1
|
Pierre JF, Jacobsen KL, Latournerie-Moreno L, Torres-Cab WJ, Chan-Canché R, Ruiz-Sánchez E. A review of the impact of maize-legume intercrops on the diversity and abundance of entomophagous and phytophagous insects. PeerJ 2023; 11:e15640. [PMID: 37397027 PMCID: PMC10309049 DOI: 10.7717/peerj.15640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
In many parts of the world, chemical pesticides are the primary method of pest control in maize (Zea mays L.) crops. Concerns about the negative consequences of chemical pesticide use on people's health and the environment, as well as the emergence of insecticide resistance, have accelerated attempts to discover alternatives that are effective, low-risk, and cost-effective. Maize-legume intercropping systems are known to have multiple benefits to agroecosystem functioning, including pest regulation. This review focuses on the influence of maize-legume intercropping systems on insect diversity and abundance as a mechanism for insect pest regulation in maize crops. First, this review combines knowledge of maize-legume intercrops, with a particular emphasis on the mechanism by which this practice attracts beneficial insects (e.g., predators, parasitoids) to reduce pest damage in intercropping systems. In addition, the pairings of specific legume species with the greatest potential to attract more beneficial insects and therefore reduce maize pests are also discussed. Finally, future research needs are also recommended. Findings are reviewed in the context of looking for long-term management strategies that can increase the adoption of integrated pest management programs in maize-based production systems.
Collapse
Affiliation(s)
- Jacques Fils Pierre
- Research Division, International Fertilizer Development Center, Muscle Shoals, Alabama, United States of America
| | - Krista L. Jacobsen
- Department of Horticulture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Luis Latournerie-Moreno
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México—Campus Conkal, Conkal, Yucatan, Mexico
| | - Walther J. Torres-Cab
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México—Campus Conkal, Conkal, Yucatan, Mexico
| | - Ricardo Chan-Canché
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México—Campus Conkal, Conkal, Yucatan, Mexico
| | - Esau Ruiz-Sánchez
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México—Campus Conkal, Conkal, Yucatan, Mexico
| |
Collapse
|
2
|
Sun X, Sun Y, Ma L, Liu Z, Wang Q, Wang D, Zhang C, Yu H, Xu M, Ding J, Siemann E. Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change. Commun Biol 2022; 5:761. [PMID: 35902771 PMCID: PMC9334390 DOI: 10.1038/s42003-022-03731-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Temperature has a large influence on insect abundances, thus under climate change, identifying major drivers affecting pest insect populations is critical to world food security and agricultural ecosystem health. Here, we conducted a meta-analysis with data obtained from 120 studies across China and Europe from 1970 to 2017 to reveal how climate and agricultural practices affect populations of wheat aphids. Here we showed that aphid loads on wheat had distinct patterns between these two regions, with a significant increase in China but a decrease in Europe over this time period. Although temperature increased over this period in both regions, we found no evidence showing climate warming affected aphid loads. Rather, differences in pesticide use, fertilization, land use, and natural enemies between China and Europe may be key factors accounting for differences in aphid pest populations. These long-term data suggest that agricultural practices impact wheat aphid loads more than climate warming.
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yumei Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ling Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhen Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiyun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dingli Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Xu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
- The College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
3
|
Gao Q, Li B, Tian Z, De Loof A, Wang JL, Wang XP, Liu W. Key role of juvenile hormone in controlling reproductive diapause in females of the Asian lady beetle Harmonia axyridis. PEST MANAGEMENT SCIENCE 2022; 78:193-204. [PMID: 34469049 DOI: 10.1002/ps.6619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Asian lady beetle Harmonia axyridis is an important predator of several agricultural pests, including aphids and whiteflies, and thus can contribute to pest management. Commercial viability as a pest control method requires that the beetle can be mass-reared, and that workable conditions for extended shelf-life can be guaranteed. One of the features of Harmonia's life cycle is that it enters diapause in the adult stage when the length of the photophase starts shortening in late summer. Reduction of juvenile hormone (JH) titer has been demonstrated to be the common endocrine mechanism inducing reproductive diapause in insects. However, whether H. axyridis enters diapause dependent on JH shutdown and how the JH level is regulated before diapause remains unknown. RESULTS Like in other insects, the absence of JH triggers the induction and maintenance of reproductive diapause in H. axyridis, indicated by JH measurements and the knockdown of an intracellular JH receptor methoprene-tolerant (Met). Methoprene, a JH analog, significantly reversed diapause into reproduction via Met. Combined with RNA-sequencing and RNA interference, we also demonstrated that JH biosynthesis rather than the JH degradation pathway determines the reduction of JH titer in diapausing females. CONCLUSION Our results reveal the vital role of JH in regulating reproductive diapause in female H. axyridis. Harmonia axyridis diapause could thus be manipulated by targeting JH production and JH signaling. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bei Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jia-Lu Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wang L, Cui H, Chang X, Zhu M, Zhao Z. Increased nitrogen fertilization inhibits the biocontrol activity promoted by the intercropping partner plant. INSECT SCIENCE 2021; 28:1179-1190. [PMID: 32567801 DOI: 10.1111/1744-7917.12843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The examination of the compatibility between agricultural practices and biocontrol activities is crucial for establishing an efficient, eco-friendly, and sustainable pest management program. In this study, we examined the population dynamics of two specialist aphids, the English grain aphid (Sitobion avenae) on potted wheat and the pea aphid (Acyrthosiphon pisum) on potted alfalfa, as well as the biocontrol activity of a generalist predator, the harlequin ladybird beetle (Harmonia axyridis). We investigated their responses to the presence of the intercropping partner plant species (alfalfa and wheat, respectively) through plant volatiles or visual cues at three nitrogen fertilizer levels in a greenhouse. In the absence of the predator, the English grain aphid population growth rate increased significantly with increasing nitrogen levels, whereas the pea aphid population increased significantly more slowly in response to high nitrogen levels. The English grain aphid and pea aphid population dynamics were unaffected by the presence of the intercropping partner. However, the presence of the intercropping partner enhanced the control of both aphid populations by the harlequin ladybird beetle. Increasing nitrogen fertilizer levels decreased the predation rates, which were otherwise increased by the intercropping partner. The beneficial effects of the intercropping partner were eventually non-existent at the highest nitrogen level tested. These results imply that the interaction between the presence of intercropping partner and the nitrogen fertilizer application affects the biocontrol activity of the natural enemies of insect pests. Thus, the compatibility between agricultural intensification and biocontrol strategies in integrated pest management programs need to be investigated.
Collapse
Affiliation(s)
- Leyun Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinyue Chang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengmeng Zhu
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Gao J, Arthurs S, Mao R. Asymmetric Interaction between Aphis spiraecola and Toxoptera citricida on Sweet Orange Induced by Pre-Infestation. INSECTS 2020; 11:insects11070414. [PMID: 32635348 PMCID: PMC7411604 DOI: 10.3390/insects11070414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 05/31/2023]
Abstract
Indirect interactions between herbivorous insects that share the same host have been focused on insects feeding on herbaceous plants, while few studies investigate similar interactions on woody plants. We investigated performance and feeding behavior of two citrus aphids, Aphis spiraecola Patch and Toxoptera citricida Kirkaldy, on sweet orange as affected by prior infestation of conspecifics and heterospecifics. Results showed that pre-infestation-induced interactions between A. spiraecola and T. citricida were asymmetric, with A. spiraecola gaining more fitness. In detail, pre-infestation by A. spiraecola decreased adult weight, enhanced survival rate and accelerated phloem sap acceptance of conspecifics. However, A. spiraecola pre-infestation did not affect performance or feeding behavior of T. citricida. In another infestation sequence, the pre-infestation of T. citricida did not affect conspecifics, but positively affected heterospecifics, indicated as a decreased pre-reproductive period, enhanced survival rate, adult weight, fecundity, and feeding efficiency, i.e., faster access and acceptance of phloem sap, and longer phloem sap ingestion duration. Furthermore, we found A. spiraecola pre-infestation enhanced amino acid concentration, amino acid to sugar ratio, activated salicylic acid and jasmonic acid marker gene expression, while T. citricida pre-infestation only depressed jasmonic acid marker gene expression. Changes in nutrient and phytohormone-dependent defense probably underlie the asymmetric effect.
Collapse
Affiliation(s)
- Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou 510260, China;
| | | | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou 510260, China;
| |
Collapse
|
6
|
Rhodes SA, Turnbull MW, Chong JH. Nitrogen Fertilization of Host Plant Influenced the Nutritional Status and Life History of the Madeira Mealybug (Hemiptera: Pseudococcidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:1129-1137. [PMID: 31237613 DOI: 10.1093/ee/nvz077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Insect herbivores, especially sap-feeders, are sensitive to host-plant nitrogen quantity. However, past studies present contradicting results on sap-feeder life history traits influenced by plant nitrogen supplementation. This study analyzed the bottom-up effects of below-recommended nitrogen fertilization rates (0, 0.021, 0.048, and 0.091 g N/liter) on life history and total protein and lipid contents of a significant pest species, Phenacoccus madeirensis Green (the Madeira mealybug) (Hemiptera: Pseudococcidae). Developmental durations and survivorship from egg to adulthood of male and female mealybugs were similar across nitrogen fertilization levels. Females reared on plants fertilized at 0.021, 0.048, and 0.091 g N/liter produced, respectively, 152, 142, and 67% more eggs than females reared on unfertilized plants. Finite and intrinsic rates of increase and net reproductive rates of females were similar among the nitrogen fertilization levels, whereas the generation times of females from fertilized plants were significantly shorter than those from the unfertilized plants. Lipid contents of adult females and eggs, and average adult female protein content were similar across the nitrogen treatments. Average egg protein content increased with increasing host-plant fertilization rate. These results suggest that the response of the female Madeira mealybug to nitrogen fertilization is complex and may involve trade-offs and nutrient re-allocation.
Collapse
Affiliation(s)
| | - Matthew W Turnbull
- Department of Biological Sciences, Clemson University, Clemson, SC
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC
| | - Juang Horng Chong
- Pee Dee Research and Education Center, Clemson University, Florence, SC
| |
Collapse
|