1
|
Alyokhin AV, Rosenthal BM, Weber DC, Baker MB. Towards a unified approach in managing resistance to vaccines, drugs, and pesticides. Biol Rev Camb Philos Soc 2025. [PMID: 39807648 DOI: 10.1111/brv.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Everywhere, pests and pathogens evolve resistance to our control efforts, impairing human health and welfare. Developing sustainable solutions to this problem requires working with evolved immune and ecological systems, rather than against these evolutionary forces. We advocate a transdisciplinary approach to resistance based on an evolutionary foundation informed by the concepts of integrated pest management and One Health. Diverse, multimodal management approaches create a more challenging environment for the evolution of resistance. Given our permanent evolutionary and ecological relationships with pests and pathogens, responses to most biological threats to health and agriculture should seek sustainable harm reduction rather than eradication.
Collapse
Affiliation(s)
- Andrei V Alyokhin
- School of Biology and Ecology, University of Maine, 5722 Dering Hall, Orono, 04469, Maine, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, 20705, Maryland, USA
| | - Donald C Weber
- Invasive Insect Biocontrol and Behaviour Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, 20705, Maryland, USA
| | - Mitchell B Baker
- Biology Department, Queens College, City University of New York, 149th St, Flushing, 11367, New York, USA
| |
Collapse
|
2
|
Gafni R, Nassar JA, Matzrafi M, Blank L, Eizenberg H. Unraveling the reasons for failure to control Amaranthus albus: insights into herbicide application at different growth stages, temperature effect, and herbicide resistance on a regional scale. PEST MANAGEMENT SCIENCE 2024; 80:4757-4769. [PMID: 38809094 DOI: 10.1002/ps.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study investigates factors contributing Amaranthus albus control failure in processing tomato fields in northern Israel. The study region is characterized by a significant climate gradient from east to west, providing the opportunity to investigate the effect of critical elements of the agricultural environment, e.g., temperature. Eight populations were collected from commercial fields in this region. Post-emergence herbicide efficacy of metribuzin, a photosystem II inhibitor, and rimsulfuron, an acetolactate synthase (ALS) inhibitor, was assessed through dose-response analyses at various growth stages. Temperature effects on control efficacy and resistance mechanisms were also explored. RESULTS Standard metribuzin dose (X) was ineffective on A. albus plants with more than six true-leaves, whereas 2X dose proved effective. Rimsulfuron at 16X dose was ineffective on plants with more than four true-leaves. We report here the first case of target site resistance to ALS inhibitors in A. albus, due to point mutation in the ALS gene (Pro197 to Leu). Furthermore, our findings suggest potential involvement of CYT P450 enzymes in enhanced metabolizing of rimsulfuron. An overall decrease in dry weight was observed in response to both herbicides at 16/22 °C (P < 0.0001). Rimsulfuron was effective against only one population when applied at 28/34 °C. A possible fitness cost associated with target site-resistant biotypes was observed under low temperature conditions, leading to effective control. CONCLUSION This regional-scale study highlights the challenges faced by growers, emphasizes the need for adapting management practices to the local climatic conditions and lays the groundwork for implementing location-specific weed management strategies in commercial fields. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roni Gafni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon LeZion, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
3
|
Kerr DR, Concepcion JCT, Strom SA, Riechers DE. Quantifying resistance to very-long-chain fatty acid-inhibiting herbicides in Amaranthus tuberculatus using a soilless assay. PLoS One 2023; 18:e0295927. [PMID: 38134124 PMCID: PMC10745185 DOI: 10.1371/journal.pone.0295927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Resistance to preemergence (PRE) soil-applied herbicides, such as inhibitors of very-long-chain fatty acid (VLCFA) elongases, was documented in two waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer] populations (SIR and CHR) from Illinois, USA. To limit the spread of resistant weed populations, rapid detection measures are necessary. Soil-based resistance assays are limited by edaphic factors, application timing, variable seeding depth and rainfall amount. Therefore, cost-effective techniques mitigating effects of edaphic factors that are appropriate for small- to large-scale assays are needed. Our research goal was to identify and quantify resistance to the VLCFA-inhibiting herbicides, S-metolachlor and pyroxasulfone, using a soilless greenhouse assay. Dose-response experiments were conducted under greenhouse conditions with pre-germinated waterhemp seeds planted on the vermiculite surface, which had been saturated with S-metolachlor (0.015-15 μM), pyroxasulfone (0.0005-1.5 μM), or S-metolachlor plus the cytochrome P450 (P450) inhibitor, malathion. Lethal dose estimates of 50% (LD50) and growth reduction of 50% (GR50) were calculated for S-metolachlor and pyroxasulfone PRE and used to determine resistance indices (RI) for resistant populations (CHR and SIR) relative to sensitive populations, SEN and ACR. RI values for S-metolachlor using LD50 values calculated relative to SEN and ACR were 17.2 and 15.2 (CHR) or 11.5 and 10.1 (SIR), while RI values for pyroxasulfone using LD50 values calculated relative to SEN and ACR were 3.8 and 3.1 (CHR) or 4.8 and 3.8 (SIR). Malathion decreased the GR50 of S-metolachlor to a greater degree in CHR compared to ACR, consistent with P450 involvement in S-metolachlor resistance in CHR. Results from these soilless assays are in accord with previous findings in soil-based systems that demonstrate CHR and SIR are resistant to S-metolachlor and pyroxasulfone. This method provides an effective, reproducible alternative to soil-based systems for studying suspected PRE herbicide-resistant populations and will potentially assist in identifying non-target-site resistance mechanisms.
Collapse
Affiliation(s)
- Dylan R. Kerr
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States of America
| | | | - Seth A. Strom
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States of America
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States of America
| |
Collapse
|
4
|
Sapkota BB, Hu C, Bagavathiannan MV. Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:837726. [PMID: 35574075 PMCID: PMC9096552 DOI: 10.3389/fpls.2022.837726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Convolutional neural networks (CNNs) have revolutionized the weed detection process with tremendous improvements in precision and accuracy. However, training these models is time-consuming and computationally demanding; thus, training weed detection models for every crop-weed environment may not be feasible. It is imperative to evaluate how a CNN-based weed detection model trained for a specific crop may perform in other crops. In this study, a CNN model was trained to detect morningglories and grasses in cotton. Assessments were made to gauge the potential of the very model in detecting the same weed species in soybean and corn under two levels of detection complexity (levels 1 and 2). Two popular object detection frameworks, YOLOv4 and Faster R-CNN, were trained to detect weeds under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species (detecting at weed species level). In addition, the main cotton dataset was supplemented with different amounts of non-cotton crop images to see if cross-crop applicability can be improved. Both frameworks achieved reasonably high accuracy levels for the cotton test datasets under both schemes (Average Precision-AP: 0.83-0.88 and Mean Average Precision-mAP: 0.65-0.79). The same models performed differently over other crops under both frameworks (AP: 0.33-0.83 and mAP: 0.40-0.85). In particular, relatively higher accuracies were observed for soybean than for corn, and also for complexity level 1 than for level 2. Significant improvements in cross-crop applicability were further observed when additional corn and soybean images were added to the model training. These findings provide valuable insights into improving global applicability of weed detection models.
Collapse
Affiliation(s)
- Bishwa B. Sapkota
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Chengsong Hu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Department of Biological and Agricultural Engineering, College Station, TX, United States
| | | |
Collapse
|
5
|
Strom SA, Hager AG, Concepcion JCT, Seiter NJ, Davis AS, Morris JA, Kaundun SS, Riechers DE. Metabolic Pathways for S-Metolachlor Detoxification Differ Between Tolerant Corn and Multiple-Resistant Waterhemp. PLANT & CELL PHYSIOLOGY 2021; 62:1770-1785. [PMID: 34453831 PMCID: PMC8664635 DOI: 10.1093/pcp/pcab132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 05/04/2023]
Abstract
Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.
Collapse
Affiliation(s)
| | - Aaron G Hager
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Nicholas J Seiter
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Adam S Davis
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - James A Morris
- Jealott’s Hill International Research Centre, Syngenta UK Ltd, Bracknell, Berkshire RG42, UK
| | - Shiv S Kaundun
- Jealott’s Hill International Research Centre, Syngenta UK Ltd, Bracknell, Berkshire RG42, UK
| | | |
Collapse
|
6
|
Asaduzzaman M, Koetz E, Wu H, Hopwood M, Shephard A. Fate and adaptive plasticity of heterogeneous resistant population of Echinochloa colona in response to glyphosate. Sci Rep 2021; 11:14858. [PMID: 34290336 PMCID: PMC8295337 DOI: 10.1038/s41598-021-94370-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the fate of heterogenous herbicide resistant weed populations in response to management practices can help towards overcoming the resistance issues. We selected one pair of susceptible (S) and resistant (R) phenotypes (2B21-R vs 2B21-S and 2B37-R vs 2B37-S) separately from two glyphosate resistant heterogeneous populations (2B21 and 2B37) of Echinochloa colona and their fate and adaptive plasticity were evaluated after glyphosate application. Our study revealed the glyphosate concentration required to cause a 50% plant mortality (LD50) was 1187, 200, 3064, and 192 g a. e. ha-1 for the four phenotypes 2B21-R, 2B21-S, 2B37-R, and 2B37-S respectively. Both S phenotypes accumulated more biomass than the R phenotypes at the lower application rates (34 and 67.5 g a. e. ha-1) of glyphosate. However, the R phenotypes generally produced more biomass at rates of glyphosate higher than 100 g a. e. ha-1 throughout the growth period. Plants from the R phenotypes of 2B21 and 2B37 generated 32% and 38% fewer spikesplant-1 than their respective S counterparts in the absence of glyphosate respectively. The spike and seed numbersplant-1 significantly higher in R than S phenotypes at increased rates of glyphosate and these relationships were significant. Our research suggests that glyphosate-resistant E. colona plants will be less fit than susceptible plants (from the same population) in the absence of glyphosate. But in the presence of glyphosate, the R plants may eventually dominate in the field. The use of glyphosate is widespread in field, would favour the selection towards resistant individuals.
Collapse
Affiliation(s)
- Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia.
| | - Eric Koetz
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Hanwen Wu
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Michael Hopwood
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Adam Shephard
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| |
Collapse
|
7
|
Ocampos FMM, de Souza AJB, Antar GM, Wouters FC, Colnago LA. Phytotoxicity of Schiekia timida Seed Extracts, a Mixture of Phenylphenalenones. Molecules 2021; 26:4197. [PMID: 34299471 PMCID: PMC8304753 DOI: 10.3390/molecules26144197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Phenylphenalenones, metabolites found in Schiekia timida (Haemodoraceae), are a class of specialized metabolites with many biological activities, being phytoalexins in banana plants. In the constant search to solve the problem of glyphosate and to avoid resistance to commercial herbicides, this work aimed to investigate the phytotoxic effect of the methanolic extract of S. timida seeds. The chemical composition of the seed extract was directly investigated by NMR and UPLC-QToF MS and the pre- and post-emergence phytotoxic effect on a eudicotyledonous model (Lactuca sativa) and a monocotyledonous model (Allium cepa) was evaluated through germination and seedling growth tests. Three concentrations of the extract (0.25, 0.50, and 1.00 mg/mL) were prepared, and four replicates for each of them were analyzed. Three major phenylphenalenones were identified by NMR spectroscopy: 4-hydroxy-anigorufone, methoxyanigorufone, and anigorufone, two of those reported for the first time in S. timida. The presence of seven other phenylphenalenones was suggested by the LC-MS analyses. The phenylphenalenone mixture did not affect the germination rate, but impaired radicle and hypocotyl growth on both models. The effect in the monocotyledonous model was statistically similar to glyphosate in the lowest concentration (0.25 mg/mL). Therefore, although more research on this topic is required to probe this first report, this investigation suggests for the first time that phenylphenalenone compounds may be post-emergence herbicides.
Collapse
Affiliation(s)
| | - Ana Julia Borim de Souza
- Faculdade de Ciências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Bauru CEP 17033-360, SP, Brazil;
| | - Guilherme Medeiros Antar
- Instituto de Biociências, Departamento de Botânica, Universidade de São Paulo (USP), Butantã, São Paulo CEP 05508-090, SP, Brazil;
| | - Felipe Christoff Wouters
- Departamento de Química, Universidade Federal de São Carlos (UFSCAR), São Carlos CEP 13565-905, SP, Brazil;
| | | |
Collapse
|
8
|
Gaines TA, Busi R, Küpper A. Can new herbicide discovery allow weed management to outpace resistance evolution? PEST MANAGEMENT SCIENCE 2021; 77:3036-3041. [PMID: 33942963 DOI: 10.1002/ps.6457] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 05/26/2023]
Abstract
While herbicides are the most effective and widely adopted weed management approach, the evolution of multiple herbicide resistance in damaging weed species threatens the yield and profitability of many crops. Weeds accumulate multiple resistance mechanisms through sequential selection and/or gene flow, with long-range and international transport of herbicide-resistant weeds proving to be a serious issue. Metabolic resistance mechanisms can confer resistance across multiple sites of action and even to herbicides not yet discovered. When a new site of action herbicide is introduced to control a key driver weed, it likely will be one of very few effective available herbicide options for that weed in a specific crop due to the continuous use of herbicides over the years and the resulting accumulation of resistance mechanisms, placing it at even higher risk to be rapidly lost to resistance due to the high selection pressure it will experience. The number of available, effective herbicides for certain driver weeds is decreasing over time because the rate of resistance evolution is faster than the rate of new herbicide discovery. Effective monitoring for species movement and diagnostics for resistance should be deployed to rapidly identify emerging resistance to any new site of action. While innovation in herbicide discovery is urgently needed to combat the pressing issue of resistance in weeds, the rate of selection for herbicide resistance in weeds must be slowed through changes in the patterns of how herbicides are used. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Anita Küpper
- Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Bryan CJ, Sipes SD, Arduser M, Kassim L, Gibson DJ, Scott DA, Gage KL. Efficacy of Cover Crops for Pollinator Habitat Provision and Weed Suppression. ENVIRONMENTAL ENTOMOLOGY 2021; 50:208-221. [PMID: 33438747 DOI: 10.1093/ee/nvaa159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 06/12/2023]
Abstract
Pollinator declines have been documented globally, but little information is available about native bee ecology in Midwestern U.S. agriculture. This project seeks to optimize pollinator support and weed suppression in a 3-yr crop rotation with a fallow growing season. During fallow, one of five cover crop treatments (T1: crimson, red, and ladino clover and Bob oats [Fabales: Fabaceae - Trifolium incarnatum L., Trifolium pratense L., Trifolium repens L., and Cyperales: Poaceae - Avena sativa]; T2: crimson clover and oats; T3: red clover and oats; T4: ladino clover and oats; T5: no cover crop; T6/control: winter wheat [Cyperales: Poaceae - Triticum aestivum] L.) was seeded in one-half of 25 agricultural fields, whereas wheat was left unharvested in the other half as a comparison. Treatments that provide season-long floral resources support the greatest bee diversity and abundance (T1), and treatments with red clover support declining (Hymenoptera: Apidae) Bombus species (T1 and T3). Late-season floral resources may be important, yet limited (T1 and T4), and some species of agricultural weeds provide floral resources. Floral diversity may be less important than flower abundance or timing for pollinator diversity (T1-T4). Weed diversity was greatest in the no cover crop treatment (T5), least in winter wheat (T6), and intermediate in cover crop treatments (T1-T4) with no differences in weeds of economic concern. Wheat suppresses weeds but does not provide floral resources for pollinators. These results may also be applicable to marginal lands taken out of cultivation or field margin pollinator plantings in a typical corn-soybean rotation. Floral resource availability across the landscape is critical to maintain pollinator diversity.
Collapse
Affiliation(s)
- Casey J Bryan
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL
- Great River, Clarence Cannon, and Middle Mississippi National Wildlife Refuges, Fish and Wildlife Service, 37599 Pike 206, Annada, MO
| | - Sedonia D Sipes
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL
| | - Mike Arduser
- Missouri Department of Conservation, St. Charles, MO
| | - Leila Kassim
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL
| | - David J Gibson
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL
| | - Drew A Scott
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL
- Ronin Institute, 127 Haddon Place, Montclair, NJ
| | - Karla L Gage
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL
- School of Agriculture, Southern Illinois University Carbondale, 1205 Lincoln Drive MC 4415, Carbondale, IL
| |
Collapse
|
10
|
Liu C, Jackson LV, Hutchings SJ, Tuesca D, Moreno R, Mcindoe E, Kaundun SS. A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control. Sci Rep 2020; 10:20741. [PMID: 33244093 PMCID: PMC7692527 DOI: 10.1038/s41598-020-77649-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Agricultural weeds can adapt rapidly to human activities as exemplified by the evolution of resistance to herbicides. Despite its multi-faceted nature, herbicide resistance has rarely been researched in a holistic manner. A novel approach combining timely resistance confirmation, investigation of resistance mechanisms, alternative control solutions and population modelling was adopted for the sustainable management of the Amaranthus palmeri weed in soybean production systems in Argentina. Here, we show that resistance to glyphosate in the studied population from Cordoba province was mainly due to a P106S target-site mutation in the 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) gene, with minor contributions from EPSPS gene duplication/overexpression. Alternative herbicides, such as fomesafen, effectively controlled the glyphosate-resistant plants. Model simulations revealed the tendency of a solo herbicidal input to primarily select for a single resistance mechanism and suggested that residual herbicides, alongside chemical diversity, were important for the sustainable use of these herbicides. We also discuss the value of an interdisciplinary approach for improved understanding of evolving weeds.
Collapse
Affiliation(s)
- Chun Liu
- Syngenta, Herbicide Bioscience, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK.
| | - Lucy V Jackson
- Syngenta, Herbicide Bioscience, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Sarah-Jane Hutchings
- Syngenta, Herbicide Bioscience, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Daniel Tuesca
- Cátedra de Malezas, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Raul Moreno
- Syngenta Argentina, Oficina Central, Av. Libertador 1855, Vicente López, B1638BGE, Buenos Aires, Argentina
| | - Eddie Mcindoe
- Syngenta, Herbicide Bioscience, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Shiv S Kaundun
- Syngenta, Herbicide Bioscience, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| |
Collapse
|
11
|
Werner K, Sarangi D, Nolte S, Dotray P, Bagavathiannan M. Late-season surveys to document seed rain potential of Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus) in Texas cotton. PLoS One 2020; 15:e0226054. [PMID: 32511243 PMCID: PMC7279589 DOI: 10.1371/journal.pone.0226054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Weed escapes are often present in large production fields prior to harvest, contributing to seed rain and species persistence. Late-season surveys were conducted in cotton (Gossypium hirsutum L.) fields in Texas in 2016 and 2017 to identify common weed species present as escapes and estimate seed rain potential of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [A. tuberculatus (Moq.) J.D. Sauer], two troublesome species with high fecundity. A total of 400 cotton fields across four major cotton-producing regions in Texas [High Plains (HP), Gulf Coast (GC), Central Texas, and Blacklands] were surveyed. Amaranthus palmeri, Texas millet [Urochloa texana (Buckley) R. Webster], A. tuberculatus, ragweed parthenium (Parthenium hysterophorus L.), and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] were reported as the top five weed escapes in cotton fields. Amaranthus palmeri was the most prevalent weed in the HP and Lower GC regions, whereas A. tuberculatus escapes were predominantly observed in the Upper GC and Blacklands regions. On average, 9.4% of an individual field was infested with A. palmeri escapes in the Lower GC region; however, 5.1 to 8.1% of a field was infested in the HP region. Average A. palmeri density ranged from 405 (Central Texas) to 3,543 plants ha–1 (Lower GC). The greatest seed rain potential by A. palmeri escapes was observed in the upper HP region (13.9 million seeds ha–1), whereas the seed rain potential of A. tuberculatus escapes was the greatest in the Blacklands (12.9 million seeds ha–1) and the upper GC regions (9.8 million seeds ha–1). Seed rain from late-season A. palmeri and A. tuberculatus escapes is significant in Texas cotton, and effective management of these escapes is imperative for minimizing seedbank inputs and impacting weed species persistence.
Collapse
Affiliation(s)
- Kaisa Werner
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United State of America
| | - Debalin Sarangi
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United State of America
| | - Scott Nolte
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United State of America
| | - Peter Dotray
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United State of America
| | - Muthukumar Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United State of America
- * E-mail:
| |
Collapse
|
12
|
Busi R, Powles SB, Beckie HJ, Renton M. Rotations and mixtures of soil-applied herbicides delay resistance. PEST MANAGEMENT SCIENCE 2020; 76:487-496. [PMID: 31251459 DOI: 10.1002/ps.5534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Weed resistance to foliar herbicides has dramatically increased worldwide in the last two decades. As a consequence, current practices of weed management have changed, with an increased adoption of soil-applied herbicides to restore control of herbicide-resistant weeds. We foresee metabolism-based resistance and cross-resistance to soil-applied herbicides as a potential global consequence to the increased and widespread adoption of new and old soil-applied herbicides. Thus, the aim of this study is to use computer simulation modelling to quantify and rank the risk of weeds evolving resistance to soil-applied herbicides under different usage strategies (single herbicide use, rotations and mixtures) and population genetic hypotheses. RESULTS Simulations indicate that without rotation it takes twice as long to select for resistance to a particular soil-applied herbicide - trifluralin - than to any other herbicide option considered. Relative to trifluralin-only use, simple herbicide rotation patterns have no effect in delaying resistance, whereas more complex rotation patterns can delay resistance two- or three-fold. Herbicide mixtures further delay resistance up to six-fold in comparison to single use or simple herbicide rotations. CONCLUSION By computer modelling simulations we demonstrate that mixtures maximize herbicide effectiveness and the selection heterogeneity of soil-applied herbicides, and delay herbicide resistance evolution in weedy plants. Our study is consistent with previous state-of-art scientific evidence (i.e. epidemiological and modelling studies across different systems and pests) and extension efforts (i.e. 'rotate herbicide mixtures') to provide insight to manage the selection and evolution of weed resistance. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Hugh J Beckie
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Michael Renton
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Australia
- School of Biological Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Fitness of Herbicide-Resistant Weeds: Current Knowledge and Implications for Management. PLANTS 2019; 8:plants8110469. [PMID: 31683943 PMCID: PMC6918315 DOI: 10.3390/plants8110469] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.
Collapse
|
14
|
Management of Glyphosate-Resistant Weeds in Mexican Citrus Groves: Chemical Alternatives and Economic Viability. PLANTS 2019; 8:plants8090325. [PMID: 31487903 PMCID: PMC6783860 DOI: 10.3390/plants8090325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Glyphosate is a cheap herbicide that has been used to control a wide range of weeds (4-6 times/year) in citrus groves of the Gulf of Mexico; however, its excessive use has selected for glyphosate-resistant weeds. We evaluated the efficacy and economic viability of 13 herbicide treatments (glyphosate combined with PRE- and/or POST-emergence herbicides and other alternative treatments), applied in tank-mixture or sequence, to control glyphosate-resistant weeds in two Persian lime groves (referred to as SM-I and SM-II) of the municipality of Acateno, Puebla, during two years (2014 and 2015). The SM-I and SM-II fields had 243 and 346 weeds/m2, respectively, composed mainly of Bidens pilosa and Leptochloa virgata. Echinochloa colona was also frequent in SM-II. The glyphosate alone treatments (1080, 1440, or 1800 g ae ha-1) presented control levels of the total weed population ranging from 64% to 85% at 15, 30, and 45 d after treatment (DAT) in both fields. Mixtures of glyphosate with grass herbicides such as fluazifop-p-butyl, sethoxydim, and clethodim efficiently controlled E. colona and L. virgata, but favored the regrowth of B. pilosa. The sequential applications of glyphosate + (bromacil + diuron) and glufosinate + oxyfluorfen controlled more than 85% the total weed community for more than 75 days. However, these treatments were between 360% and 390% more expensive (1.79 and 1.89 $/day ha-1 of satisfactory weed control, respectively), compared to the representative treatment (glyphosate 1080 g ae ha-1 = USD $29.0 ha-1). In practical and economic terms, glufosinate alone was the best treatment controlling glyphosate resistant weeds maintaining control levels >80% for at least 60 DAT ($1.35/day ha-1). The rest of the treatments, applied in tank-mix or in sequence with glyphosate, had similar or lower control levels (~70%) than glyphosate at 1080 g ae ha-1. The adoption of glufosiante alone, glufosinate + oxyfluorfen or glyphosate + (bromacil + diuron) must consider the cost of satisfactory weed control per day, the period of weed control, as well as other factors associated with production costs to obtain an integrated weed management in the short and long term.
Collapse
|
15
|
Weisberger D, Nichols V, Liebman M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS One 2019; 14:e0219847. [PMID: 31318949 PMCID: PMC6638938 DOI: 10.1371/journal.pone.0219847] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past half-century, crop rotations have become increasingly simplified, with whole regions producing only one or two crops in succession. Simplification is problematic from a weed management perspective, because it results in weeds' repeated exposure to the same set of ecological and agronomic conditions. This can exacerbate weed infestations and promote the evolution of herbicide resistance. Diversifying crop rotations through addition of crop species and their associated managements may suppress weeds and reduce selection pressure for herbicide resistance by altering stress and mortality factors affecting weed dynamics. Here we report the results of a meta-analysis using 298 paired observations from 54 studies across six continents to compare weed responses due to simple and more diverse crop rotations. We found diversifying from simple rotations reduced weed density (49%), but did not have a significant effect on weed biomass. We investigated the effect of management practices, environmental factors, and rotation design on this effect. Diversification that increased the variance around crop planting dates was more effective in suppressing weeds than increasing crop species richness alone. Increasing rotational diversity reduced weed density more under zero-tillage conditions (65%) than tilled conditions (41%), and did so regardless of environmental context and auxiliary herbicide use. Our findings highlight the value of diversifying crop rotations to control weed populations, and support its efficacy under varied environmental conditions and management scenarios.
Collapse
Affiliation(s)
- David Weisberger
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Virginia Nichols
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| | - Matt Liebman
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
16
|
Ambrosini V, Issawi M, Leroy-Lhez S, Riou C. How protoporphyrinogen IX oxidase inhibitors and transgenesis contribute to elucidate plant tetrapyrrole pathway. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several families of herbicides, especially diphenyl ether (DPE) and pyrimidinedione, target the plant tetrapyrrole biosynthesis pathways and in particular one key enzyme, protoporphyrinogen IX oxidase (PPO). When plants are treated with DPE or pyrimidinedione, an accumulation of protoporphyrin IX, the first photosensitizer of this pathway, is observed in cytosol where it becomes very deleterious under light. Indeed these herbicides trigger plant death in two distinct ways: (i) inhibition of chlorophylls and heme syntheses and (ii) a huge accumulation of protoporphyrin IX in cytosol. Recently, a strategy based on plant transgenesis that induces deregulation of the tetrapyrrole pathway by up- or down-regulation of genes encoding enzymes, such as glutamyl-[Formula: see text]RNA reductase, porphobilinogen deaminase and PPO, has been developed. Against all expectations, only transgenic crops overexpressing PPO showed resistance to DPE and pyrimidinedione. This herbicide resistance of transgenic crops leads to the hypothesis that the overall consumption of herbicides will be reduced as previously reported for glyphosate-resistant transgenic crops. In this review, after a rapid presentation of plant tetrapyrrole biosynthesis, we show how only PPO enzyme can be the target of DPE and how transgenic crops can be further resistant not only to herbicide but also to abiotic stress such as drought or chilling. Keeping in mind that this approach is mostly prohibited in Europe, we attempt to discuss it to interest the scientific community, from plant physiologists to chemists, who work on the interface of photosensitizer optimization and agriculture.
Collapse
Affiliation(s)
- Veronica Ambrosini
- Laboratoire Peirene EA7500, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Mohammad Issawi
- Laboratoire Peirene EA7500, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Stéphanie Leroy-Lhez
- Laboratoire Peirene EA7500, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Catherine Riou
- Laboratoire Peirene EA7500, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| |
Collapse
|
17
|
Wicke D, Schulz LM, Lentes S, Scholz P, Poehlein A, Gibhardt J, Daniel R, Ischebeck T, Commichau FM. Identification of the first glyphosate transporter by genomic adaptation. Environ Microbiol 2019; 21:1287-1305. [PMID: 30666812 DOI: 10.1111/1462-2920.14534] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/12/2023]
Abstract
The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Lisa M Schulz
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Till Ischebeck
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|
18
|
Gaines TA, Shaner DL, Dayan FE. Introduction to Pest Management Science special issue for GHRC 2017. PEST MANAGEMENT SCIENCE 2018; 74:2209-2210. [PMID: 30203449 DOI: 10.1002/ps.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
19
|
Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schäfer P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. FRONTIERS IN PLANT SCIENCE 2018; 9:1205. [PMID: 30174681 PMCID: PMC6107787 DOI: 10.3389/fpls.2018.01205] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
We face major agricultural challenges that remain a threat for global food security. Soil microbes harbor enormous potentials to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and, hence, crop productivity. In this review we give an overview regarding the current state-of-the-art of microbiome research by discussing new technologies and approaches. We also provide insights into fundamental microbiome research that aim to provide a deeper understanding of the dynamics within microbial communities, as well as their interactions with different plant hosts and the environment. We aim to connect all these approaches with potential applications and reflect how we can use microbial communities in modern agricultural systems to realize a more customized and sustainable use of valuable resources (e.g., soil).
Collapse
Affiliation(s)
- Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Chrysi Sergaki,
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|