1
|
Chen M, Wang Z, Hao Z, Li H, Feng Q, Yang X, Han X, Zhao X. Screening and Validation of Appropriate Reference Genes for Real-Time Quantitative PCR under PEG, NaCl and ZnSO 4 Treatments in Broussonetia papyrifera. Int J Mol Sci 2023; 24:15087. [PMID: 37894768 PMCID: PMC10606616 DOI: 10.3390/ijms242015087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Real-time quantitative PCR (RT-qPCR) has a high sensitivity and strong specificity, and is widely used in the analysis of gene expression. Selecting appropriate internal reference genes is the key to accurately analyzing the expression changes of target genes by RT-qPCR. To find out the most suitable internal reference genes for studying the gene expression in Broussonetia papyrifera under abiotic stresses (including drought, salt, and ZnSO4 treatments), seven different tissues of B. papyrifera, as well as the roots, stems, and leaves of B. papyrifera under the abiotic stresses were used as test materials, and 15 candidate internal reference genes were screened based on the transcriptome data via RT-qPCR. Then, the expression stability of the candidate genes was comprehensively evaluated through the software geNorm (v3.5), NormFinder (v0.953), BestKeeper (v1.0), and RefFinder. The best internal reference genes and their combinations were screened out according to the analysis results. rRNA and Actin were the best reference genes under drought stress. Under salt stress, DOUB, HSP, NADH, and rRNA were the most stable reference genes. Under heavy metal stress, HSP and NADH were the most suitable reference genes. EIF3 and Actin were the most suitable internal reference genes in the different tissues of B. papyrifera. In addition, HSP, rRNA, NADH, and UBC were the most suitable internal reference genes for the abiotic stresses and the different tissues of B. papyrifera. The expression patterns of DREB and POD were analyzed by using the selected stable and unstable reference genes. This further verified the reliability of the screened internal reference genes. This study lays the foundation for the functional analysis and regulatory mechanism research of genes in B. papyrifera.
Collapse
Affiliation(s)
- Mengdi Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Zhengbo Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Ziyuan Hao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Hongying Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Qi Feng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Xue Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| | - Xiaojiao Han
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiping Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; (M.C.)
| |
Collapse
|
2
|
Yang J, Chu Q, Meng G, Kong W. The complete chloroplast genome sequences of three Broussonetia species and comparative analysis within the Moraceae. PeerJ 2022; 10:e14293. [PMID: 36340196 PMCID: PMC9632464 DOI: 10.7717/peerj.14293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/03/2022] [Indexed: 01/22/2023] Open
Abstract
Background Species of Broussonetia (family Moraceae) are commonly used to make textiles and high-grade paper. The distribution of Broussonetia papyrifera L. is considered to be related to the spread and location of humans. The complete chloroplast (cp) genomes of B. papyrifera, Broussonetia kazinoki Sieb., and Broussonetia kaempferi Sieb. were analyzed to better understand the status and evolutionary biology of the genus Broussonetia. Methods The cp genomes were assembled and characterized using SOAPdenovo2 and DOGMA. Phylogenetic and molecular dating analysis were performed using the concatenated nucleotide sequences of 35 species in the Moraceae family and were based on 66 protein-coding genes (PCGs). An analysis of the sequence divergence (pi) of each PCG among the 35 cp genomes was conducted using DnaSP v6. Codon usage indices were calculated using the CodonW program. Results All three cp genomes had the typical land plant quadripartite structure, ranging in size from 160,239 bp to 160,841 bp. The ribosomal protein L22 gene (RPL22) was either incomplete or missing in all three Broussonetia species. Phylogenetic analysis revealed two clades. Clade 1 included Morus and Artocarpus, whereas clade 2 included the other seven genera. Malaisia scandens Lour. was clustered within the genus Broussonetia. The differentiation of Broussonetia was estimated to have taken place 26 million years ago. The PCGs' pi values ranged from 0.0005 to 0.0419, indicating small differences within the Moraceae family. The distribution of most of the genes in the effective number of codons plot (ENc-plot) fell on or near the trend line; the slopes of the trend line of neutrality plots were within the range of 0.0363-0.171. These results will facilitate the identification, taxonomy, and utilization of the Broussonetia species and further the evolutionary studies of the Moraceae family.
Collapse
Affiliation(s)
- Jinhong Yang
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Qu Chu
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Weiqing Kong
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| |
Collapse
|
3
|
Chen Y, Wang L, Liu X, Wang F, An Y, Zhao W, Tian J, Kong D, Zhang W, Xu Y, Ba Y, Zhou H. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165344. [PMID: 36014582 PMCID: PMC9414938 DOI: 10.3390/molecules27165344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023]
Abstract
The Broussonetia genus (Moraceae), recognized for its value in many Chinese traditional herbs, mainly includes Broussonetia papyrifera (L.) L’Hér. ex Vent. (BP), Broussonetia kazinoki Siebold (BK), and Broussonetia luzonica (Blanco) Bureau (BL). Hitherto, researchers have found 338 compounds isolated from BP, BK, and BL, which included flavonoids, polyphenols, phenylpropanoids, alkaloids, terpenoids, steroids, and others. Moreover, its active compounds and extracts have exhibited a variety of pharmacological effects such as antitumor, antioxidant, anti-inflammatory, antidiabetic, anti-obesity, antibacterial, and antiviral properties, and its use against skin wrinkles. In this review, the phytochemistry and pharmacology of Broussonetia are updated systematically, after its applications are first summarized. In addition, this review also discusses the limitations of investigations and the potential direction of Broussonetia. This review can help to further understand the phytochemistry, pharmacology, and other applications of Broussonetia, which paves the way for future research.
Collapse
|
4
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
5
|
Vu NK, Ha MT, Kim CS, Gal M, Kim JA, Woo MH, Lee JH, Min BS. Structural characterization of prenylated compounds from Broussonetia kazinoki and their antiosteoclastogenic activity. PHYTOCHEMISTRY 2021; 188:112791. [PMID: 34082339 DOI: 10.1016/j.phytochem.2021.112791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
An undescribed 1,3-diphenylpropane derivative, kazinol V and six undescribed prenylated flavonoids, broussonols F-H and broussonols K-M were isolated from the roots of Broussonetia kazinoki Siebold, together with 12 known compounds. This is the first report of the isolation and structure determination of broussonol I from a natural source. The chemical structure of the undescribed compounds was determined using conventional NMR and HRMS data. Absolute configurations were assigned using time-dependent density functional theory calculations and Electronic Circular Dichroism (ECD) spectroscopy. The isolated compounds were screened for their effects on RANKL-induced osteoclast formation using RAW264.7 cells. Among them, broussonols F, G, and K showed strong, dose-dependent antiosteoclastogenic activities. Broussonol K exhibited the most potent inhibitory activity and possessed bone resorption suppressive activity.
Collapse
Affiliation(s)
- Ngoc Khanh Vu
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea.
| |
Collapse
|
6
|
Malaník M, Treml J, Leláková V, Nykodýmová D, Oravec M, Marek J, Šmejkal K. Anti-inflammatory and antioxidant properties of chemical constituents of Broussonetia papyrifera. Bioorg Chem 2020; 104:104298. [PMID: 33011537 DOI: 10.1016/j.bioorg.2020.104298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 01/27/2023]
Abstract
Extensive phytochemical analysis of the CHCl3-soluble part of an ethanolic extract of branches and twigs of Broussonetia papyrifera led to the isolation of fourteen compounds, including a novel 5,11-dioxabenzo[b]fluoren-10-one derivative named broussofluorenone C (12). The isolated compounds 1-14 were characterized based on their NMR and HRMS data, and examined for their anti-inflammatory activities in LPS-stimulated THP-1 cells as well as for their cellular antioxidant effects. Compounds 7-10 and 12 showed inhibitory effects on NF-κB/AP-1 activation and compounds 7-9 were subsequently confirmed to suppress the secretion of both IL-1β and TNF-α in LPS-stimulated THP-1 cells more significantly than the prednisone used as a positive control. In the CAA assay, compound 10 exhibited the greatest antioxidant effect, greater than that of the quercetin used as a positive control. The results show possible beneficial effects and utilization of B. papyrifera wood in the treatment of inflammatory diseases as well as oxidative stress.
Collapse
Affiliation(s)
- Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic.
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | - Veronika Leláková
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | - Daniela Nykodýmová
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 60300 Brno, Czech Republic
| | - Jaromír Marek
- X-ray Diffraction and Bio-SAXS Core Facility, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic.
| |
Collapse
|
7
|
Piccolella S, Crescente G, Faramarzi S, Formato M, Pecoraro MT, Pacifico S. Polyphenols vs. Coronaviruses: How Far Has Research Moved Forward? Molecules 2020; 25:molecules25184103. [PMID: 32911757 PMCID: PMC7570460 DOI: 10.3390/molecules25184103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
The epidemic, caused by SARS-CoV-2 at the beginning of 2020, led us to a serious change in our lifestyle that for about three months has confined us to our homes, far from our laboratory routine. In this period, the belief that the work of a researcher should never stop has been the driving force in writing the present paper. It aims at reviewing the recent scientific knowledge about in vitro experimental data that focused on the antiviral role of phenols and polyphenols against different species of coronaviruses (CoVs), pointing up the viral targets potentially involved. In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy.
Collapse
|
8
|
Jeong JH, Ryu JH. Broussoflavonol B from Broussonetia kazinoki Siebold Exerts Anti-Pancreatic Cancer Activity through Downregulating FoxM1. Molecules 2020; 25:E2328. [PMID: 32429421 PMCID: PMC7287790 DOI: 10.3390/molecules25102328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022] Open
Abstract
Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
9
|
Antioxidant evaluation-guided chemical profiling and structure-activity analysis of leaf extracts from five trees in Broussonetia and Morus (Moraceae). Sci Rep 2020; 10:4808. [PMID: 32179776 PMCID: PMC7075987 DOI: 10.1038/s41598-020-61709-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 01/06/2023] Open
Abstract
Morus and Broussonetia trees are widely used as food and/or feed. Among 23 phenolics identified from leaves of five Moraceae species using UPLC–QTOF–MS/MS, 15 were screened using DPPH/ABTS-guided HPLCs, including seven weak (flavonoids with one hydroxyl on B-ring) and eight strong (four caffeoylquinic acids and four flavonoids, each with a double hydroxyl on B-ring) antioxidants. We then determined the activity and synergistic effects of individual antioxidants and a mixture of the eight strongest antioxidants using DPPH-guided HPLC. Our findings revealed that (1) flavonoid glucuronide may have a more negative effect on antioxidant activity than glucoside, and (2) other compounds in the mixture may exert a negative synergistic effect on antioxidant activity of the four flavonoids with B-ring double hydroxyls but not the four caffeoylquinic acids. In conclusion, the eight phenolics with the strongest antioxidant ability reliably represented the bioactivity of the five extracts examined in this study. Moreover, the Morus alba hybrid had more phenolic biosynthesis machinery than its cross-parent M. alba, whereas the Broussonetia papyrifera hybrid had significantly less phenolic machinery than B. papyrifera. This difference is probably the main reason for livestock preference for the hybrid of B. papyrifera over B. papyrifera in feed.
Collapse
|
10
|
Lee JM, Choi SS, Park MH, Jang H, Lee YH, Khim KW, Oh SR, Park J, Ryu HW, Choi JH. Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation. Nutrients 2020; 12:nu12030773. [PMID: 32183397 PMCID: PMC7146562 DOI: 10.3390/nu12030773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-α-induced NF-κB transcriptional activity in the NF-κB luciferase assay and pro-inflammatory genes’ expression by blocking phosphorylation of IκB and NF-κB in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-κB phosphorylation and pro-inflammatory genes’ expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes’ expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea; (J.M.L.); (S.S.C.); (Y.H.L.); (K.W.K.); (J.P.)
| | - Sun Sil Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea; (J.M.L.); (S.S.C.); (Y.H.L.); (K.W.K.); (J.P.)
| | - Mi Hyeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk−do 28116, Korea; (M.H.P.); (S.R.O.)
| | - Hyunduk Jang
- Department of Internal Medicine, Seoul National University, Seoul 110-744, Korea;
| | - Yo Han Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea; (J.M.L.); (S.S.C.); (Y.H.L.); (K.W.K.); (J.P.)
| | - Keon Woo Khim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea; (J.M.L.); (S.S.C.); (Y.H.L.); (K.W.K.); (J.P.)
| | - Sei Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk−do 28116, Korea; (M.H.P.); (S.R.O.)
| | - Jiyoung Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea; (J.M.L.); (S.S.C.); (Y.H.L.); (K.W.K.); (J.P.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk−do 28116, Korea; (M.H.P.); (S.R.O.)
- Correspondence: (H.W.R.); (J.H.C.); Tel.: +82-43-240-6117 (H.W.R.); +82-52-217-254 (J.H.C.)
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea; (J.M.L.); (S.S.C.); (Y.H.L.); (K.W.K.); (J.P.)
- Correspondence: (H.W.R.); (J.H.C.); Tel.: +82-43-240-6117 (H.W.R.); +82-52-217-254 (J.H.C.)
| |
Collapse
|
11
|
Liu H, Tan H, Wang W, Zhang W, Chen Y, Li S, Liu Z, Li H, Zhang W. Cytorhizophins A and B, benzophenone-hemiterpene adducts from the endophytic fungus Cytospora rhizophorae. Org Chem Front 2019. [DOI: 10.1039/c8qo01306c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(±)-Cytorhizophin A and cytorhizophin B (2), novel benzophenone-hemiterpene conjugated hetero-dimers featuring an unprecedented 6/7/6/7 tetracyclic fused ring system.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Haibo Tan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Wenxuan Wang
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Wenge Zhang
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangzhou 510070
| |
Collapse
|
12
|
Synthesis and glycosidase inhibition potency of all- trans substituted 1- C -perfluoroalkyl iminosugars. Carbohydr Res 2018; 464:2-7. [DOI: 10.1016/j.carres.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
|
13
|
Chacón Morales PA, Santiago Dugarte C, Amaro Luis JM. 2’,3,4-trihydroxychalcone, phloretin and calomelanone from Stevia lucida . The first chalcones reported in Stevia Genus. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Two New Metabolites from the Endophytic Fungus Alternaria sp. A744 Derived from Morinda officinalis. Molecules 2017; 22:molecules22050765. [PMID: 28481313 PMCID: PMC6154570 DOI: 10.3390/molecules22050765] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Two new compounds isobenzofuranone A (1) and indandione B (2), together with eleven known compounds (3-13) were isolated from liquid cultures of an endophytic fungus Alternaria sp., which was obtained from the medicinal plant Morinda officinalis. Among them, the indandione (2) showed a rarely occurring indanone skeleton in natural products. Their structures were elucidated mainly on the basis of extensive spectroscopic data analysis. All of the compounds were evaluated with cytotoxic and α-glucosidase inhibitory activity assays. Compounds 11 and 12 showed significant inhibitory activities against four tumor cell lines; MCF-7, HepG-2, NCI-H460 and SF-268, with IC50 values in the range of 1.91-9.67 μM, and compounds 4, 5, 9, 10, 12 and 13 showed excellent inhibitory activities against α-glucosidase with IC50 values in the range of 12.05-166.13 μM.
Collapse
|
15
|
Zhang N, Zhang C, Xiao X, Zhang Q, Huang B. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent. Fitoterapia 2016; 110:173-80. [PMID: 27001249 DOI: 10.1016/j.fitote.2016.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/30/2022]
Abstract
From the ethyl acetate extract of a culture of the endophytic fungus Alternaria species G7 in Broussonetia papyrifera, a new compound altertoxin IV (1) together with nine known compounds were isolated and identified by means of bioassay-guided fractionation. The structures of these compounds were established on the basis of spectroscopic methods, among which the absolute configuration of compound 1, a new tetrahydroperylenone derivative, was determined by means of X-Ray Crystallographic analysis. The isolated compounds were subjected to cytotoxic activity against three human cancer cell lines (A549, MG-63, and SMMC-7721). Compound 2 showed significant cytotoxic activities against tested cell lines, with IC50 values of 1.47, 2.11 and 7.34 μg/mL, respectively. Additionally, compound 4 also exhibited significant cytotoxic activities against cell lines MG-63 and SMMC-7721, with IC50 values of 0.53 and 2.92 μg/mL. Endophytic fungi Alternaria from B. papyrifera might be promising sources of natural bioactive and novel metabolites.
Collapse
Affiliation(s)
- Naidan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Chunyan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Xiao Xiao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Qiaoyan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Baokang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
16
|
The efficacy of combined herbal extracts gel in reducing scar development at a split-thickness skin graft donor site. Aesthetic Plast Surg 2013; 37:770-7. [PMID: 23708245 DOI: 10.1007/s00266-013-0140-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the efficacy of combined herbal extracts in a gel preparation (Cybele(®) Scagel) in reducing scar development at a split-thickness skin graft donor site. METHODS A prospective, randomized, double-blind control study was performed to evaluate the efficacy of Scagel in 15 patients who underwent a split-thickness skin graft operation. Both Scagel and placebo were applied equally to the donor site within 1 month after complete epithelialization. Scar assessments using the Vancouver Scar Scale (VSS) and patient self-evaluation were taken at 2, 4, 8, and 12 weeks. RESULTS Of the 15 patients, 10 were enrolled and evaluated in this study. There was no significant difference in each parameter of the VSS. The total VSS was significantly lower in the Scagel group compared to the placebo group after 4 weeks (p = 0.003, 0.003, and <0.001 at 4, 8, and 12 weeks, respectively). The patient satisfaction score in the Cybele(®) Scagel group was significantly higher (p = 0.002) at the 12-week evaluation. CONCLUSION Application of combined herbal extracts in gel preparation might reduce scar development at split-thickness skin graft donor sites. There was a positive trend in the reduction of postinflammatory hyperpigmentation. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
17
|
Tomioka H, Tatano Y, Maw WW, Sano C, Kanehiro Y, Shimizu T. Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin Dev Immunol 2012; 2012:635451. [PMID: 22666284 PMCID: PMC3361169 DOI: 10.1155/2012/635451] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 01/15/2023]
Abstract
In the advanced stages of mycobacterial infections, host immune systems tend to change from a Th1-type to Th2-type immune response, resulting in the abrogation of Th1 cell- and macrophage-mediated antimicrobial host protective immunity. Notably, this type of immune conversion is occasionally associated with the generation of certain types of suppressor macrophage populations. During the course of Mycobacterium tuberculosis (MTB) and Mycobacterium avium-intracellulare complex (MAC) infections, the generation of macrophages which possess strong suppressor activity against host T- and B-cell functions is frequently encountered. This paper describes the immunological properties of M1- and M2-type macrophages generated in tumor-bearing animals and those generated in hosts with certain microbial infections. In addition, this paper highlights the immunological and molecular biological characteristics of suppressor macrophages generated in hosts with mycobacterial infections, especially MAC infection.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | | | |
Collapse
|