urban environment of Italian cities mainly rely on larval control with conventional insecticides, primarily targeting the road drains that constitute the principal mosquito breeding sites encountered in public. The repeated utilization of synthetic insecticides may have adverse effects on non-targets and lead to resistance development issues, while the performance of biopesticides encounters limitations in field use. Botanical insecticides as single larval control agents or in binary mixtures with conventional insecticides have been extensively studied in the laboratory as an effective and eco-friendly alternative mosquito control method with promising results. The study herein concerns the investigation, for the first time under realistic conditions in the field, of the joint action of a carvacrol-rich oregano Essential Oil (EO) with two conventional insecticides, namely, the insect growth regulator diflubenzuron and the bio-insecticide Bacillus thuringiensis israelensis (B.t.i.), in road drains in Crevalcore city, Italy, against Culex pipiens and Aedes albopictus. According to the obtained results, the application of both plain EO and its mixtures with diflubenzuron and B.t.i. exerted very high efficacy in terms of immature mosquito population reduction over a two-week period. Three weeks after treatment, the performance of the oil and its mixtures diminished but remained high, while the addition of diflubenzuron potentiated the persistent action of the oil against Cx. pipiens. These findings are indicative of the potential of mixing carvacrol-rich EO with diflubenzuron and B.t.i. as an efficient eco-friendly alternative to mono-insecticide applications in road drains against Cx. pipiens and Ae. albopictus larvae.
Collapse
Affiliation(s)
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Dionysios T. Pavlopoulos
- Faculty of Animal Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - George Balatsos
- Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
| | - Vasileios Karras
- Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
| | - Fotis Mourafetis
- Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
| | | | - Filitsa Karamaouna
- Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
| | - Marco Carrieri
- Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Rodolfo Veronesi
- Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Serkos A. Haroutounian
- Faculty of Animal Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (S.A.H.); (A.M.); Tel.: +30-21-0529-4247 (S.A.H.); +30-21-0818-0248 (A.M.)
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece
- Correspondence: (S.A.H.); (A.M.); Tel.: +30-21-0529-4247 (S.A.H.); +30-21-0818-0248 (A.M.)
| |
Collapse
|
8
|
Bertolino S, Vimercati G, Paoloni D, Martinoli A, Wauters LA, Genovesi P, La Morgia V. Restricted access to private properties limits management of invasive alien species: A literature review and case studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113318. [PMID: 34346401 DOI: 10.1016/j.jenvman.2021.113318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Biological invasions are one of the major drivers of global environmental change and there is a need to develop integrated strategies to counteract this phenomenon. Eradication is an effective management option to mitigate the deleterious impacts of invasive alien species (IAS). Eradication can be achieved if all reproductive individuals are removed and population recovery is prevented. However, individuals may survive removal operations in private areas if interventions are not allowed. Here, we present 1) three case studies in which restricted private property access prevented the local eradication of invasive alien populations, and 2) a list of reasons for denying access to private properties and a list of actions implemented or suggested by managers to facilitate access and reported in 29 reviewed papers. The restricted access affected the local eradication of three Eastern grey squirrel (Sciurus carolinensis) populations in Italy. In Lombardy region, in one area a planned eradication did not start and in another area the implemented eradication failed due to the refusal from the owner of a large private property to grant access to managers. In Umbria region, the lack of collaboration from an Italian financial institution produced a delay of 15 months in the removal. In our case studies, therefore, a single person or institution denied access for a personal gain or presumed internal security. The reasons behind landowner opposition may be diverse and individual attitudes towards IAS management will depend on interactions with owners. According to our review, in many cases the denial of access takes place in a general perception of mistrust or opposition to the project as the results of a limited engagement of local people. Such opposition often jeopardizes control activities, with profound negative consequences on eradication, expecially at landscape scale. Bottom-up approaches aiming at involving stakeholders can increase the possibility to achieve IAS eradication, however appropriate legislation remains pivotal to enforce eradication in case of non-cooperative behaviour.
Collapse
Affiliation(s)
- S Bertolino
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy.
| | - G Vimercati
- Department of Biology, Unit Ecology & Evolution, University of Fribourg, Fribourg, Switzerland; Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - D Paoloni
- Istituto Oikos srl Social Enterprises, Milano, Italy
| | - A Martinoli
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - L A Wauters
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - P Genovesi
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa; Institute for Environmental Protection and Research (ISPRA), Roma, Italy; Chair IUCN SSC Invasive Species Specialist Group, Italy
| | - V La Morgia
- Institute for Environmental Protection and Research (ISPRA), Roma, Italy
| |
Collapse
|
9
|
Caputo B, Langella G, Petrella V, Virgillito C, Manica M, Filipponi F, Varone M, Primo P, Puggioli A, Bellini R, D’Antonio C, Iesu L, Tullo L, Rizzo C, Longobardi A, Sollazzo G, Perrotta MM, Fabozzi M, Palmieri F, Saccone G, Rosà R, della Torre A, Salvemini M. Aedes albopictus bionomics data collection by citizen participation on Procida Island, a promising Mediterranean site for the assessment of innovative and community-based integrated pest management methods. PLoS Negl Trop Dis 2021; 15:e0009698. [PMID: 34529653 PMCID: PMC8445450 DOI: 10.1371/journal.pntd.0009698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
In the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data. We carried out a 4-year study in the island of Procida (Gulf of Naples, Italy) in strict collaboration with local administrators and citizens to estimate the temporal dynamics, spatial distribution, and population size of Ae. albopictus and the dispersal and survival of irradiated males. We applied ovitrap monitoring, geo-spatial analyses, mark-release-recapture technique, and a citizen-science approach. Results allow to predict the seasonal (from April to October, with peaks of 928-9,757 males/ha) and spatial distribution of the species, highlighting the capacity of Ae. albopictus population of Procida to colonize and maintain high frequencies in urban as well as in sylvatic inhabited environments. Irradiated males shown limited ability to disperse (mean daily distance travelled <60m) and daily survival estimates ranging between 0.80 and 0.95. Overall, the ecological characteristics of the island, the acquired knowledge on Ae. albopictus spatial and temporal distribution, the high human and Ae. albopictus densities and the positive attitude of the resident population in being active parts in innovative mosquito control projects provide the ground for evidence-based planning of the interventions and for the assessment of their effectiveness. In addition, the results highlight the value of creating synergies between research groups, local administrators, and citizens for affordable monitoring (and, in the future, control) of mosquito populations.
Collapse
Affiliation(s)
- Beniamino Caputo
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giuliano Langella
- Department of Agriculture, University of Naples Federico II, Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | - Federico Filipponi
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Romeo Bellini
- Centro Agricoltura Ambiente “Giorgio Nicoli”, Crevalcore, Italy
| | | | - Luca Iesu
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Liliana Tullo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ciro Rizzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Germano Sollazzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Miriana Fabozzi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiana Palmieri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele all’Adige, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN), Italy
| | - Alessandra della Torre
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Ravasi D, Parrondo Monton D, Tanadini M, Flacio E. Effectiveness of integrated Aedes albopictus management in southern Switzerland. Parasit Vectors 2021; 14:405. [PMID: 34399827 PMCID: PMC8365973 DOI: 10.1186/s13071-021-04903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The exotic invasive tiger mosquito, Aedes albopictus, appeared in southern Switzerland in 2003. The spread of the mosquito has been surveyed constantly since then, and an integrated vector management (IVM) has been implemented to control its numbers. The control measures focus on the aquatic phase of the mosquito with removal of breeding sites and applications of larvicides in public areas whereas private areas are reached through extensive public information campaigns. Here, we evaluated the efficacy of the IVM. METHODS Since all the municipalities with Ae. albopictus in southern Switzerland are currently implementing the IVM, Italian municipalities just across the Swiss-Italian border, where Ae. albopictus is present but no coordinated intervention programme is in place, served as control. Ovitraps and adult female traps were used to measure mosquito abundance in 2019. Generalised mixed-effects models were used to model the numbers of Ae. albopictus eggs and adult females collected. These numbers of Ae. albopictus eggs were compared to the numbers of eggs collected in 2012 and 2013 in a previous assessment of the IVM, using a hurdle model. RESULTS Mean numbers of Ae. albopictus eggs and adult females in 2019 were consistently higher in the municipalities not following an IVM programme. In these municipalities, there were about four times (3.8) more eggs than in the municipalities implementing an IVM programme. Also, the numbers of eggs and adult females increased steadily from the beginning of the Ae. albopictus reproductive season, reaching a peak in August. In contrast, the increase in numbers of Ae. albopictus was much more contained in the municipalities implementing an IVM programme, without reaching an evident peak. Comparison with data from 2012 and 2013 indicates that the gap between intervention and non-intervention areas may have almost doubled in the past 6 years. CONCLUSIONS The results of the survey strongly support the efficacy of the IVM programme implemented in southern Switzerland compared to municipalities without defined control measures. With the constant implementation of an IVM, it appears possible to contain the numbers of Ae. albopictus at a manageable level, reducing the nuisance for the human population and the risk of arbovirus epidemics.
Collapse
Affiliation(s)
- Damiana Ravasi
- Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, via Mirasole 22A, 6500 Bellinzona, Switzerland
| | - Diego Parrondo Monton
- Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, via Mirasole 22A, 6500 Bellinzona, Switzerland
| | - Matteo Tanadini
- Zurich Data Scientists GmbH, Sihlquai 131, 8005 Zurich, Switzerland
| | - Eleonora Flacio
- Laboratory of Applied Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland, via Mirasole 22A, 6500 Bellinzona, Switzerland
| |
Collapse
|
11
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
12
|
Alternatives to Improve Mosquito Eradication Behavior: A Systematic Review. JOURNAL OF RESEARCH DEVELOPMENT IN NURSING AND MIDWIFERY 2021. [DOI: 10.52547/jgbfnm.18.2.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
13
|
Allen T, Crouch A, Topp SM. Community participation and empowerment approaches to Aedes mosquito management in high-income countries: a scoping review. Health Promot Int 2021; 36:505-523. [PMID: 32647879 DOI: 10.1093/heapro/daaa049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-income countries (HICs) in sub-tropical and tropical regions are at an increasing risk of Aedes mosquito-borne disease (MBD) outbreaks such as dengue fever. As the Aedes mosquito predominately lives and breeds in and around people's homes, community participation in MBD management is an important part of preventing MBD outbreaks. Historically, government-led strategies have dominated community participation efforts as opposed to strategies co-designed or led by the community. A scoping review was conducted to describe the community participation and empowering approaches used in Aedes mosquito management specifically in HICs, and to identify any reported outcomes of these methods. A systematic search of peer-reviewed literature using electronic databases Medline (OVID), Web of Science, Scopus and ProQuest-Science and Technology as well as grey literature, found 19 studies that matched the review criteria. The review findings highlight a lack of empirical evidence to inform participatory and empowering approaches to mosquito management in HICs. Moreover, the rationale for using predominantly government-led approaches is not clear. Further research is required to better understand best approaches and barriers to employing empowering approaches in mosquito management in HICs.
Collapse
Affiliation(s)
- Tammy Allen
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| | - Alan Crouch
- Department of Rural Health, University of Melbourne, Australia
| | - Stephanie M Topp
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia
| |
Collapse
|
14
|
Douchet L, Haramboure M, Baldet T, L'Ambert G, Damiens D, Gouagna LC, Bouyer J, Labbé P, Tran A. Comparing sterile male releases and other methods for integrated control of the tiger mosquito in temperate and tropical climates. Sci Rep 2021; 11:7354. [PMID: 33795801 PMCID: PMC8016901 DOI: 10.1038/s41598-021-86798-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
The expansion of mosquito species worldwide is creating a powerful network for the spread of arboviruses. In addition to the destruction of breeding sites (prevention) and mass trapping, methods based on the sterile insect technique (SIT), the autodissemination of pyriproxyfen (ADT), and a fusion of elements from both of these known as boosted SIT (BSIT), are being developed to meet the urgent need for effective vector control. However, the comparative potential of these methods has yet to be explored in different environments. This is needed to propose and integrate informed guidelines into sustainable mosquito management plans. We extended a weather-dependent model of Aedes albopictus population dynamics to assess the effectiveness of these different vector control methods, alone or in combination, in a tropical (Reunion island, southwest Indian Ocean) and a temperate (Montpellier area, southern France) climate. Our results confirm the potential efficiency of SIT in temperate climates when performed early in the year (mid-March for northern hemisphere). In such a climate, the timing of the vector control action was the key factor in its success. In tropical climates, the potential of the combination of methods becomes more relevant. BSIT and the combination of ADT with SIT were twice as effective compared to the use of SIT alone.
Collapse
Affiliation(s)
- Léa Douchet
- CIRAD, UMR ASTRE, 97491, Sainte-Clotilde, Reunion, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
| | - Marion Haramboure
- CIRAD, UMR ASTRE, 97491, Sainte-Clotilde, Reunion, France.
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France.
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.
- TETIS, AgroParisTech, CIRAD, CNRS, INRAE, Univ Montpellier, Montpellier, France.
| | - Thierry Baldet
- CIRAD, UMR ASTRE, 97491, Sainte-Clotilde, Reunion, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
| | - Gregory L'Ambert
- Department of Research and Development, EID Méditerranée, Montpellier, France
| | - David Damiens
- IRD, CNRS-UM-IRD, UMR MIVEGEC, Montpellier, Reunion, France
- IRD/GIP CYROI, Sainte-Clotilde, Reunion, France
| | - Louis Clément Gouagna
- IRD, CNRS-UM-IRD, UMR MIVEGEC, Montpellier, Reunion, France
- IRD/GIP CYROI, Sainte-Clotilde, Reunion, France
| | - Jeremy Bouyer
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, 34398, Montpellier, France
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
- CIRAD, UMR ASTRE, 97410, Saint-Pierre, Reunion, France
| | - Pierrick Labbé
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Annelise Tran
- CIRAD, UMR ASTRE, 97491, Sainte-Clotilde, Reunion, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
- TETIS, AgroParisTech, CIRAD, CNRS, INRAE, Univ Montpellier, Montpellier, France
| |
Collapse
|
15
|
Reuss F, Kreß A, Braun M, Magdeburg A, Pfenninger M, Müller R, Mehring M. Knowledge on exotic mosquitoes in Germany, and public acceptance and effectiveness of Bti and two self-prepared insecticides against Aedes japonicus japonicus. Sci Rep 2020; 10:18901. [PMID: 33144626 PMCID: PMC7641113 DOI: 10.1038/s41598-020-75780-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
Mosquito-borne diseases are a continuous challenge to public health. To prevent transmission, Integrated Vector Management (IVM) applies preventive, control, and communicational strategies that should be feasible, environmentally benign, and sustainable. IVM shows higher efficiency when being supported by local communities. Accordingly, we applied a social-ecological approach to identify the public acceptance of control measures and effectiveness of Eurocent coins containing copper, clove essential oil (EO) and Bacillus thuringiensis israelensis (Bti). We performed field and laboratory experiments to demonstrate the toxicity of alternative substances against Aedes japonicus japonicus. In expert interviews, we asked for (1) knowledge on exotic mosquitoes in Germany, (2) potential chances of alternative substances in future mosquito control, and (3) their needs for further clarification before application. We assessed potential users' (4) awareness of exotic mosquitoes and (5) willingness to apply the substances. Self-prepared copper coins and EO were clearly preferred by potential users over Bti. However, 100% mortality of the sensitive first stage could not be reached with the number of ten 5-Eurocent coins showing limited toxicity. Clove EO was shown to work as oviposition deterrent and larvicide with a LC50 of 17 mg l-1 (95% CI: 15-19 mg l-1). This study shows the importance of potential users' perspectives in IVM and the need for authorised insecticides.
Collapse
Affiliation(s)
- Friederike Reuss
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany.
| | - Aljoscha Kreß
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Axel Magdeburg
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
- LOEWE TBG (Translational Biodiversity Genomics), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute of Organismic and Molecular Evolution (iOME), Johannes Gutenberg University, Gresemundweg 2, 55128, Mainz, Germany
| | - Ruth Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Marion Mehring
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Straße 14-16, 60325, Frankfurt am Main, Germany
- ISOE - Institute for Social-Ecological Research, Biodiversity and People, Hamburger Allee 45, 60486, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Kim JY, Kho JW, Jung M, Lee DH. Assessment of potential effects and detection efficacy of a fluorescent marking system on a medically important hard tick, Haemaphysalis longicornis (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2019; 75:2735-2743. [PMID: 30785237 DOI: 10.1002/ps.5383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although Haemaphysalis longicornis (Acari: Ixodidae) is an important disease vector, its small size restricts the tracking methods applicable. Recently, fluorescent marking as a conventional detection method for small arthropods has been improved by combining it with an ultraviolet laser. We examined the application potential of this new fluorescent marking system (FMS) for tracking H. longicornis by evaluating the effect of fluorescent marking on the ticks and detection efficacy. RESULTS Under laboratory conditions, fluorescent marking did not significantly affect the survivorship, movement patterns, and CO2 response of H. longicornis at all three developmental stages. Fluorescent-marked individuals could be detected at distances ranging from 12 to 29 m under dark, increasing with the body size. Finally, in grassland, >90% of fluorescent-marked individuals were retrieved at night regardless of developmental stage. However, the overall detection rate (<42%) was substantially reduced during the day. CONCLUSIOIN Our results show that FMS can reliably detect H. longicornis at night. Nevertheless, fluorescent-marked individuals are not as conspicuous under sunlight when they are illuminated with ultraviolet lasers, limiting the use of FMS during the day. Therefore, the development of an alternative tracking method is warranted for an effective detection of ticks during the day. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joo-Young Kim
- Department of Life Sciences, Gachon University, Seongnam, South Korea
| | - Jung-Wook Kho
- Department of Life Sciences, Gachon University, Seongnam, South Korea
| | - Minhyung Jung
- Department of Life Sciences, Gachon University, Seongnam, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, Seongnam, South Korea
| |
Collapse
|
17
|
Monitoring of alien mosquitoes of the genus Aedes (Diptera: Culicidae) in Austria. Parasitol Res 2019; 118:1633-1638. [PMID: 30877440 PMCID: PMC6478629 DOI: 10.1007/s00436-019-06287-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/06/2019] [Indexed: 01/23/2023]
Abstract
Systematic, continuous mosquito surveillance is considered the most reliable tool to predict the spread and establishment of alien mosquito species such as the Asian tiger mosquito (Aedes albopictus), Japanese bush mosquito (Aedes japonicus), and the transmission risk of mosquito-borne arboviruses to humans. Only single individuals of Ae. albopictus have been found in Austria so far. However, it is likely that the species will be able to establish populations in the future due to global trade and traffic as well as increasing temperatures in the course of global climate change. In summer 2017, a project surveilling the oviposition of newly introduced Aedes mosquitoes, using ovitraps, was set up by means of citizen scientists and researchers and was performed in six federal provinces of Austria-Tyrol, Carinthia, Vienna, Lower Austria, Styria, and Burgenland. Eggs of Ae. albopictus were identified in Tyrol during the months August and September, while Ae. japonicus was found in Lower Austria, Styria, and Burgenland. In Vienna and Carinthia, all ovitraps were negative for Aedes eggs; however, Ae. japonicus was found for the first time in Vienna in July 2017 during routine sampling of adult mosquitoes. With this project, we demonstrated the benefits of citizen scientists for ovitrap-based mosquito surveillance. The finding of Ae. albopictus eggs in Northern Tyrol is not yet a proof of the establishment of a self-sustaining population, although it indicates the ongoing introduction of this species along main traffic routes from Italy, where this mosquito is well established. The risk of establishment of the tiger mosquito in the Lower Inn Valley is therefore a given and informing the public about preventive measures to hinder and delay this development is highly recommended.
Collapse
|
18
|
Chen H, Liu C, Liu J, Tang Y, Zhang X. Mixed effects of restriction strategies in antimicrobial stewardship programs on antimicrobial use in 121 tertiary hospitals in China, 2013-2017. Expert Rev Pharmacoecon Outcomes Res 2018; 19:483-489. [PMID: 30418035 DOI: 10.1080/14737167.2018.1547635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: The research evaluated the impact of intravenous antimicrobial restriction strategy (IARS) on different types of hospitals in China for evidence-based management, for outpatients implemented in 2016. Methods: Based on panel data on antimicrobial use in 121 tertiary hospitals in Zhejiang, China, segmented regression analysis was used to evaluate the impact of IARS in children's hospitals (CHs), obstetrics and gynecology hospitals (OGHs), women's and children's hospitals (WCHs), traditional Chinese medicine hospitals (TCMHs) and general hospitals (GHs). Antimicrobial use was measured using the percentage of total encounters with prescribing and the percentage of total drug expenditure relating to antimicrobials (APP and AEP). Results: There was a downward baseline slope of APP in all types of hospitals and AEP in WCHs, TCMHs and GHs (P < 0.01). After IARS, a level reduction in AEP in CHs (-3.14%, 95% CI = -6.21 to 0.06), WCHs (-1.33%, 95% CI = -2.44 to 0.22) and TCMHs (-0.85%, 95%CI = -1.51 to 0.18). After IARS, the slope of AEP changed significantly in OGHs (-0.42%, 95%CI = -0.81 to 0.03) and WCHs (0.29%, 95% CI = 0.08 to 0.49), and the slope of APP changed significantly in CHs (2.35%, 95%CI = 1.20 to 3.49). Conclusions: IARS had the mixed effects including positive effect in AEP and no significant change in APP, and an unexpected rise in APP in CHs needs further study.
Collapse
Affiliation(s)
- Haihong Chen
- a School of Medicine and Health Management, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Chenxi Liu
- a School of Medicine and Health Management, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Junjie Liu
- a School of Medicine and Health Management, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Yuqing Tang
- a School of Medicine and Health Management, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Xinping Zhang
- a School of Medicine and Health Management, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| |
Collapse
|
19
|
Stefopoulou Α, Balatsos G, Petraki A, LaDeau SL, Papachristos D, Michaelakis Α. Reducing Aedes albopictus breeding sites through education: A study in urban area. PLoS One 2018; 13:e0202451. [PMID: 30408031 PMCID: PMC6224055 DOI: 10.1371/journal.pone.0202451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/20/2018] [Indexed: 12/03/2022] Open
Abstract
Aedes albopictus tends to proliferate in small, often man-made bodies of water, largely present in urban private areas. For this reason, education and community participation are considered crucial for source reduction and mosquito control. In the current study, we identify mosquito breeding habitat and evaluate the effectiveness of resident education. Since 2010 several outbreaks of West Nile virus infection occurred in Greece however urban population has no previous experience with mosquito–borne disease related to Aedes species, such as Dengue, Zika and Chikungunya. After the introduction of Ae. albopictus in Greece, urban areas have been considered to be at risk of epidemic arboviral outbreaks and identifying effective control strategies is imperative. Our study examines the relationship between mosquito breeding sources and socioeconomic or demographic characteristics of different households in a Greek municipality and evaluates efficacy of resident education. The results revealed that only a minority of residents knew where mosquitoes breed (18.6%) and only 46% felt that residents had any responsibility for managing breeding habitat. Our findings strongly suggest that only the presence of scientific staff inspecting possible habitats in their properties, could be enough to stimulate practices towards source reduction. However, educational interventions alone with printed education material cannot enhance significant community participation and source reduction.
Collapse
Affiliation(s)
- Αngeliki Stefopoulou
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - George Balatsos
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - Angeliki Petraki
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - Shannon L. LaDeau
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America
| | - Dimitrios Papachristos
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
| | - Αntonios Michaelakis
- Benaki Phytopathological Institute, Department of Entomology and Agricultural Zoology, Kifissia, Greece
- * E-mail:
| |
Collapse
|
20
|
The containment of potential outbreaks triggered by imported Chikungunya cases in Italy: a cost utility epidemiological assessment of vector control measures. Sci Rep 2018; 8:9034. [PMID: 29899520 PMCID: PMC5998040 DOI: 10.1038/s41598-018-27443-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
The arrival of infected travelers from endemic regions can trigger sustained autochthonous transmission of mosquito-borne pathogens in Europe. In 2007 a Chikungunya outbreak was observed in central Italy, mostly affecting two villages characterised by a high density of Aedes albopictus. The outbreak was mitigated through intervention strategies reducing the mosquito abundance. Ten years later, in 2017, sustained Chikungunya transmission was documented in both central and southern Italy. The proposed analysis identifies suitable reactive measures for the containment and mitigation of future epidemics by combining epidemiological modeling with a health economic approach, considering different arrival times of imported infections and possible delays in the notification of cases. Obtained estimates suggest that, if the first notification will occur in the middle of the mosquito breeding season, the combination of larvicides, adulticides and breeding sites removal represents the optimal strategy. In particular, we found that interventions implemented in 2007 were cost-effective, with about 3200 prevented cases, 1450 DALYs averted and €13.5 M saved. Moreover, larvicides are proven to be more cost beneficial in early summer and warmer seasons, while adulticides should be preferred in autumn and colder seasons. Our results provide useful indications supporting urgent decision-making of public health authorities in response to emerging mosquito-borne epidemics.
Collapse
|
21
|
Marini G, Guzzetta G, Rosà R, Merler S. First outbreak of Zika virus in the continental United States: a modelling analysis. ACTA ACUST UNITED AC 2018; 22:30612. [PMID: 28933344 PMCID: PMC5607655 DOI: 10.2807/1560-7917.es.2017.22.37.30612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022]
Abstract
Since 2015, Zika virus (ZIKV) has spread throughout Latin and Central America. This emerging infectious disease has been causing considerable public health concern because of severe neurological complications, especially in newborns after congenital infections. In July 2016, the first outbreak in the continental United States was identified in the Wynwood neighbourhood of Miami-Dade County, Florida. In this work, we investigated transmission dynamics using a mathematical model calibrated to observed data on mosquito abundance and symptomatic human infections. We found that, although ZIKV transmission was detected in July 2016, the first importation may have occurred between March and mid-April. The estimated highest value for R0 was 2.73 (95% confidence interval (CI): 1.65–4.17); the attack rate was 14% (95% CI: 5.6–27.4%), with 15 (95% CI: 6–29) pregnant women involved and a 12% probability of infected blood donations. Vector control avoided 60% of potential infections. According to our results, it is likely that further ZIKV outbreaks identified in other areas of Miami-Dade County were seeded by commuters to Wynwood rather than by additional importation from international travellers. Our study can help prepare future outbreak-related interventions in European areas where competent mosquitoes for ZIKV transmission are already established.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (Trento), Italy
| | | | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (Trento), Italy
| | | |
Collapse
|
22
|
Guzzetta G, Trentini F, Poletti P, Baldacchino FA, Montarsi F, Capelli G, Rizzoli A, Rosà R, Merler S, Melegaro A. Effectiveness and economic assessment of routine larviciding for prevention of chikungunya and dengue in temperate urban settings in Europe. PLoS Negl Trop Dis 2017; 11:e0005918. [PMID: 28892499 PMCID: PMC5608415 DOI: 10.1371/journal.pntd.0005918] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/21/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decades, several European countries where arboviral infections are not endemic have faced outbreaks of diseases such as chikungunya and dengue, initially introduced by infectious travellers from tropical endemic areas and then spread locally via mosquito bites. To keep in check the epidemiological risk, interventions targeted to control vector abundance can be implemented by local authorities. We assessed the epidemiological effectiveness and economic costs and benefits of routine larviciding in European towns with temperate climate, using a mathematical model of Aedes albopictus populations and viral transmission, calibrated on entomological surveillance data collected from ten municipalities in Northern Italy during 2014 and 2015.We found that routine larviciding of public catch basins can limit both the risk of autochthonous transmission and the size of potential epidemics. Ideal larvicide interventions should be timed in such a way to cover the month of July. Optimally timed larviciding can reduce locally transmitted cases of chikungunya by 20% - 33% for a single application (dengue: 18-22%) and up to 43% - 65% if treatment is repeated four times throughout the season (dengue: 31-51%). In larger municipalities (>35,000 inhabitants), the cost of comprehensive larviciding over the whole urban area overcomes potential health benefits related to preventing cases of disease, suggesting the adoption of more localized interventions. Small/medium sized towns with high mosquito abundance will likely have a positive cost-benefit balance. Involvement of private citizens in routine larviciding activities further reduces transmission risks but with disproportionate costs of intervention. International travels and the incidence of mosquito-borne diseases are increasing worldwide, exposing a growing number of European citizens to higher risks of potential outbreaks. Results from this study may support the planning and timing of interventions aimed to reduce the probability of autochthonous transmission as well as the nuisance for local populations living in temperate areas of Europe.
Collapse
Affiliation(s)
| | - Filippo Trentini
- Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
| | - Piero Poletti
- Fondazione Bruno Kessler, Trento, Italy
- Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
| | | | - Fabrizio Montarsi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Gioia Capelli
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all'Adige (Trento), Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, San Michele all'Adige (Trento), Italy
| | | | - Alessia Melegaro
- Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
- Department of Policy Analysis and Public Management, Bocconi University, Milan, Italy
| |
Collapse
|