1
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Shahbaz M, Abbas A, Hakim F, Shabbir M, Tan YS, Sathiya Seelan JS. Fungicide resistance in Fusarium species: exploring environmental impacts and sustainable management strategies. Arch Microbiol 2025; 207:31. [PMID: 39792175 DOI: 10.1007/s00203-024-04219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp., are reviewed in this article, including increased efflux pump activity, target-site mutations, and metabolic detoxification pathways. Fusarium is naturally resistant to some of the fungicides, on the other hand; it speedily develops resistance against the other fungicides groups. Most of the important plant pathogenic Fusarium species including F. oxysporum, F. psedogramanium, F. graminearium and Fusarium solani, which have shown resistance to major groups of fungicides including triazoles, phenylpyrole and benzimedazoles in various regions of the world. The review also covers a range of management techniques, including fungicide rotation, resistant cultivars, cultural methods, and biological control agents, to lessen fungicide resistance. By shedding light on the current state of knowledge concerning fungicide resistance in Fusarium spp., this review provides valuable information to researchers, policymakers, and practitioners to design long-term effective disease management approaches, as well as fungal menace control to preserve fungicides' effectiveness in agriculture and conservancy activities.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Aqleem Abbas
- Department of Agriculture and Food Technology, Faculty of Life Sciences, Karakoram International University, 15100, Gilgit, Gilgit-Baltistan, Pakistan
| | - Fahad Hakim
- Department of Horticulture, Lithuanian Institute of Agriculture and Forestry, 58344, Kėdainiai, Lithuania
| | - Muhammad Shabbir
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Center, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Gambhir N, Kodati S, Adesemoye AO, Everhart SE. Fungicide Sensitivity and Nontarget Site Resistance in Rhizoctonia zeae Isolates Collected from Corn and Soybean Fields in Nebraska. PLANT DISEASE 2025; 109:217-227. [PMID: 39254848 DOI: 10.1094/pdis-02-24-0352-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rhizoctonia zeae was recently identified as the major Rhizoctonia species in corn and soybean fields in Nebraska and was shown to be pathogenic on corn and soybean seedlings. Fungicide seed treatments commonly used to manage seedling diseases include prothioconazole (demethylation inhibitor), fludioxonil (phenylpyrrole), sedaxane (succinate dehydrogenase inhibitor), and azoxystrobin (quinone outside inhibitor [QoI]). To establish the sensitivity of R. zeae to these fungicides, we isolated this pathogen from corn and soybean fields in Nebraska during 2015 to 2017 and estimated the relative effective concentration for 50% inhibition (EC50) of a total of 91 R. zeae isolates from Nebraska and Illinois. Average EC50 for prothioconazole, fludioxonil, sedaxane, and azoxystrobin was 0.219, 0.099, 0.078, and >100 µg ml-1, respectively. In planta assays showed that azoxystrobin did not significantly reduce the disease severity on soybean (P > 0.05). The cytochrome b gene of R. zeae did not harbor any mutation known to confer QoI resistance and had a type I intron directly after codon 143, suggesting that a G143A mutation is unlikely to evolve in this pathogen. For prothioconazole, fludioxonil, and sedaxane, the EC50 of the isolates did not differ significantly among the years of collection (P > 0.05), and their single discriminatory concentrations were identified as 0.1 µg ml-1. This is the first study to establish nontarget site resistance of R. zeae to azoxystrobin and the sensitivity of R. zeae to commonly used seed treatment fungicides in Nebraska. This information will help to guide strategies for chemical control of R. zeae and monitor sensitivity shifts in the future.
Collapse
Affiliation(s)
- Nikita Gambhir
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Srikanth Kodati
- West Central Research, Education and Extension Center, University of Nebraska, North Platte, NE 69101, U.S.A
| | - Anthony O Adesemoye
- West Central Research, Education and Extension Center, University of Nebraska, North Platte, NE 69101, U.S.A
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| |
Collapse
|
3
|
Dutra PSS, Carraro TA, Nesi CN, Amorim L, May De Mio LL. Comparative Fitness of Monilinia fructicola Isolates with Multiple Fungicide-Resistant Phenotypes. PLANT DISEASE 2024; 108:3300-3310. [PMID: 38971961 DOI: 10.1094/pdis-12-23-2549-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study characterized 52 isolates of Monilinia fructicola from peach and nectarine orchards for their multiresistance patterns to thiophanate-methyl (TF), tebuconazole (TEB), and azoxystrobin (AZO) using in vitro sensitivity assays and molecular analysis. The radial growth of M. fructicola isolates was measured on media amended with a single discriminatory dose of 1 μg/ml for TF and AZO and 0.3 μg/ml for TEB. Cyt b, CYP51, and β-tubulin were tested for point mutations that confer resistance to quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs), and methyl benzimidazole carbamates (MBCs), respectively. Eight phenotypes were identified, including isolates with single, double, and triple in vitro resistance to QoI, MBC, and DMI fungicides. All resistant phenotypes to TF and TEB presented the H6Y mutation in β-tubulin and the G641S mutation in CYP51. None of the point mutations typically linked to QoI resistance were present in the Monilinia isolates examined. Moreover, fitness of the M. fructicola phenotypes was examined in vitro and in detached fruit assays. Phenotypes with single resistance displayed equal fitness in vitro and in fruit assays compared with the wild type. In contrast, the dual- and triple-resistance phenotypes suffered fitness penalties based on osmotic sensitivity and aggressiveness on peach fruit. In this study, multiple resistance to MBC, DMI, and QoI fungicide groups was confirmed in M. fructicola. Results suggest that Monilinia populations with multiple resistance phenotypes are likely to be less competitive in the field than those with single resistance, thereby impeding their establishment over time and facilitating disease management.
Collapse
Affiliation(s)
- Pamela S S Dutra
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Thiago A Carraro
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Cristiano N Nesi
- Research Center for Family Agriculture - EPAGRI, Chapecó, Santa Catarina, Brazil
| | - Lilian Amorim
- Department of Plant Pathology, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Louise L May De Mio
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Spawton KA, du Toit LJ. Prevalence of FRAC Group 11 Fungicide Resistance in Stemphylium vesicarium Isolates, but Not S. beticola Isolates, Causing Stemphylium Leaf Spot of Spinach ( Spinacia oleracea). PLANT DISEASE 2024; 108:2122-2135. [PMID: 38457632 DOI: 10.1094/pdis-11-23-2328-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Stemphylium leaf spot of spinach, caused by Stemphylium beticola and S. vesicarium, is a disease of economic importance in fresh market, processing, and seed production. There have been increasing reports of difficulty managing the disease in the southern United States using fungicides in Fungicide Resistance Action Committee (FRAC) group 11. Isolates of S. beticola and S. vesicarium obtained from spinach leaves and seed from 2001 to 2020 were screened for resistance to azoxystrobin and pyraclostrobin in vitro, in vivo, and using PCR assays to detect mutations in cytochrome b associated with resistance in other fungi (F129L, G137R, and G143A). EC50 values for mycelial growth and conidial germination of S. vesicarium isolates in vitro were significantly less (mean of 0.35 μg/ml) than that of S. vesicarium (mean of 14.17 μg/ml) with both fungicides. All isolates were slightly more sensitive to pyraclostrobin than azoxystrobin in both assays. In vivo assays of plants inoculated with the isolates of S. vesicarium demonstrated poor efficacy of fungicides with each of the two active ingredients. Only the G143A mutation was detected in all spinach isolates of S. vesicarium, including an isolate of S. vesicarium collected in 2003 and 82.9% of isolates from spinach seed lots harvested from crops grown in or after 2017 in Europe, New Zealand, and the United States. The FRAC 11 mutations were not detected in any isolates of S. beticola. The in vitro, in vivo, and DNA mutation assays suggest FRAC group 11 fungicide resistance is widespread in spinach isolates of S. vesicarium but not S. beticola.
Collapse
Affiliation(s)
- Kayla A Spawton
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| | - Lindsey J du Toit
- Washington State University Mount Vernon Northwestern Washington Research and Extension Center, Mount Vernon, WA 98273
| |
Collapse
|
5
|
Aatif HM, Saeed S, Ali Y, Iqbal S, Shahid, Hanif CM, Ahmad S, Raza A, Sanchez Lucas R, Ali H, Fahad Alrefaei A, Mahmood Sheikh TM. Genotypes, epidemiological variables and fungicides application associated with wheat leaf rust development and grain yield. Heliyon 2024; 10:e32564. [PMID: 38952372 PMCID: PMC11215259 DOI: 10.1016/j.heliyon.2024.e32564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
The present study was carried out at the Plant Pathology Hafizabad Research Station, the University of Layyah, during the crop seasons 2021-2022 and 2022-2023 to evaluate the response of various wheat genotypes against leaf rust severity (%), environmental conditions favourable for disease development and grain yield. Except for minimum temperature and minimum relative humidity, which had a negative association with disease development, there was a significant correlation between leaf rust severity (%) and all environmental conditions such as maximum temperature, maximum relative humidity, rainfall, and wind speed. All epidemiological variables such as maximum temperature, minimum temperature, minimum relative humidity, rainfall and wind speed significantly affect the disease progression. The disease predictive model accounted for 48-69 % variability in leaf rust severity. The model performance was evaluated using the coefficient of determination (R2 = 0.69) and RMSE, both demonstrated acceptable predictive results for leaf rust severity (%) management. Leaf rust severity (%) increased with an increase in maximum temperature (17.8-30 °C), maximum relative humidity (76.3-85 %), rainfall (2.2-10.85 mm) and wind speed 1.1-2.7 km/h and decreased with the increase of minimum temperature (7.91-16.71 °C) minimum relative humidity (47.15-56.45 %) during both rating seasons 2021-2022 and 2022-2023. The single and two applications of fungicides at the Zadok's scale 3, ZS 4.3, and ZS 5.4 stages led to a significant reduction in grain yield losses caused by leaf rust severity (%) in both the 2021-2022 and 2022-2023 crop seasons. Single and two sprays of prothioconazole, were found to be the first choice among all treatments to reduce the disease severity and increase grain production and maximum gross revenue (513.1-777.8$/ha), as compared to followed by single and two sprays of propiconazole (Progress), tebuconazole + trifloxystrobin, tebuconazole, bixafen + tebuconazole, and propiconazole (Tilt), respectively. These findings recommend the involvement of genotype resistance and weather predictors in wheat leaf rust development, along with fungicide application studies, to improve the predictability of host resistance to disease, future models, and the sustainability of disease control methods.
Collapse
Affiliation(s)
- Hafiz Muhammad Aatif
- Department of Plant Pathology, College of Agriculture, University of Layyah, 31200, Layyah, Pakistan
- Department of Plant Pathology, Bahauddin Zakariya University Multan, 60000, Multan, Pakistan
| | - Saqib Saeed
- Department of Plant Pathology, Bahauddin Zakariya University Multan, 60000, Multan, Pakistan
| | - Yasir Ali
- Department of Plant Pathology, College of Agriculture, University of Layyah, 31200, Layyah, Pakistan
| | - Sidra Iqbal
- Department of Plant Breeding and Genetics, University of Agriculture-Faisalabad, Sub Campus Depalpur, Okara, Pakistan
| | - Ch Muhammad Shahid, Hanif
- Department of Entomology, College of Agriculture, University of Layyah, 31200, Layyah, Pakistan
- Department of Entomology, Bahauddin Zakariya University Multan, 60000, Multan, Pakistan
| | - Salman Ahmad
- Department of Plant Pathology, University College of Agriculture, University of Sargodha, 40100, Pakistan
| | - Ahmed Raza
- Plant Virology Lab, Crop Diseases Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Rosa Sanchez Lucas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
6
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Transcriptome Analysis Reveals the Involvement of Mitophagy and Peroxisome in the Resistance to QoIs in Corynespora cassiicola. Microorganisms 2023; 11:2849. [PMID: 38137993 PMCID: PMC10745780 DOI: 10.3390/microorganisms11122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Quinone outside inhibitor fungicides (QoIs) are crucial fungicides for controlling plant diseases, but resistance, mainly caused by G143A, has been widely reported with the high and widespread use of QoIs. However, two phenotypes of Corynespora casiicola (RI and RII) with the same G143A showed significantly different resistance to QoIs in our previous study, which did not match the reported mechanisms. Therefore, transcriptome analysis of RI and RII strains after trifloxystrobin treatment was used to explore the new resistance mechanism in this study. The results show that 332 differentially expressed genes (DEGs) were significantly up-regulated and 448 DEGs were significantly down-regulated. The results of GO and KEGG enrichment showed that DEGs were most enriched in ribosomes, while also having enrichment in peroxide, endocytosis, the lysosome, autophagy, and mitophagy. In particular, mitophagy and peroxisome have been reported in medicine as the main mechanisms of reactive oxygen species (ROS) scavenging, while the lysosome and endocytosis are an important organelle and physiological process, respectively, that assist mitophagy. The oxidative stress experiments showed that the oxidative stress resistance of the RII strains was significantly higher than that of the RI strains: specifically, it was more than 1.8-fold higher at a concentration of 0.12% H2O2. This indicates that there is indeed a significant difference in the scavenging capacity of ROS between the two phenotypic strains. Therefore, we suggest that QoIs' action caused a high production of ROS, and that scavenging mechanisms such as mitophagy and peroxisomes functioned in RII strains to prevent oxidative stress, whereas RI strains were less capable of resisting oxidative stress, resulting in different resistance to QoIs. In this study, it was first revealed that mitophagy and peroxisome mechanisms available for ROS scavenging are involved in the resistance of pathogens to fungicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| |
Collapse
|
7
|
Njiru C, Saalwaechter C, Mavridis K, Vontas J, Geibel S, Wybouw N, Van Leeuwen T. The complex II resistance mutation H258Y in succinate dehydrogenase subunit B causes fitness penalties associated with mitochondrial respiratory deficiency. PEST MANAGEMENT SCIENCE 2023; 79:4403-4413. [PMID: 37394630 DOI: 10.1002/ps.7640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The acaricides cyflumetofen, cyenopyrafen and pyflubumide inhibit the mitochondrial electron transport chain at complex II [succinate dehydrogenase (SDH) complex]. A target site mutation H258Y was recently discovered in a resistant strain of the spider mite pest Tetranychus urticae. H258Y causes strong cross-resistance between cyenopyrafen and pyflubumide, but not cyflumetofen. In fungal pests, fitness costs associated with substitutions at the corresponding H258 position that confer resistance to fungicidal SDH inhibitors have not been uncovered. Here, we used H258 and Y258 near-isogenic lines of T. urticae to quantify potential pleiotropic fitness effects on mite physiology. RESULTS The H258Y mutation was not associated with consistent significant changes of single generation life history traits and fertility life table parameters. In contrast, proportional Sanger sequencing and droplet digital polymerase chain reaction showed that the frequency of the resistant Y258 allele decreased when replicated 50:50 Y258:H258 experimentally evolving populations were maintained in an acaricide-free environment for approximately 12 generations. Using in vitro assays with mitochondrial extracts from resistant (Y258) and susceptible (H258) lines, we identified a significantly reduced SDH activity (48% lower activity) and a slightly enhanced combined complex I and III activity (18% higher activity) in the Y258 lines. CONCLUSION Our findings suggest that the H258Y mutation is associated with a high fitness cost in the spider mite T. urticae. Importantly, while it is the most common approach, it is clear that only comparing life history traits and life table fecundity does not allow to reliably estimate fitness costs of target site mutations in natural pest populations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christine Njiru
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Sven Geibel
- Crop Science Division, Bayer AG, Monheim, Germany
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Olea AF, Rubio J, Sedan C, Carvajal D, Nuñez M, Espinoza L, Llovera L, Nuñez G, Taborga L, Carrasco H. Antifungal Activity of 2-Allylphenol Derivatives on the Botrytis cinerea Strain: Assessment of Possible Action Mechanism. Int J Mol Sci 2023; 24:ijms24076530. [PMID: 37047503 PMCID: PMC10095406 DOI: 10.3390/ijms24076530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus that causes serious damage to the agricultural industry by infecting various important crops. 2-allylphenol has been used in China as a fungicide for more than a decade, and it has been shown that is a respiration inhibitor. A series of derivatives of 2-allylphenol were synthesized and their activity against B. cinerea was evaluated by measuring mycelial growth inhibition. Results indicate that small changes in the chemical structure or the addition of substituent groups in the aromatic ring induce important variations in activity. For example, changing the hydroxyl group by methoxy or acetyl groups produces dramatic increases in mycelial growth inhibition, i.e., the IC50 value of 2-allylphenol decreases from 68 to 2 and 1 μg mL−1. In addition, it was found that the most active derivatives induce the inhibition of Bcaox expression in the early stages of B. cinerea conidia germination. This gene is associated with the activation of the alternative oxidase enzyme (AOX), which allows fungus respiration to continue in the presence of respiratory inhibitors. Thus, it seems that 2-allylphenol derivatives can inhibit the normal and alternative respiratory pathway of B. cinerea. Therefore, we believe that these compounds are a very attractive platform for the development of antifungal agents against B. cinerea.
Collapse
|
9
|
Yang ZK, Qu C, Pan SX, Liu Y, Shi Z, Luo C, Qin YG, Yang XL. Aphid-repellent, ladybug-attraction activities, and binding mechanism of methyl salicylate derivatives containing geraniol moiety. PEST MANAGEMENT SCIENCE 2023; 79:760-770. [PMID: 36259292 DOI: 10.1002/ps.7245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Aphids have been mainly controlled by traditional chemical insecticides, resulting in unamiable risk to the environment over the last decades. Push-pull strategy is regarded as a promising eco-friendly approach for aphid management through repelling aphid away and attracting their natural enemy. Methyl salicylate (MeSA), one of typical HIPVs (herbivore-induced plant volatiles), can repel aphids and attract ladybugs. Our previous studies discovered a new lead compound 3e, a salicylate-substituted carboxyl (E)-β-farnesene derivative that had effective aphid-repellent activity. However, whether 3e has attractive activity to ladybug like MeSA is unknown. Meanwhile, to discover a new derivative for both deterring aphid and recruiting ladybug is meaningful for green control of aphids. RESULTS Through the structural optimization of 3e, 14 new derivatives were designed and synthesized. Among them, compounds 4e and 4i had good aphid (Acyrthosiphon pisum) repellent activity, and compounds 3e, 4e and 4i had significant ladybug (Harmonia axyridis) attractive activity to males. Particularly, 4i exhibited manifest attractive effect on the females as well. Binding mechanism showed that 4i not only bound effectively with the aphid (Acyrthosiphon pisum) target ApisOBP9 thanks to its multiple hydrophobic interactions and hydrogen-bond, but also had strong binding affinity with ladybug target HaxyOBP15 due to the suitable steric space. Additionally, 4i displayed low toxicity to bee Apis mellifera. CONCLUSION Compound 3e does exhibit attractive activity to male ladybug as MeSA. However, the new derivative 4i, with both pleasant aphid-repellent and ladybug-attraction activities, can be considered as a novel potential push-pull candidate for aphid control in sustainable agriculture. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhao-Kai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Shi-Xiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Zhuo Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin-Ling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
10
|
White NH, Neves DL, Nuckles EM, Vaillancourt LJ, Zhang J, Zhang G, Bradley CA. Identification of Quinone Outside Inhibitor Fungicide-Resistant Isolates of Parastagonospora nodorum from Illinois and Kentucky. PLANT DISEASE 2023; 107:38-45. [PMID: 35722914 DOI: 10.1094/pdis-01-22-0180-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stagonospora leaf and glume blotch, caused by Parastagonospora nodorum, is a major disease of winter wheat (Triticum aestivum) in the United States capable of significantly reducing grain yield and quality. Pathogens such as P. nodorum that overwinter in crop residue are often an increased concern in cropping systems that utilize no-till farming. In addition, the lack of wheat cultivars with complete resistance to P. nodorum has led to the reliance on foliar fungicides for disease management. Quinone outside inhibitor (QoI) fungicides (Fungicide Resistance Action Committee group 11) are one of the major classes used to manage foliar diseases in wheat. Use of the QoI class of fungicides tends to select isolates of fungal pathogens with resistance due to mutations in the fungal cytochrome b gene. Isolates of P. nodorum were collected from Illinois in 2014 and Kentucky in 2018, 2019, and 2020. Amplification and sequencing of a segment of the cytochrome b gene from these isolates revealed a mutation at codon 143 that confers a change from glycine to alanine in the amino acid sequence (known as the G143A mutation). In vitro plate assays and greenhouse trials were used to confirm and characterize the QoI resistance caused by the G143A mutation. The frequency of the tested isolates with the G143A mutation was 46% (57 of 123 isolates) and 5% (3 of 60 isolates) for Kentucky and Illinois, respectively. This research is the first to identify the G143A mutation in P. nodorum isolates with resistance to QoI fungicides in Illinois and Kentucky.
Collapse
Affiliation(s)
- Nathaniel H White
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Danilo L Neves
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Etta M Nuckles
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | | | - Jiawen Zhang
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Guirong Zhang
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| |
Collapse
|
11
|
Du X, Wang H, Zhang W. Synthesis and Fungicidal Activities of 5-Aryl-1,3,4-oxadiazolyl 2-Thioether Derivatives Containing Strobilurin Motif. HETEROCYCLES 2023. [DOI: 10.3987/com-23-14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
12
|
Mold and Stain Resistance of Bamboo Treated with Pyraclostrobin Fungicide. Polymers (Basel) 2022; 14:polym14245537. [PMID: 36559904 PMCID: PMC9786610 DOI: 10.3390/polym14245537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Bamboo is rich in starch and sugars and can be infected by mold and stain fungi, degrading its performance, shortening its service life, and reducing its utilization value. It is crucial to investigate how to protect bamboo against mold and stain fungi. The zone of inhibition test was used to evaluate the antifungal activity of azoxystrobin, kresoxim-methyl, pyraclostrobin and 3-iodo-2-propynyl-butylcarbamate (IPBC) against stain fungi (Botryodiplodia theobromae, Fusarium moniliforme, and Alternaria alternate) and mold fungi (Aspergillus niger, Penicillium citrinum, and Trichoderma viride) to develop new chemicals to protect bamboo against stain fungi and molds. The inhibitory activity of the composite pyraclostrobin and IPBC with different ratios was evaluated. Water-based formulations of the fungi were used to treat the bamboo, and the mold and stain resistance of the bamboo was investigated at different chemical retention rates. The results showed that the antifungal activity of pyraclostrobin was significantly higher than that of azoxystrobin and kresoxim-methyl. Different degrees of inhibitory activities against the stain and mold fungi were observed, and the inhibitory activity was higher against stain fungi than against molds. The three stain fungi were completely inhibited at a 7:3 ratio of pyraclostrobin to IPBC and 0.1% concentration. As the ratio increased, the inhibitory effect against mixed mold strains improved. The control efficacy of the pyraclostrobin formulations Str-1 and Str-2 at 0.1% concentration was 100% against Alternaria alternate and 70.8% against Fusarium moniliforme. The control efficacy of the composite formulations SI-1 and SI-2 at 0.1% concentration was 100% against all three stain fungi and greater than 91.8% against the mixed mold strains. This study provides new insights into the utilization of pyraclostrobin and its composite formulations as new bamboo antifungal agents.
Collapse
|
13
|
Song J, Wang Z, Zhang S, Wang Y, Liang Y, Dai Q, Huo Z, Xu K. The Toxicity of Salicylhydroxamic Acid and Its Effect on the Sensitivity of Ustilaginoidea virens to Azoxystrobin and Pyraclostrobin. J Fungi (Basel) 2022; 8:jof8111231. [PMID: 36422052 PMCID: PMC9692728 DOI: 10.3390/jof8111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Rice false smut (RFS) caused by Ustilaginoidea virens has been one of the most severe rice diseases. Fungicide-based chemical control is a significant measure to control RFS. In the sensitivity determination of quinone outside inhibitor (QoI) fungicide in vitro, salicylhydroxamic acid (SHAM) has been commonly added to artificial culture media in order to inhibit alternative oxidase of phytopathogenic fungi. However, some studies showed that artificial media should not include SHAM due to its toxicity. Whether SHAM should be added in the assay of U. virens sensitivity to QoI fungicide remains unknown. In this study, two appropriate media, potato sucrose agar (PSA) and minimal medium (MM), were selected to test SHAM toxicity and sensitivity of U. virens to azoxystrobin and pyraclostrobin. The mycelial growth and sensitivity to azoxystrobin and pyraclostrobin had no significant difference between on PSA and MM. SHAM could significantly inhibit mycelial growth, conidial germination, peroxidase (POD) and esterase activity of U. virens. Average effective concentration for inhibiting 50% (EC50) values of SHAM against mycelial growth of ten U. virens were 27.41 and 12.75 μg/mL on PSA and MM, respectively. The EC50 values of SHAM against conidial germination of isolates HWD and JS60 were 70.36 and 44.69 μg/mL, respectively. SHAM at 30 μg/mL significantly inhibited POD and esterase activity of isolates HWD and JS60, and even SHAM at 10 μg/mL significantly inhibited POD activity of isolate HWD. In addition, SHAM significantly reduced EC50 values and EC90 values of azoxystrobin and pyraclostrobin on both PSA and MM. Even in the presence of SHAM at 10 μg/mL, average EC50 values of ten U. virens isolates for azoxystrobin decreased 1.7-fold on PSA and 4.8-fold on MM, and for pyraclostrobin that decreased 2.8-fold on PSA and 4.8-fold on MM. Therefore, these results suggest that SHAM should not be included in artificial media in the assay of U. virens sensitivity to QoI fungicides.
Collapse
|
14
|
Kildea S, Hellin P, Heick TM, Hutton F. Baseline sensitivity of European Zymoseptoria tritici populations to the complex III respiration inhibitor fenpicoxamid. PEST MANAGEMENT SCIENCE 2022; 78:4488-4496. [PMID: 35797347 PMCID: PMC9796354 DOI: 10.1002/ps.7067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fenpicoxamid is a recently developed fungicide belonging to the quinone inside inhibitor (QiI) group. This is the first fungicide within this group to be active against the Zymoseptoria tritici, which causes Septoria tritici blotch on wheat. The occurrence of pre-existing resistance mechanisms was monitored, using sensitivity assays and Illumina sequencing, in Z. tritici populations sampled in multiple European countries before the introduction of fenpicoxamid. RESULTS Although differences in sensitivity to all three fungicides tested (fenpicoxamid, fentin chloride and pyraclostrobin) existed between the isolate collections, no alterations associated with QiI resistance were detected. Among the isolates, a range in sensitivity to fenpicoxamid was observed (ratio between most sensitive/least sensitive = 53.1), with differences between the most extreme isolates when tested in planta following limited fenpicoxamid treatment. Sensitivity assays using fentin chloride suggest some of the observed differences in fenpicoxamid sensitivity are associated with multi-drug resistance. Detailed monitoring of the wider European population using Illumina-based partial sequencing of the Z. tritici also only detected the presence of G143A, with differences in frequencies of this alteration observed across the region. CONCLUSIONS This study provides a baseline sensitivity for European Z. tritici populations to fenpicoxamid. Target-site resistance appears to be limited or non-existing in European Z. tritici populations prior to the introduction of fenpicoxamid. Non-target site resistance mechanisms exist, but their impact in the field is predicted to be limited. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Steven Kildea
- Teagasc, The Agriculture and Food Development AuthorityCarlowIreland
| | - Pierre Hellin
- Plant and Forest Health Unit, Walloon Agricultural Research CenterGemblouxBelgium
| | - Thies M. Heick
- Department of AgroecologyAarhus UniversitySlagelseDenmark
| | - Fiona Hutton
- Teagasc, The Agriculture and Food Development AuthorityCarlowIreland
| |
Collapse
|
15
|
Dong G, Zhang Y, Liang X, Wang M, Ye Q, Xian X, Yang Y. Resistance characterization of the natural population and resistance mechanism to pyraclostrobin in Lasiodiplodia theobromae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105232. [PMID: 36464332 DOI: 10.1016/j.pestbp.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Lasiodiplodia theobromae is the main pathogen of mango stem-end rot disease, causing mango fruit decay and major economic loss. QoI resistance has been found in field populations of L. theobromae. The characterization and resistance mechanism of pyraclostrobin-resistant L. theobromae was investigated by using a combination of bioassays and biochemical and molecular methods. The pyraclostrobin resistance among the L. theobromae population samples from Hainan was 93.41%. The resistant isolates were stable after successive subculturing for 10 times on PDA. Cross-resistance was observed only between the Qols pyraclostrobin and azoxystrobin. The alternative oxidase (AOX) inhibitor SHAM notably decreased the EC50 values of pyraclostrobin for all tested L. theobromae isolates. Induction of AOX by pyraclostrobin was observed in mycelia cells of L. theobromae. After treatment with pyraclostrobin, the final ATP and AOX contents of all sensitive isolates were significantly lower than those of resistant isolates. The relevant mutation and high expression of the cytochrome b gene were not detected in resistant isolates. However, there were 4 mutations in the AOX gene, which were only observed in highly resistant isolates. Pretreatment with pyraclostrobin resulted in a significant upregulation of AOX gene expression, and the average expression level of the highly resistant isolates was 33-fold that of the control group. These results suggested that the AOX pathway is responsible for resistance to pyraclostrobin, and that the AOX-related resistance mechanism is common in field populations of L. theobromae in Hainan mango orchards.
Collapse
Affiliation(s)
- Guoran Dong
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yu Zhang
- College of Plant Protection, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Xioyu Liang
- College of Plant Protection, Hainan University, Haikou 570228, China; Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Meng Wang
- College of Plant Protection, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Qianqian Ye
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Xinwei Xian
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Ye Yang
- College of Plant Protection, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China.
| |
Collapse
|
16
|
Song JH, Zhang SJ, Wang Y, Chen YT, Luo JF, Liang Y, Zhang HC, Dai QG, Xu K, Huo ZY. Baseline Sensitivity and Control Efficacy of Two Quinone Outside Inhibitor Fungicides, Azoxystrobin and Pyraclostrobin, Against Ustilaginoidea virens. PLANT DISEASE 2022; 106:2967-2973. [PMID: 35306849 DOI: 10.1094/pdis-12-21-2850-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice false smut caused by the filamentous fungus Ustilaginoidea virens is a devastating grain disease in rice. Fungicides have been an important measure for the control of this disease. In this study, baseline sensitivities of 179 isolates of U. virens to the quinone outside inhibitor (QoI) fungicides azoxystrobin and pyraclostrobin were established. The distribution of the 50% effective concentration (EC50) values of each fungicide was unimodal. The frequency distribution of logarithmically transformed EC50 values fit or fit closer to a normal distribution. The ranges of EC50 values for azoxystrobin and pyraclostrobin were 0.001 to 0.864 and 0.001 to 0.569 μg/ml, with means and standard errors of the mean values of 0.203 ± 0.012 and 0.079 ± 0.006 μg/ml, respectively. There was a statistically significant and moderately positive correlation (n = 100, r = 0.469, P = 0.001) in sensitivity between these two fungicides. No cross-resistance was found between azoxystrobin, pyraclostrobin, and carbendazim or sterol demethylation inhibitor fungicides. Each fungicide had a significantly higher mean preventive efficacy compared with its curative efficacy. Field assays showed that the control efficacy of pyraclostrobin against rice false smut was greater than that of azoxystrobin. Pyraclostrobin had the best control of rice false smut in three rice varieties, with the control efficacy ranging from 81.5 to 95.5%, whereas azoxystrobin decreased the disease index by 64.1 to 69.2% under the same conditions. These results provide us a reference point in the management of U. virens and future QoI fungicide resistance monitoring programs.
Collapse
Affiliation(s)
- Jie-Hui Song
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Si-Jie Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yun-Tong Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun-Fei Luo
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - You Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hong-Cheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Gen Dai
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ke Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhong-Yang Huo
- Jiangsu Key Laboratory of Crop Genetics and Physiology & Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
17
|
Liu X, Tang D, Yin F, Wang J, Zhang X, Xiao Y, Li JQ, Qin Z. Mitochondrion-Targeted Triphenylphosphonium-Based Kresoxim-Methyl Analogues: Synthesis, Fungicidal Activity, and Action Mechanism Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13563-13573. [PMID: 36223487 DOI: 10.1021/acs.jafc.2c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
β-Methoxyacrylate fungicides as complex III Qo site inhibitors play a crucial role in the control of crop diseases. In this study, the triphenylphosphonium (TPP)-driven mitochondrion-targeting strategy was used to modify the kresoxim-methyl scaffold at the toxicophore or side chain to develop novel mitochondrion-targeted QoI fungicides. These kresoxim-methyl analogues exhibited different fungicidal activities, depending on the position of TPP conjugation and the linker length. Among them, 2A-5 and 2C-4 showed excellent characteristics superior to kresoxim-methyl as candidate fungicides, in which the activity enhancement against Phytophthora capsici was the most remarkable, with an EC50 value of about 5 μM. Notably, both hyphal and zoospore structures of the pathogens were severely damaged after treatment with them. The action mechanism approach revealed that they might cause a significant decrease in ATP synthesis and ROS outbreak in different ways. The results also provided a new insight into the contribution of targeting group TPP to the fungicidal activity in TPP-driven fungicides.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Science, China Agricultural University, Beijing100193, China
| | - Dachao Tang
- College of Science, China Agricultural University, Beijing100193, China
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing100193, China
| | - Jiayao Wang
- College of Science, China Agricultural University, Beijing100193, China
| | - Xueqin Zhang
- College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing100193, China
| | - Jia-Qi Li
- College of Science, China Agricultural University, Beijing100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing100193, China
| |
Collapse
|
18
|
Cannon S, Kay W, Kilaru S, Schuster M, Gurr SJ, Steinberg G. Multi-site fungicides suppress banana Panama disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS Pathog 2022; 18:e1010860. [PMID: 36264855 PMCID: PMC9584521 DOI: 10.1371/journal.ppat.1010860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Global banana production is currently challenged by Panama disease, caused by Fusarium oxysporum f.sp. cubense Tropical Race 4 (FocTR4). There are no effective fungicide-based strategies to control this soil-borne pathogen. This could be due to insensitivity of the pathogen to fungicides and/or soil application per se. Here, we test the effect of 12 single-site and 9 multi-site fungicides against FocTR4 and Foc Race1 (FocR1) in quantitative colony growth, and cell survival assays in purified FocTR4 macroconidia, microconidia and chlamydospores. We demonstrate that these FocTR4 morphotypes all cause Panama disease in bananas. These experiments reveal innate resistance of FocTR4 to all single-site fungicides, with neither azoles, nor succinate dehydrogenase inhibitors (SDHIs), strobilurins or benzimidazoles killing these spore forms. We show in fungicide-treated hyphae that this innate resistance occurs in a subpopulation of "persister" cells and is not genetically inherited. FocTR4 persisters respond to 3 μg ml-1 azoles or 1000 μg ml-1 strobilurins or SDHIs by strong up-regulation of genes encoding target enzymes (up to 660-fold), genes for putative efflux pumps and transporters (up to 230-fold) and xenobiotic detoxification enzymes (up to 200-fold). Comparison of gene expression in FocTR4 and Zymoseptoria tritici, grown under identical conditions, reveals that this response is only observed in FocTR4. In contrast, FocTR4 shows little innate resistance to most multi-site fungicides. However, quantitative virulence assays, in soil-grown bananas, reveals that only captan (20 μg ml-1) and all lipophilic cations (200 μg ml-1) suppress Panama disease effectively. These fungicides could help protect bananas from future yield losses by FocTR4.
Collapse
Affiliation(s)
- Stuart Cannon
- Biosciences, University of Exeter, Exeter, United Kingdom
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, United Kingdom
| | - William Kay
- Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah Jane Gurr
- Biosciences, University of Exeter, Exeter, United Kingdom
- University of Utrecht, Utrecht, The Netherlands
| | - Gero Steinberg
- Biosciences, University of Exeter, Exeter, United Kingdom
- University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Song Y, Chen X, Sun J, Bai Y, Jin L, Lin Y, Sun Y, Cao H, Chen Y. In Vitro Determination of Sensitivity of Fusarium fujikuroi to Fungicide Azoxystrobin and Investigation of Resistance Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9760-9768. [PMID: 35901518 DOI: 10.1021/acs.jafc.2c02663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rice bakanae disease (RBD) caused by Fusarium fujikuroi is a widespread and destructive disease of rice. It is urgent to introduce a new class of fungicide to manage the fungicidal resistance problem and effectively control the disease. Azoxystrobin (AZO) is an active fungicide with a broad antifungal spectrum, while its activity against F. fujikuroi is not well investigated. In this study, the baseline sensitivity of F. fujikuroi to AZO was established by testing the sensitivity of 100 isolates, collected from Anhui Province of China. The mechanism of resistance to AZO was also investigated. AZO exhibited a strong activity against the 100 F. fujikuroi isolates with EC50 values of 0.822 ± 0.285 and 0.762 ± 0.283 μg/mL for mycelial growth and conidial germination, respectively, and both of the baseline sensitivity curves were validated as unimodal curves. To investigate the resistance mechanism, six mutants with resistance factor (RF) values >50 were generated from wild-type sensitive strains through UV mutagenesis, and sequence analysis showed that mutation G143A in cyt b conferred the resistance to AZO. Mycelial growth, conidia production, pathogenicity, and ATP production were decreased in all six resistant mutants as compared to the parental strains, indicating the fitness penalties in this phenotype of resistance mutation. In addition, the cross-resistance assay showed that there was no cross-resistance between AZO and carbendazim, prochloraz, phenamacril, or pydiflumetofen. AZO can be an efficient candidate to control RBD in China with moderate to low fungal resistance risk, but continuous resistance monitoring should be performed during the application of this fungicide.
Collapse
Affiliation(s)
- Yixiu Song
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jiazhi Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Bai
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Lin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
20
|
Gao X, Hu S, Liu Z, Zhu H, Yang J, Han Q, Fu Y, Miao J, Gu B, Liu X. Analysis of resistance risk and resistance-related point mutations in Cyt b of QioI fungicide ametoctradin in Phytophthora litchii. PEST MANAGEMENT SCIENCE 2022; 78:2921-2930. [PMID: 35419937 DOI: 10.1002/ps.6916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Litchi downy blight, caused by Phytophthora litchii, is one of the most important diseases of litchi. Ametoctradin, as the only QioI (quinone inside and outside inhibitor) fungicide, has been registered in China in 2019. However, the ametoctradin-resistance risk and molecular basis in Phytophthora litchii have not been reported. RESULTS In this study, the sensitivity profile of 144 Phytophthora litchii strains to ametoctradin was determined, with a mean median effective concentration (EC50 ) value of 0.1706 ± 0.091 μg mL-1 . Nine stable resistant Phytophthora litchii mutants [resistance factor (RF) > 400] were derived from sensitive isolates using fungicide adaption. The compound fitness index of three resistant-mutants (HN10-1-1, HN10-1-2 and HN10-2-1) was similar or higher than that of their parental isolates in vitro. All these ametoctradin-resistant mutants were sensitive to metalaxyl, dimethomorph, oxathiapiprolin and cyazofamid. Two point mutations, leading to the S33L and D228N changes in PlCyt b (cytochrome b) were found in ametoctradin-resistant mutants. Eight ametoctradin-resistant mutants containing S33L showed increased sensitivity to azoxystrobin and amisulbrom, and one mutant containing D228N exhibited increased sensitivity to cyazofamid. In vitro enzyme activity test showed that ametoctradin could not inhibit the activity of cytochrome bc1 complex with S33L and D228N point mutation. AS-PCR primers were designed based on the S33L change to detect the ametoctradin-resistant strains in the future. CONCLUSION These results suggest that Phytophthora litchii has a medium to high resistance risk to ametoctradin in the laboratory. Two changes, S33L and D228N, in PlCyt b are likely to be associated with the observed ametoctradin resistance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shiping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zeqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongwei Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jikun Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qingyu Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yixin Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Pethybridge SJ, Murphy S, Hay F, Branch E, Sharma P, Kikkert JR. Control of Phoma Leaf Spot and Root Decay of Table Beet in New York. PLANT DISEASE 2022; 106:1857-1866. [PMID: 35072508 DOI: 10.1094/pdis-11-21-2506-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Disease caused by Neocamarosporium betae (syn. Phoma betae, Pleospora betae) results in reductions in plant populations, foliar disease (Phoma leaf spot [PLS]), and root disease and decay in table beet. Disease caused by N. betae has reemerged as prevalent in organic table beet production in New York. The disease can also cause substantial issues in conventional table beet production. To evaluate in-field control options for conventional and organic table beet production, small-plot, replicated trials were conducted in each of two years (2019 and 2021). The fungicides, propiconazole and difenoconazole, and premixtures, pydiflumetofen + fludioxonil or pydiflumetofen + difenoconazole, provided excellent PLS and root decay control. Azoxystrobin provided excellent (69.9%) control of PLS in 2019 and lesser (40%) control in 2021. Field trial results complemented in vitro sensitivity testing of 30 New York N. betae isolates that were all highly sensitive to azoxystrobin (mean effective concentration to reduce mycelial growth by 50%, EC50 = 0.0205 µg/ml) and propiconazole (mean EC50 = 0.0638 µg/ml). Copper octanoate and microbial biopesticides containing either Bacillus amyloliquefaciens D747 or B. mycoides strain J provided moderate (68.5 to 74.6%) PLS control as reflected in epidemic progress. The Gompertz model provided the best fit to PLS epidemics reflecting a polycyclic epidemic. Reductions in PLS severity were associated with significant decreases in Phoma root decay and increases in canopy health and the time-to-death of leaves compared with nontreated control plots. Prolonging leaf survival is critical for mechanical harvest of roots. These findings underpin the design of programs for foliar disease control in conventional and organic table beet production. Assessment of PLS severity in the field will better inform postharvest management decisions.
Collapse
Affiliation(s)
- Sarah J Pethybridge
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sean Murphy
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Frank Hay
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Eric Branch
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Pratibha Sharma
- Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Julie R Kikkert
- Cornell Vegetable Program, Cornell Cooperative Extension, Canandaigua, NY 14424
| |
Collapse
|
22
|
Antimicrobial Efficacy of Edible Mushroom Extracts: Assessment of Fungal Resistance. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antimicrobial efficacy of the water or methanolic extracts of three medicinal mushrooms Taiwanofungus camphoratus, Agaricus blazei Murrill, and Ganoderma lucidum (Curtis) P. Karst were investigated against yeast and filamentous fungal pathogens as well as against commensal and pathogenic bacteria. The methanolic extract of T. camphoratus (TcM) exhibited both potent antifungal and antibacterial activity, while the water extract of T. camphoratus (TcW) showed limited antibacterial activity against Listeria monocytogenes. Neither the methanolic nor water extracts of A. blazei and G. lucidum exhibited antimicrobial activity. In the risk assessment testing monitoring the development of fungal tolerance to mushroom extracts in food matrices, two P. expansum mitogen-activated protein kinase (MAPK) mutants exhibited a tolerance to TcM. In a proof-of-concept bioassay using the natural benzoic salicylaldehyde (SA), P. expansum and A. fumigatus MAPK antioxidant mutants showed similar tolerance to SA, suggesting that natural ingredients in TcM such as benzoic derivatives could negatively affect the efficacy of TcM when antioxidant mutants are targeted. Conclusion: TcM could be developed as a food ingredient having antimicrobial potential. The antimicrobial activity of TcM operates via the intact MAPK antioxidant signaling system in microbes, however, mutants lacking genes in the MAPK system escape the toxicity triggered by TcM. Therefore, caution should be exercised in the use of TcM so as to not adversely affect food safety and quality by triggering the resistance of antioxidant mutants in contaminated food.
Collapse
|
23
|
Marin MV, Seijo TE, Zuchelli E, Peres NA. Detection and Characterization of Quinone Outside Inhibitor-Resistant Phytophthora cactorum and P. nicotianae Causing Leather Rot in Florida Strawberry. PLANT DISEASE 2022; 106:1203-1208. [PMID: 34813708 DOI: 10.1094/pdis-08-21-1658-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytophthora cactorum and P. nicotianae cause leather rot (LR) of fruit and Phytophthora crown rot (PhCR) in strawberry. LR occurs sporadically but can cause up to 70% fruit loss when weather is conducive. In Florida's annual strawberry winter production system, PhCR can be severe, resulting in plant stunting, mortality, and severe yield loss. Azoxystrobin is labeled for control of LR but not for PhCR. The aims of this research were to determine the sensitivity of P. cactorum and P. nicotianae isolates from strawberry to azoxystrobin and to investigate mechanisms of quinone-outside-inhibitor resistance present in P. cactorum and P. nicotianae based on the known point mutations within the cytochrome b (cytb) gene. Isolates of both Phytophthora spp. causing LR and PhCR were collected from multiple strawberry fields in Florida between 1997 and 2020. Isolates were tested for sensitivity to azoxystrobin at 0, 0.01, 0.1, 1.0, 10, and 50 μg/ml on potato dextrose agar amended with salicylhydroxamic acid (100 μg/ml). Isolates were separated into two groups - sensitive isolates with the 50% effective concentration (EC50) values <1.0 μg/ml, and resistant isolates having EC50 values >50 μg/ml. P. cactorum and P. nicotianae resistance to azoxystrobin was found for isolates collected after 2010. The first 450 nucleotides of the mitochondrial cytb gene were sequenced from a selection of resistant and sensitive isolates of both species. The G143A mutation reported to confer resistance to azoxystrobin was found in all resistant P. cactorum isolates. However, in P. nicotianae, qualitative resistance was observed, but the isolates lacked all the known mutations in the cytb gene. This is the first report of resistance to azoxystrobin in P. cactorum and P. nicotianae.
Collapse
Affiliation(s)
- Marcus V Marin
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Teresa E Seijo
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Elias Zuchelli
- University of Tennessee Institute of Agriculture, Knoxville, TN 37996
| | - Natalia A Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| |
Collapse
|
24
|
Sim JXF, Doolette CL, Vasileiadis S, Drigo B, Wyrsch ER, Djordjevic SP, Donner E, Karpouzas DG, Lombi E. Pesticide effects on nitrogen cycle related microbial functions and community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150734. [PMID: 34606862 DOI: 10.1016/j.scitotenv.2021.150734] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of pesticides in agriculture raises concerns about their potential negative impact on soil microorganisms, being the key drivers of nutrient cycling. Most studies have investigated the effect of a single pesticide on a nutrient cycling in single soil type. We, for the first time, investigated the effect of 20 commercial pesticides with different mode of actions, applied at their recommended dose and five times their recommended dose, on nitrogen (N) microbial cycling in three different agricultural soils from southern Australian. Functional effects were determined by measuring soil enzymatic activities of β-1,4-N-acetyliglucosaminidase (NAG) and l-leucine aminopeptidase (LAP), potential nitrification (PN), and the abundance of functional genes involved in N cycling (amoA and nifH). Effects on nitrifiers diversity were determined with amplicon sequencing. Overall, the pesticides effect on N microbial cycling was dose-independent and soil specific. The fungicides flutriafol and azoxystrobin, the herbicide chlorsulfuron and the insecticide fipronil induced a significant reduction in PN and β-1,4-N-acetylglucosaminidase activity (P < 0.05) (NAG) in the alkaline loam soil with low organic carbon content i.e. a soil with properties which typically favors pesticide bioavailability and therefore potential toxicity. For the nitrifier community, the greatest pesticide effects were on the most dominant Nitrososphaeraceae (ammonia-oxidizing archaea; AOA) whose abundance increased significantly compared to the less dominant AOA and other nitrifiers. The inhibiting effects were more evident in the soil samples treated with fungicides. By testing multiple pesticides in a single study, our findings provide crucial information that can be used for pesticide hazard assessment.
Collapse
Affiliation(s)
- Jowenna X F Sim
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Casey L Doolette
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Viopolis 41500, Greece
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ethan R Wyrsch
- iThree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Larissa, Viopolis 41500, Greece
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; University of South Australia, UniSA STEM, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
25
|
Melo R, Armstrong V, Navarro F, Castro P, Mendoza L, Cotoras M. Characterization of the Fungitoxic Activity on Botrytis cinerea of N-phenyl-driman-9-carboxamides. J Fungi (Basel) 2021; 7:jof7110902. [PMID: 34829191 PMCID: PMC8623464 DOI: 10.3390/jof7110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 12 compounds were synthesized from the natural sesquiterpene (-) drimenol (compounds 4 to 15). The synthesized compounds corresponded to N-phenyl-driman-9-carboxamide derivatives, similar to some fungicides that inhibit the electron-transport chain. Their structures were characterized and confirmed by 1H NMR, 13C NMR spectroscopy, and mass spectrometry. Compounds 5 to 15 corresponded to novel compounds. The effect of the compounds on the mycelial growth of Botrytis cinerea was evaluated. Methoxylated and chlorinated compounds in the aromatic ring (compounds 6, 7, 12, and 13) exhibited the highest antifungal activity with IC50 values between 0.20 and 0.26 mM. On the other hand, the effect on conidial germination of B. cinerea of one methoxylated compound (6) and one chlorinated compound (7) was analyzed, and no inhibition was observed. Additionally, compound 7 decreased 36% the rate of oxygen consumption by germinating conidia.
Collapse
Affiliation(s)
- Ricardo Melo
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 8580745, Chile;
| | - Verónica Armstrong
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Freddy Navarro
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 7820436, Chile; (F.N.); (P.C.)
| | - Paulo Castro
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 7820436, Chile; (F.N.); (P.C.)
| | - Leonora Mendoza
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 7820436, Chile; (F.N.); (P.C.)
- Correspondence: (L.M.); (M.C.)
| | - Milena Cotoras
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 7820436, Chile; (F.N.); (P.C.)
- Correspondence: (L.M.); (M.C.)
| |
Collapse
|
26
|
Yao C, Meyer KG, Gallup C, Bowling AJ, Hufnagl A, Myung K, Lutz J, Slanec T, Pence HE, Delgado J, Wang NX. Florylpicoxamid, a new picolinamide fungicide with broad spectrum activity. PEST MANAGEMENT SCIENCE 2021; 77:4483-4496. [PMID: 34010509 DOI: 10.1002/ps.6483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/15/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Following the introduction of fenpicoxamid, a natural product-based fungicide targeting the Qi site of mitochondrial cytochrome bc1 complex, a second generation fully synthetic picolinamide, florylpicoxamid, was discovered and its biological activity and attributes were characterized. RESULTS In vitro fungal growth inhibition assays and in planta glasshouse biological activity evaluations showed florylpicoxamid was active against 21 different plant pathogenic fungi within the phyla Ascomycota and Basidiomycota. Among the pathogens evaluated, florylpicoxamid was most potent against Zymoseptoria tritici, the causal organism of wheat leaf blotch, providing 80% growth inhibition in vitro at 0.0046 mg L-1 and 80% disease control in planta at 0.03 mg L-1 when applied as a preventative treatment. Florylpicoxamid was more efficacious than epoxiconazole, fluxapyroxad, and benzovindiflupyr versus a Z. tritici wild-type isolate when applied as curative and preventative treatments, with superior 10-day curative reachback activity. Analytical studies and in planta tests demonstrated that florylpicoxamid partitioned into plants quickly and showed good systemicity and translaminar activity on both monocot and dicot plants. No cross-resistance was observed between florylpicoxamid and strobilurin or azole fungicides. Florylpicoxamid exerts its preventative effect by preventing spore germination on the leaf surface and curative activity by arresting mycelial growth and pycnidia development in leaf tissue. CONCLUSIONS With strong broad spectrum fungicidal activity, florylpicoxamid delivers an innovative solution for growers to sustain high productivity and quality of many crops, and also provides a new option for developing effective strategies for fungicide resistance management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenglin Yao
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Kevin G Meyer
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Courtney Gallup
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Andrew J Bowling
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Andrea Hufnagl
- Corteva Agriscience, Crop Protection Discovery & Development, Guyancourt, France
| | | | - Jamie Lutz
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Thomas Slanec
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Heather E Pence
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Javier Delgado
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| | - Nick X Wang
- Corteva Agriscience, Crop Protection Discovery & Development, Indianapolis, IN, USA
| |
Collapse
|
27
|
Harrelson BC, Kemerait RC, Culbreath AK, Ghimire B, Li Z, Severns PM, Buck JW. Assessment of Quinone Outside Inhibitor Sensitivity and Frogeye Leaf Spot Race of Cercospora sojina in Georgia Soybean. PLANT DISEASE 2021; 105:2946-2954. [PMID: 33779250 DOI: 10.1094/pdis-02-21-0236-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Frogeye leaf spot (FLS), caused by the fungal pathogen Cercospora sojina K. Hara, is a foliar disease of soybean (Glycine max L. [Merr.]) responsible for yield reductions throughout the major soybean-producing regions of the world. In the United States, management of FLS relies heavily on the use of resistant cultivars and in-season fungicide applications, specifically within the class of quinone outside inhibitors (QoIs), which has resulted in the development of fungicide resistance in many states. In 2018 and 2019, 80 isolates of C. sojina were collected from six counties in Georgia and screened for QoI fungicide resistance using molecular and in vitro assays, with resistant isolates being confirmed from three counties. Additionally, 50 isolates, including a "baseline isolate" with no prior fungicide exposure, were used to determine the percent reduction of mycelial growth to two fungicides, azoxystrobin and pyraclostrobin, at six concentrations: 0.0001, 0.001, 0.01, 0.1, 1, and 10 μg ml-1. Mycelial growth observed for resistant isolates varied significantly from both sensitive isolates and baseline isolate for azoxystrobin concentrations of 10, 1, 0.1, and 0.01 μg ml-1 and for pyraclostrobin concentrations of 10, 1, 0.1, 0.01, and 0.001 μg ml-1. Moreover, 40 isolates were used to evaluate pathogen race on six soybean differential cultivars by assessing susceptible or resistant reactions. Isolate reactions suggested 12 races of C. sojina present in Georgia, 4 of which have not been previously described. Species richness indicators (rarefaction and abundance-based coverage estimators) indicated that within-county C. sojina race numbers were undersampled in this study, suggesting the potential for the presence of either additional undescribed races or known but unaccounted for races in Georgia. However, no isolates were pathogenic on 'Davis', a differential cultivar carrying the Rcs3 resistance allele, suggesting that the gene is still an effective source of resistance in Georgia.
Collapse
Affiliation(s)
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | | - Bikash Ghimire
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
| | - Zenglu Li
- Institute of Plant Breeding, Genetics and Genomics/Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602
| | - Paul M Severns
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - James W Buck
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
| |
Collapse
|
28
|
Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold. J Fungi (Basel) 2021; 7:jof7090783. [PMID: 34575821 PMCID: PMC8471628 DOI: 10.3390/jof7090783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The necrotrophic fungus Penicillium digitatum (Pd) is responsible for the green mold disease that occurs during postharvest of citrus and causes enormous economic losses around the world. Fungicides remain the main method used to control postharvest green mold in citrus fruit storage despite numerous occurrences of resistance to them. Hence, it is necessary to find new and more effective strategies to control this type of disease. This involves delving into the molecular mechanisms underlying the appearance of resistance to fungicides during the plant–pathogen interaction. Although mechanisms involved in resistance to fungicides have been studied for many years, there have now been great advances in the molecular aspects that drive fungicide resistance, which facilitates the design of new means to control green mold. A wide review allows the mechanisms underlying fungicide resistance in Pd to be unveiled, taking into account not only the chemical nature of the compounds and their target of action but also the general mechanism that could contribute to resistance to others compounds to generate what we call multidrug resistance (MDR) phenotypes. In this context, fungal transporters seem to play a relevant role, and their mode of action may be controlled along with other processes of interest, such as oxidative stress and fungal pathogenicity. Thus, the mechanisms for acquisition of resistance to fungicides seem to be part of a complex framework involving aspects of response to stress and processes of fungal virulence.
Collapse
|
29
|
Fouché G, Michel T, Lalève A, Wang NX, Young DH, Meunier B, Debieu D, Fillinger S, Walker AS. Directed evolution predicts cytochrome b G37V target site modification as probable adaptive mechanism towards the QiI fungicide fenpicoxamid in Zymoseptoria tritici. Environ Microbiol 2021; 24:1117-1132. [PMID: 34490974 DOI: 10.1111/1462-2920.15760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023]
Abstract
Acquired resistance is a threat to antifungal efficacy in medicine and agriculture. The diversity of possible resistance mechanisms and highly adaptive traits of pathogens make it difficult to predict evolutionary outcomes of treatments. We used directed evolution as an approach to assess the resistance risk to the new fungicide fenpicoxamid in the wheat pathogenic fungus Zymoseptoria tritici. Fenpicoxamid inhibits complex III of the respiratory chain at the ubiquinone reduction site (Qi site) of the mitochondrially encoded cytochrome b, a different site than the widely used strobilurins which inhibit the same complex at the ubiquinol oxidation site (Qo site). We identified the G37V change within the cytochrome b Qi site as the most likely resistance mechanism to be selected in Z. tritici. This change triggered high fenpicoxamid resistance and halved the enzymatic activity of cytochrome b, despite no significant penalty for in vitro growth. We identified negative cross-resistance between isolates harbouring G37V or G143A, a Qo site change previously selected by strobilurins. Double mutants were less resistant to both QiIs and quinone outside inhibitors compared to single mutants. This work is a proof of concept that experimental evolution can be used to predict adaptation to fungicides and provides new perspectives for the management of QiIs.
Collapse
Affiliation(s)
- Guillaume Fouché
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France.,Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Thomas Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Anaïs Lalève
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Nick X Wang
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - David H Young
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Danièle Debieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Sabine Fillinger
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| | - Anne-Sophie Walker
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, 78850, France
| |
Collapse
|
30
|
Tian F, Lee SY, Woo SY, Choi HY, Park SB, Chun HS. Effect of plant-based compounds on the antifungal and antiaflatoxigenic efficiency of strobilurins against Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125663. [PMID: 33756201 DOI: 10.1016/j.jhazmat.2021.125663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are a group of carcinogenic and mutagenic fungal secondary metabolites that have threatened human health and global food security. Aflatoxin contamination can be controlled by applying fungicides, such as strobilurins. Although these compounds have been effective, they may be risky to the environment due to their wide usage. In this study, plant-based compounds were tested to promote the performance of strobilurins (azoxystrobin, pyraclostrobin) against aflatoxigenic Aspergillus flavus; six natural compounds, namely baicalein, nobiletin, meso-dihydroguaiaretic acid, pinoresinol, syringaresinol, and celastrol, were found to exhibit synergistic antifungal effects with strobilurins with fractional inhibitory concentration index < 0.5. Among them, baicalein showed no inhibitory effects on A. flavus when applied alone, but strongly enhanced the in vitro and in situ antifungal and antiaflatoxigenic efficacy of strobilurins and transformed them from fungistatic to fungicidal agents. Therefore, baicalein may be used as an effective natural chemosensitizing agent to improve the performance of strobilurins against A. flavus. The findings of this study provide novel insights for the development of safer and more effective strategies for the control of aflatoxin contamination.
Collapse
Affiliation(s)
- Fei Tian
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hwa Young Choi
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Su Been Park
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
31
|
Mpofu E, Alias A, Tomita K, Suzuki-Minakuchi C, Tomita K, Chakraborty J, Malon M, Ogura Y, Takikawa H, Okada K, Kimura T, Nojiri H. Azoxystrobin amine: A novel azoxystrobin degradation product from Bacillus licheniformis strain TAB7. CHEMOSPHERE 2021; 273:129663. [PMID: 33515965 DOI: 10.1016/j.chemosphere.2021.129663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/26/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Azoxystrobin (AZ) is a broad-spectrum synthetic fungicide widely used in agriculture globally. However, there are concerns about its fate and effects in the environment. It is reportedly transformed into azoxystrobin acid as a major metabolite by environmental microorganisms. Bacillus licheniformis strain TAB7 is used as a compost deodorant in commercial compost and has been found to degrade some phenolic and agrochemicals compounds. In this article, we report its ability to degrade azoxystrobin by novel degradation pathway. Biotransformation analysis followed by identification by electrospray ionization-mass spectrometry (MS), high-resolution MS, and nuclear magnetic resonance spectroscopy identified methyl (E)-3-amino-2-(2-((6-(2-cyanophenoxy)pyrimidin-4-yl)oxy)phenyl)acrylate, or (E)-azoxystrobin amine in short, and (Z) isomers of AZ and azoxystrobin amine as the metabolites of (E)-AZ by TAB7. Bioassay testing using Magnaporthe oryzae showed that although 40 μg/mL of (E)-AZ inhibited 59.5 ± 3.5% of the electron transfer activity between mitochondrial Complexes I and III in M. oryzae, the same concentration of (E)-azoxystrobin amine inhibited only 36.7 ± 15.1% of the activity, and a concentration of 80 μg/mL was needed for an inhibition rate of 56.8 ± 7.4%, suggesting that (E)-azoxystrobin amine is less toxic than the parent compound. To our knowledge, this is the first study identifying azoxystrobin amine as a less-toxic metabolite from bacterial AZ degradation and reporting on the enzymatic isomerization of (E)-AZ to (Z)-AZ, to some extent, by TAB7. Although the fate of AZ in the soil microcosm supplemented with TAB7 will be needed, our findings broaden our knowledge of possible AZ biotransformation products.
Collapse
Affiliation(s)
- Enock Mpofu
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Amirah Alias
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Keisuke Tomita
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kenji Tomita
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Joydeep Chakraborty
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Michal Malon
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Yusuke Ogura
- Department of Applied Biochemistry, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hirosato Takikawa
- Department of Applied Biochemistry, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Toshiaki Kimura
- Agriculture and Biotechnology Business Division, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi-shi, Aichi, 470-0201, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
32
|
Hu M, Chen S. Non-Target Site Mechanisms of Fungicide Resistance in Crop Pathogens: A Review. Microorganisms 2021; 9:microorganisms9030502. [PMID: 33673517 PMCID: PMC7997439 DOI: 10.3390/microorganisms9030502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
The rapid emergence of resistance in plant pathogens to the limited number of chemical classes of fungicides challenges sustainability and profitability of crop production worldwide. Understanding mechanisms underlying fungicide resistance facilitates monitoring of resistant populations at large-scale, and can guide and accelerate the development of novel fungicides. A majority of modern fungicides act to disrupt a biochemical function via binding a specific target protein in the pathway. While target-site based mechanisms such as alternation and overexpression of target genes have been commonly found to confer resistance across many fungal species, it is not uncommon to encounter resistant phenotypes without altered or overexpressed target sites. However, such non-target site mechanisms are relatively understudied, due in part to the complexity of the fungal genome network. This type of resistance can oftentimes be transient and noninheritable, further hindering research efforts. In this review, we focused on crop pathogens and summarized reported mechanisms of resistance that are otherwise related to target-sites, including increased activity of efflux pumps, metabolic circumvention, detoxification, standing genetic variations, regulation of stress response pathways, and single nucleotide polymorphisms (SNPs) or mutations. In addition, novel mechanisms of drug resistance recently characterized in human pathogens are reviewed in the context of nontarget-directed resistance.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (M.H.); (S.C.)
| | - Shuning Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (M.H.); (S.C.)
| |
Collapse
|
33
|
Huang Z, Lu J, Liu R, Wang P, Hu Y, Fang A, Yang Y, Qing L, Bi C, Yu Y. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genet Biol 2021; 149:103530. [PMID: 33561548 DOI: 10.1016/j.fgb.2021.103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Sclerotinia sclerotiorum is a destructive necrotrophic fungal pathogen with worldwide distribution. The metabolism of reactive oxygen species (ROS) is critical for the development and infection process of this economically important pathogen. Hydrogen peroxide (H2O2) is converted into water and dioxygen by catalases, which are major ROS scavengers in cells. Several genes have been predicted to encode the catalases of S. sclerotiorum, but the critical ones that function in the ROS stress response are still unknown. In this research, a catalase gene called SsCat2 was found to contribute to the predominant catalase activity at the stages of hyphae growth and sclerotial development. SsCat2 transcripts were induced under oxidative stress, and the target deletion of SsCat2 led to significant sensitivity to H2O2, suggesting that SsCat2 is critical in dealing with the oxidative stress. SsCat2-deletion strains were sensitive to hyperosmotic stresses and cell membrane-perturbing agents, suggesting impairment in cell integrity due to the inactivation of SsCat2. The expression of the alternative oxidase-encoding gene was upregulated in the SsCat2-deletion strains, which showed decreased sensitivity to QoI fungicides. SsCat2-deletion strains showed impaired virulence in different hosts, and more H2O2 accumulation was detected during the infect processes. In summary, these results indicate that SsCat2 encodes a catalase that is related to the oxidative stress response, QoI fungicide sensitivity, and pathogenicity of S. sclerotiorum.
Collapse
Affiliation(s)
- Zhiqiang Huang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingjing Lu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ruiwen Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Pei Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yawen Hu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ling Qing
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China.
| |
Collapse
|
34
|
Duan Y, Lu F, Zhou Z, Zhao H, Zhang J, Mao Y, Li M, Wang J, Zhou M. Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122908. [PMID: 32512449 DOI: 10.1016/j.jhazmat.2020.122908] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Quinone outside inhibitors (QoIs) are currently extensively used agricultural fungicides. However, the application of QoIs in controlling Fusarium graminearum was rarely reported. No information is available on pharmacological characteristics of QoIs against F. graminearum, as well as their effects on DON biosynthesis. Here, we found that six QoIs exhibited an excellent fungicidal activity against F. graminearum based on mycelial growth and spore germination. ATP production assay further confirmed that QoIs decreased ATP production via inhibiting mitochondrial respiration, which contributes their fungicidal activity. Unfortunately, QoIs can stimulate DON production and up-regulate the expression of Tri5 and Tri6 genes. Additionally, acetyl-CoA, the basic precursor of DON biosynthesis, significantly increased as affected by QoIs, furtherly indicating that QoIs indeed enhance DON biosynthesis. We also found that QoIs can accelerate the formation of toxisomes and enhance the fluorescence signals of Tri-GFP labeled toxisomes, which may be due to the effect of QoIs on toxisome-related endoplasmic reticulum-remodeling. In addition, QoIs could disrupt the homeostasis of mitochondrial dynamics, resulting in the fragmented mitochondria. Finally, the simulated inoculation assay with wheat grains further verified that QoIs can stimulate DON production relative to wheat grain weight, especially relative to mycelial biomass.
Collapse
Affiliation(s)
- Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Lu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zehua Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huahua Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuai Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Meixia Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Fisher N, Meunier B, Biagini GA. The cytochrome bc 1 complex as an antipathogenic target. FEBS Lett 2020; 594:2935-2952. [PMID: 32573760 DOI: 10.1002/1873-3468.13868] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome bc1 complex is a key component of the mitochondrial respiratory chains of many eukaryotic microorganisms that are pathogenic for plants or humans, such as fungi responsible for crop diseases and Plasmodium falciparum, which causes human malaria. Cytochrome bc1 is an enzyme that contains two (ubi)quinone/quinol-binding sites, which can be exploited for the development of fungicidal and chemotherapeutic agents. Here, we review recent progress in determination of the structure and mechanism of action of cytochrome bc1 , and the associated development of antimicrobial agents (and associated resistance mechanisms) targeting its activity.
Collapse
Affiliation(s)
- Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Brigitte Meunier
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Giancarlo A Biagini
- Parasitology Department, Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
36
|
Wang Y, Akhavan A, Hwang SF, Strelkov SE. Decreased Sensitivity of Leptosphaeria maculans to Pyraclostrobin in Alberta, Canada. PLANT DISEASE 2020; 104:2462-2468. [PMID: 32609053 DOI: 10.1094/pdis-11-19-2461-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), can be managed with pyraclostrobin and other strobilurin fungicides. Their frequent application, however, poses a risk for the development of insensitivity in fungal populations. A collection of L. maculans single-spore isolates recovered from infected canola stubble in Alberta, Canada, in 2016 was evaluated for its pyraclostrobin sensitivity. In conventional growth plate assays, the concentration of pyraclostrobin required to inhibit fungal growth by 50% (EC50) was determined to be 0.28 mg/liter in a subset of 38 isolates. This EC50 was four times greater than the mean EC50 (0.07 mg/liter) of baseline isolates collected in 2011. Two hundred sixty-three isolates were screened further with two discriminatory doses of 0.28 and 3.5 mg/liter of pyraclostrobin, resulting in growth inhibition values ranging from 16 to 82% and 41 to 100%, respectively. In microtiter plate assays with the same isolates, the mean EC50 was determined to be 0.0049 mg/liter, almost 3.3 times greater than the mean EC50 (0.0015 mg/liter) of the baseline isolates. The sensitivity of the isolates was also evaluated in microtiter plate assays with discriminatory doses of 0.006 and 0.075 mg/liter of pyraclostrobin, resulting in inhibition values ranging from 20 to 88% and 49 to 100%, respectively. This is the first report of isolates of L. maculans with increased insensitivity to pyraclostrobin in Canada, suggesting the need for improved fungicide stewardship.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Alireza Akhavan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
37
|
Barsottini MRO, Copsey A, Young L, Baroni RM, Cordeiro AT, Pereira GAG, Moore AL. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa. Commun Biol 2020; 3:263. [PMID: 32451394 PMCID: PMC7248098 DOI: 10.1038/s42003-020-0981-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Moniliophthora perniciosa is a fungal pathogen and causal agent of the witches' broom disease of cocoa, a threat to the chocolate industry and to the economic and social security in cocoa-planting countries. The membrane-bound enzyme alternative oxidase (MpAOX) is crucial for pathogen survival; however a lack of information on the biochemical properties of MpAOX hinders the development of novel fungicides. In this study, we purified and characterised recombinant MpAOX in dose-response assays with activators and inhibitors, followed by a kinetic characterization both in an aqueous environment and in physiologically-relevant proteoliposomes. We present structure-activity relationships of AOX inhibitors such as colletochlorin B and analogues which, aided by an MpAOX structural model, indicates key residues for protein-inhibitor interaction. We also discuss the importance of the correct hydrophobic environment for MpAOX enzymatic activity. We envisage that such results will guide the future development of AOX-targeting antifungal agents against M. perniciosa, an important outcome for the chocolate industry.
Collapse
Affiliation(s)
- Mario R O Barsottini
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.,Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Alice Copsey
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Luke Young
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Renata M Baroni
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo A G Pereira
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
38
|
Matsuzaki Y, Kiguchi S, Suemoto H, Iwahashi F. Antifungal activity of metyltetraprole against the existing QoI-resistant isolates of various plant pathogenic fungi: Metyltetraprole against QoI-R isolates. PEST MANAGEMENT SCIENCE 2020; 76:1743-1750. [PMID: 31769927 PMCID: PMC7204873 DOI: 10.1002/ps.5697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Metyltetraprole is a novel quinol oxidation site of Complex III inhibitor (QoI) fungicide that inhibits mitochondrial electron transport at the Qo site of the cytochrome bc1 complex. Previous reports have demonstrated that it is also active against the QoI-resistant (QoI-R) isolates of Zymoseptoria tritici and Pyrenophora teres with the mutations G143A and F129L in their cytochrome b gene, respectively. Further studies on cross-resistance between metyltetraprole and existing QoIs were performed using an increased number of isolates of Z. tritici, P. teres, Ramularia collo-cygni, Pyrenophora tritici-repentis, and several other plant pathogenic fungi. RESULTS Differences in the EC50 values between the wild-type and QoI-R isolates with the mutations G143A or F129L were always smaller for metyltetraprole compared to those for the existing QoIs, and they were never greater than five in terms of resistance factor. The 2-year field experiments showed that the metyltetraprole treatment did not increase the percentage of QoI-R isolates likely to harbor the G143A mutation in a Z. tritici population. CONCLUSION The unique behavior of metyltetraprole against the existing QoI-R isolates was confirmed for all tested pathogen species. Our results provide important information to establish a fungicide resistance management strategy using metyltetraprole in combination or alternation with other fungicides. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| | - So Kiguchi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| | - Haruka Suemoto
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| | - Fukumatsu Iwahashi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., Ltd.TakarazukaJapan
| |
Collapse
|
39
|
Costa PC, Barsottini MR, Vieira ML, Pires BA, Evangelista JS, Zeri AC, Nascimento AF, Silva JS, Carazzolle MF, Pereira GA, Sforça ML, Miranda PC, Rocco SA. N-Phenylbenzamide derivatives as alternative oxidase inhibitors: Synthesis, molecular properties, 1H-STD NMR, and QSAR. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Tian F, Lee SY, Woo SY, Chun HS. Alternative Oxidase: A Potential Target for Controlling Aflatoxin Contamination and Propagation of Aspergillus flavus. Front Microbiol 2020; 11:419. [PMID: 32256475 PMCID: PMC7092633 DOI: 10.3389/fmicb.2020.00419] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Aflatoxins are among the most hazardous natural cereal contaminants. These mycotoxins are produced by Aspergillus spp. as polyketide secondary metabolites. Aflatoxigenic fungi including A. flavus express the alternative oxidase (AOX), which introduces a branch in the cytochrome-based electron transfer chain by coupling ubiquinol oxidation directly with the reduction of O2 to H2O. AOX is closely associated with fungal pathogenesis, morphogenesis, stress signaling, and drug resistance and, as recently reported, affects the production of mycotoxins such as sterigmatocystin, the penultimate intermediate in aflatoxin B1 biosynthesis. Thus, AOX might be considered a target for controlling the propagation of and aflatoxin contamination by A. flavus. Hence, this review summarizes the current understanding of fungal AOX and the alternative respiration pathway and the development and potential applications of AOX inhibitors. This review indicates that AOX inhibitors, either alone or in combination with current antifungal agents, are potentially applicable for developing novel, effective antifungal strategies. However, considering the conservation of AOX in fungal and plant cells, a deeper understanding of fungal alternative respiration and fungal AOX structure is needed, along with effective fungal-specific AOX inhibitors.
Collapse
Affiliation(s)
- Fei Tian
- Food Toxicology Laboratory, Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang Yoo Lee
- Food Toxicology Laboratory, Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - So Young Woo
- Food Toxicology Laboratory, Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
41
|
Colletotrichum eriobotryae sp. nov. and C. nymphaeae, the anthracnose pathogens of loquat fruit in central Taiwan, and their sensitivity to azoxystrobin. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01565-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Hay FS, Sharma S, Hoepting C, Strickland D, Luong K, Pethybridge SJ. Emergence of Stemphylium Leaf Blight of Onion in New York Associated With Fungicide Resistance. PLANT DISEASE 2019; 103:3083-3092. [PMID: 31596693 DOI: 10.1094/pdis-03-19-0676-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A complex of foliar diseases affects onion production in New York, including Botrytis leaf blight (Botrytis squamosa), purple blotch (Alternaria porri), Stemphylium leaf blight (SLB; Stemphylium vesicarium), and downy mildew (Peronospora destructor). Surveys were conducted in 2015 and 2016 to evaluate the cause of severe premature foliar dieback in New York onion fields. SLB was the most prevalent disease among fields with the greatest incidence, surpassing downy mildew, purple blotch, and Botrytis leaf blight. Sequencing of the internal transcribed spacer region of ribosomal DNA and the glyceraldedyhe-3-phosphate dehydrogenase and calmodulin genes identified S. vesicarium as the species most commonly associated with SLB. S. vesicarium was typically associated with a broad range of necrotic symptoms but, most commonly, dieback of leaf tips and asymmetric lesions that often extended over the entire leaf. Because of the intensive use of fungicides for foliar disease control in onion crops in New York, the sensitivity of S. vesicarium populations to various fungicides with site-specific modes of action was evaluated. Sensitivity of S. vesicarium isolates collected in 2016 to the quinone outside inhibitor (QoI) fungicide, azoxystrobin, was tested using a conidial germination assay. Isolates representing a broad range of QoI sensitivities were selected for sequencing of the cytochrome b gene to evaluate the presence of point mutations associated with insensitivity to azoxystrobin. The G143A mutation was detected in all 74 S. vesicarium isolates with an azoxystrobin-insensitive phenotype (effective concentrations reducing conidial germination by 50%, EC50 = 0.2 to 46.7 µg of active ingredient [a.i.]/ml) and was not detected in all 31 isolates with an azoxystrobin-sensitive phenotype (EC50 = 0.01 to 0.16 µg a.i./ml). The G143A mutation was also associated with insensitivity to another QoI fungicide, pyraclostrobin. Sensitivity to other selected fungicides commonly used in onion production in New York was evaluated using a mycelial growth assay and identified isolates with insensitivity to boscalid, cyprodinil, and pyrimethanil, but not difenoconazole. The frequency of isolates sensitive to iprodione, fluxapyroxad, and fluopyram was high (93.5 to 93.6%). This article discusses the emergence of SLB as dominant in the foliar disease complex affecting onion in New York and the complexities of management posed by resistance to fungicides with different modes of action.
Collapse
Affiliation(s)
- Frank S Hay
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sandeep Sharma
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Christy Hoepting
- Cornell Vegetable Program, Cornell Cooperative Extension, Albion, NY 14411
| | - David Strickland
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Karen Luong
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
43
|
Castell-Miller CV, Samac DA. Sensitivity of Bipolaris oryzae Isolates Pathogenic on Cultivated Wild Rice to the Quinone Outside Inhibitor Azoxystrobin. PLANT DISEASE 2019; 103:1910-1917. [PMID: 31140926 DOI: 10.1094/pdis-12-18-2267-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The occurrence of fungal brown spot, caused by Bipolaris oryzae, has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of azoxystrobin-based fungicides. The active ingredient blocks electron transfer at the quinone outside inhibitor (QoI) site in the mitochondrial cytochrome b within the bc1 complex, thus obstructing respiration. The in vitro averaged EC50 of baseline isolates collected in 2007 before widespread fungicide use was estimated to be 0.394 µg/ml with PROBIT and 0.427 µg/ml with linear regression analyses. Isolates collected during 2008, 2015, and 2016 had a range of sensitivity as measured by relative spore germination (RG) at a discriminatory dose of 0.4 µg/ml azoxystrobin. Isolates with a higher (≥80%) and lower RG (≤40%) had the wild type nucleotides at amino acid positions F129, G137, and G143 of cytochrome b, sites known to be associated with QoI fungicide resistance. Two Group I introns were found in the QoI target area. The splicing site for the second intron was found immediately after the codon for G143. A mutation for fungicide resistance at this location would hinder splicing and severely reduce fitness. B. oryzae expresses an alternative oxidase in vitro, which allows the fungus to survive inhibition of respiration by azoxystrobin. This research indicates that B. oryzae has not developed resistance to QoI fungicides, although monitoring for changes in sensitivity should be continued. Judicious use of QoI fungicides within an integrated disease management system will promote an effective and environmentally sound control of the pathogen in wild rice paddies.
Collapse
Affiliation(s)
| | - Deborah A Samac
- 2United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit and Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
44
|
Fontaine S, Remuson F, Caddoux L, Barrès B. Investigation of the sensitivity of Plasmopara viticola to amisulbrom and ametoctradin in French vineyards using bioassays and molecular tools. PEST MANAGEMENT SCIENCE 2019; 75:2115-2123. [PMID: 31077540 DOI: 10.1002/ps.5461] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Complex III inhibitors are key compounds in the control of Plasmopara viticola. They are prone to the development of resistance, as demonstrated by the emergence of resistance to quinone-outside inhibitors. By using a combination of bioassays and molecular methods, we monitored sensitivity to amisulbrom and ametoctradin in P. viticola populations in French vineyards from 2012 to 2017. RESULTS We found that the alternative oxidase (AOX)-related resistance mechanism was common in French P. viticola populations. Target-site resistance to ametoctradin was first detected in 2015 and is likely caused by a single point mutation in the cytochrome b gene, leading to the S34L substitution. The role of this substitution in resistance to ametoctradin was corroborated by another study using an experimental model. A molecular biology method has been developed to detect the mutant allele. To date, the frequency of this mutation is low in French P. viticola populations and it is often co-detected with the wild-type allele. CONCLUSION Populations of P. viticola displaying evidence of AOX-related resistance were detected for every surveyed year, and their occurrence in French vineyards seems to be increasing over time. This resistance mechanism is currently threatening the efficacy of complex III inhibitors in the field. The low frequency of the S34L allele conferring resistance to ametoctradin, and the instability of resistant phenotypes in some populations, suggest that a fitness cost may be associated with the mutation. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Benoit Barrès
- Université de Lyon, Anses, INRA, USC CASPER, Lyon, France
| |
Collapse
|
45
|
Liang H, Li J, Luo C, Li J, Zhu FX. Effects of SHAM on the Sensitivity of Sclerotinia sclerotiorum and Botrytis cinerea to QoI Fungicides. PLANT DISEASE 2019; 103:1884-1888. [PMID: 31161931 DOI: 10.1094/pdis-12-18-2142-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is a common practice to add salicylhydroxamic acid (SHAM) into artificial medium in the in vitro sensitivity assay of fungal phytopathogens to the quinone outside inhibitor (QoI) fungicides. The rationale for adding SHAM is to inhibit fungal alternative oxidase, which is presumed to be inhibited by secondary metabolites of plants. Therefore, the ideal characteristics of SHAM should be almost nontoxic to phytopathogens and have no significant effect on control efficacy of fungicides. However, this study showed that the average effective concentration for 50% inhibition (EC50) of mycelial growth values of SHAM were 97.5 and 401.4 μg/ml for Sclerotinia sclerotiorum and Botrytis cinerea, respectively. EC50 values of the three QoI fungicides azoxystrobin, kresoxim-methyl, and trifloxystrobin in the presence of SHAM at 20 and 80 μg/ml for S. sclerotiorum and B. cinerea, respectively, declined by 52.7 to 78.1% compared with those without SHAM. For the dicarboximide fungicide dimethachlone, the average EC50 values in the presence of SHAM declined by 18.2% (P = 0.008) for S. sclerotiorum and 35.9% (P = 0.012) for B. cinerea. Pot experiments showed that SHAM increased control efficacy of the three QoI fungicides against the two pathogens by 43 to 83%. For dimethachlone, SHAM increased control efficacy by 134% for S. sclerotiorum and 86% for B. cinerea. Biochemical studies showed that SHAM significantly inhibited peroxidase activity (P = 0.024) of B. cinerea and esterase activity (P = 0.015) of S. sclerotiorum. The strong inhibitions of SHAM per se on mycelial growth of B. cinerea and S. sclerotiorum and significant influences on the sensitivity of the two pathogens to both the QoI fungicides and dimethachlone as well as inhibitions on peroxidase and esterase indicate that SHAM should not be added in the in vitro assay of sensitivity to the QoI fungicides.
Collapse
Affiliation(s)
- Hongjie Liang
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- 2Potato Research Institute, Gansu Academy of Agricultural Sciences, Gansu 730070, China
| | - Jinli Li
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fu-Xing Zhu
- 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
46
|
Standish JR, Brenneman TB, Stevenson KL. Quantifying the Effects of a G137S Substitution in the Cytochrome bc1 of Venturia effusa on Azoxystrobin Sensitivity Using a Detached Leaf Assay. PLANT DISEASE 2019; 103:841-845. [PMID: 30806573 DOI: 10.1094/pdis-08-18-1419-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The quinone outside inhibitor (QoI) fungicides are known for their inherently high resistance risk owing to substitutions in amino acid residues 129, 137, or 143 of the cytochrome b gene of phytopathogens. In Venturia effusa, cause of pecan scab, an intron adjacent to position 143 likely reduces this risk; however, the effects of a recently discovered substitution at position 137 (G137S) are unknown. Traditional in vitro assays are not useful for determining sensitivity of isolates of V. effusa to the QoI fungicides, owing to the fungitoxic effects of required alternative oxidase inhibitors. A detached leaf assay was developed to quantify the sensitivity of 59 isolates to azoxystrobin: 45 wild-type isolates and 14 carrying G137S. Isolate EC50 values ranged from <0.0001 to 0.3047 µg/ml; EC50 values for wild-type isolates ranged from <0.0001 to 0.2007 µg/ml (median 0.0023 µg/ml), whereas EC50 values for G137S isolates ranged from 0.0033 to 0.3047 µg/ml (median 0.0178 µg/ml). The median EC50 value for G137S isolates was significantly greater than that of the wild-type isolates; however, there was overlap between the two groups. This is the first report of sensitivity of V. effusa isolates to a QoI fungicide and evidence of G137S as a potential mechanism of partial resistance. However, although a complete control failure is unlikely, the impact of this substitution on QoI efficacy in Georgia pecan orchards remains to be determined.
Collapse
Affiliation(s)
- Jeffrey R Standish
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton 31793
| | - Timothy B Brenneman
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton 31793
| | - Katherine L Stevenson
- Department of Plant Pathology, Coastal Plain Experiment Station, The University of Georgia, Tifton 31793
| |
Collapse
|
47
|
Barsottini MR, Pires BA, Vieira ML, Pereira JG, Costa PC, Sanitá J, Coradini A, Mello F, Marschalk C, Silva EM, Paschoal D, Figueira A, Rodrigues FH, Cordeiro AT, Miranda PC, Oliveira PS, Sforça ML, Carazzolle MF, Rocco SA, Pereira GA. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens. PEST MANAGEMENT SCIENCE 2019; 75:1295-1303. [PMID: 30350447 DOI: 10.1002/ps.5243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. RESULTS We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. CONCLUSION We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mario Ro Barsottini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara A Pires
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Maria L Vieira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - José Gc Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cs Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Jaqueline Sanitá
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandro Coradini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fellipe Mello
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Cidnei Marschalk
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Eder M Silva
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Daniele Paschoal
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Fábio Hs Rodrigues
- School of Life Sciences, University of Warwick - Gibbet Hill Campus, Coventry, United Kingdom
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cml Miranda
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Paulo Sl Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maurício L Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo Ag Pereira
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
48
|
Yao J, Cui B, Zhao X, Zhi H, Zeng Z, Wang Y, Sun C, Liu G, Gao J, Cui H. Antagonistic Effect of Azoxystrobin Poly (Lactic Acid) Microspheres with Controllable Particle Size on Colletotrichum higginsianum Sacc. NANOMATERIALS 2018; 8:nano8100857. [PMID: 30347772 PMCID: PMC6215297 DOI: 10.3390/nano8100857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
Size-controlled azoxystrobin-poly (lactic acid) microspheres (MS) were prepared by an oil/water emulsion solvent evaporation approach. The hydrated mean particle sizes of the MS1, MS2, and MS3 aqueous dispersions were 130.9 nm, 353.4 nm, and 3078.0 nm, respectively. The drug loading and encapsulation efficiency of the azoxystrobin microspheres had a positive relationship with particle size. However, the release rate and percentage of cumulative release were inversely related to particle size. The smaller-sized microspheres had a greater potential to access the target mitochondria. As a result, the more severe oxidative damage of Colletotrichum higginsianum Sacc and higher antagonistic activity were induced by the smaller particle size of azoxystrobin microspheres. The 50% lethal concentrations against Colletotrichum higginsianum Sacc of MS1, MS2, and MS3 were 2.0386 μg/mL, 12.7246 μg/mL, and 21.2905 μg/mL, respectively. These findings reveal that particle size is a critical factor in increasing the bioavailability of insoluble fungicide.
Collapse
Affiliation(s)
- Junwei Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Heng Zhi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guoqiang Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
49
|
Song XS, Gu KX, Duan XX, Xiao XM, Hou YP, Duan YB, Wang JX, Zhou MG. A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium asiaticum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:1-9. [PMID: 30195381 DOI: 10.1016/j.pestbp.2018.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 05/23/2023]
Abstract
Fungal resistance to fungicides is a serious challenge in crop protection. Although strategies have been found to prevent the development of fungicide resistance, rare strategy has been found to quickly reduce such resistance once it has occurred. We demonstrate that the application of dsRNAs, which inhibit the expression of the phenamacril (fungicide JS399-19) target gene-Myosin 5 (Myo5) in Fusarium, decreased F. asiaticum resistance to phenamacril and infection. RNAi molecules derived from different regions of Myo5 gene had different effects on phenamacril-resistance. Myo5-8 (one of Myo5 segments) exhibited great and stable effect on phenamacril-resistant reduction both in vivo and in vitro. Myo5 mRNA and protein were both reduced when mycelium was treated with Myo5-8 dsRNA. After a mixture of Myo5-8 dsRNA and phenamacril treatment, plants can highly control the infection of phenamacril-resistant strain. The antifungal activity of Myo5-8 dsRNA plus phenamacril effected longer than a single Myo5-8 dsRNA. In addition, no off-target sequences were found in wheat and/or other plant and animal species for Myo5-8 dsRNA sequence. Our findings suggest a new strategy for fungicide resistant reduction and for designing new fungicides to control pathogens which easily develop fungicide resistance.
Collapse
Affiliation(s)
- Xiu-Shi Song
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Kai-Xin Gu
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Xiao-Xin Duan
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Xue-Mei Xiao
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Yi-Ping Hou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Ya-Bing Duan
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Jian-Xin Wang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China
| | - Ming-Guo Zhou
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Jiangsu Province, Nanjing 210095, China.
| |
Collapse
|
50
|
Ma D, Jiang J, He L, Cui K, Mu W, Liu F. Detection and Characterization of QoI-Resistant Phytophthora capsici Causing Pepper Phytophthora Blight in China. PLANT DISEASE 2018; 102:1725-1732. [PMID: 30125205 DOI: 10.1094/pdis-01-18-0197-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytophthora capsici is a highly destructive plant pathogen that has spread worldwide. To date, the quinone outside inhibitor (QoI) azoxystrobin has been the choice of farmers for managing this oomycete. In this study, the sensitivity of 90 P. capsici isolates collected from Yunnan, Fujian, Jiangxi, Zhejiang, and Guangdong in southern China to azoxystrobin was assessed based on mycelial growth, sporangia formation, and zoospore discharge. Furthermore, the mitochondrial cytochrome b (cytb) gene from azoxystrobin-sensitive and -resistant P. capsici isolates was compared to investigate the mechanism of QoI resistance. The high values for effective concentration to inhibit 50% of mycelial growth and large variation factor obtained provide strong support for the existence of azoxystrobin-resistant subpopulations in wild populations. The resistance frequency of P. capsici to azoxystrobin was greater than 40%. Sensitive P. capsici isolates were strongly suppressed on V8 medium plates containing azoxystrobin supplemented with salicylhydroxamic acid at 50 µg ml-1, whereas resistant isolates grew well under these conditions. Multiple alignment analysis revealed a missense mutation in the cytb gene that alters codon 137 (GGA to AGA), causing an amino acid substitution of glycine to arginine (G137R). The fitness of the azoxystrobin-sensitive isolate is similar to that of the G137R mutant. Additionally, the P. capsici isolates used in this study exhibited decreased sensitivity to two other QoI fungicides (pyraclostrobin and famoxadone). Necessary measures should be taken to control this trend of resistance to QoI that has developed in P. capsici in southern China.
Collapse
Affiliation(s)
- Dicheng Ma
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiangong Jiang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|