1
|
Zhong YY, Wang H, Wang YY. Effects of Ethnic Medicinal Plant Extracts Versus Nonsteroidal Anti-Inflammatory Drugs on Menstrual Pain in Women With Primary Dysmenorrhea: A Systematic Review and Meta-Analysis Study. Pain Manag Nurs 2025:S1524-9042(25)00019-0. [PMID: 40016049 DOI: 10.1016/j.pmn.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND This study aimed to compare the pain reduction effects of ethnic medicinal plant extracts and nonsteroidal anti-inflammatory drugs (NSAIDs) in women with primary dysmenorrhea. METHODS The following databases were searched: CNKI, Wanfang Data Knowledge Service Platform (Wanfang), VIP Chinese Journal Service Platform (VIP), SinoMed, PubMed, and Web of Science. The retrieval period was from the time of database construction to December 2023.Randomized controlled trials (RCTs) that compared the treatment of pain in women with primary dysmenorrhea using NSAIDs in the control group and plant extracts in the intervention group were identified. The literature was independently screened by two researchers, and the quality of the literature were evaluated using Cochrane's RCT Risk Assessment Manual for Bias. The evaluation includes several aspects including random sequence generation, assignment hiding, blind method and result data reporting. Meta-analysis was conducted using RevMan 5.4 software. RESULTS A total of 12 literature were included. Meta-analysis showed that there was no significant difference between ethnic medicinal plant extracts and NSAIDs in reducing the Visual Analog Scale (VAS) pain scores for primary dysmenorrhea (SMD = 0.32, 95% CI (-0.14, 0.78), p = .17). However, ethnic medicinal plant extracts were more effective than NSAIDs in reducing the proportion of people with pain, with a slight difference (OR = 1.75, 95% CI (1.02, 3.02), p < .05). CONCLUSION Ethnic medicinal plant extracts can effectively reduce the VAS pain scores in women with primary dysmenorrhea and the proportion of people with pain. The effect is comparable to or even better than that of NSAIDs, with fewer side effects. Therefore, ethnic medicinal plant extracts can be considered as a clinical option to alleviate menstrual pain.
Collapse
Affiliation(s)
- Ying-Yu Zhong
- School of Public Health, Southern Medical University, Guangzhou, China; Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - He Wang
- Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yue-Yun Wang
- School of Public Health, Southern Medical University, Guangzhou, China; Health Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Nakajima H, Wakabayashi C. Tokishigyakukagoshuyushokyoto (TSGST) Inhibits Aggression Induced by Isolation Rearing in Mice. Biol Pharm Bull 2025; 48:507-514. [PMID: 40335324 DOI: 10.1248/bpb.b25-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Herbal medicines are widely used in clinical practice. Several herbal medicines are prescribed in clinical practice to improve mental symptoms. Yokukansan is an effective prescription for irritability and aggression, which are behavioral and psychological symptoms of dementia (BPSD) or autism spectrum disorder (ASD). However, because herbal medicines contain many components, their pharmacological effects have not been analyzed in detail. Risperidone and quetiapine are prescribed in severe cases; however, their side effects of oversedation are problematic. Tokishigyakukagoshuyushokyoto (TSGST) is a herbal medicine prescribed to improve blood circulation and relieve headaches, back pain, or chilblains associated with hemodynamic insufficiency. Interestingly, most of the individual components of TSGST are known to exert sedative or analgesic effects. In this study, we investigated whether TSGST ameliorates aggressive behavior induced by social isolation in mice. The mice were isolated for 5 or 6 weeks immediately after weaning and given TSGST via a water bottle during this period. Long-term administration of TSGST suppressed the onset of aggression induced by isolation rearing. This aggressive phenotype was significantly reversed by intraperitoneal (i.p.) administration of the 5-hydroxytryptamine 1A (5-HT1A) receptor antagonist WAY-100635 in TSGST-isolated mice. We also showed that TSGST had similar effects as risperidone, a commonly used antipsychotic for irritability and aggression. These results suggest that TSGST may be effective for irritability or aggression in BPSD or ASD.
Collapse
Affiliation(s)
- Honoka Nakajima
- Division of Evaluation for Clinical Pharmacology, Faculty of Medical Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-Ohno, Himeji, Hyogo 670-8524, Japan
| | - Chisato Wakabayashi
- Division of Evaluation for Clinical Pharmacology, Faculty of Medical Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-Ohno, Himeji, Hyogo 670-8524, Japan
| |
Collapse
|
3
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Antinociceptive Non-Opioid Active Principles for Medicinal Chemistry and Drug Design. Molecules 2024; 29:815. [PMID: 38398566 PMCID: PMC10892999 DOI: 10.3390/molecules29040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pain is associated with many health problems and a reduced quality of life and has been a common reason for seeking medical attention. Several therapeutics are available on the market, although side effects, physical dependence, and abuse limit their use. As the process of pain transmission and modulation is regulated by different peripheral and central mechanisms and neurotransmitters, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery due to their chemical structural variety and different analgesic mechanisms. Numerous studies suggested that some chemicals from medicinal plants could be alternative options for pain relief and management. Previously, we conducted a literature search aimed at identifying natural products interacting either directly or indirectly with opioid receptors. In this review, instead, we have made an excursus including active ingredients derived from plants whose mechanism of action appears from the literature to be other than the modulation of the opioid system. These substances could, either by themselves or through synthetic and/or semi-synthetic derivatives, be investigated in order to improve their pharmacokinetic characteristics and could represent a valid alternative to the opioid approach to pain therapy. They could also be the basis for the study of new mechanisms of action in the approach to this complex and disabling pathology.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
4
|
Xu Y, Li C, Chen T, Li X, Wu X, Zhang Q, Zhao L. Quantitative Analysis of the Multicomponent and Spectrum-Effect Correlation of the Antispasmodic Activity of Shaoyao-Gancao Decoction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2279404. [PMID: 36507107 PMCID: PMC9734003 DOI: 10.1155/2022/2279404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Shaoyao-Gancao Decoction (SGD) is a well-known classic traditional Chinese medicine (TCM) with antispasmodic, anti-inflammatory, and analgesic effects. This preparation has been widely used to treat spasticity diseases in the clinic. To date, the material basis of SGD remains unclear, and the spectrum-effect correlation of its antispasmodic activity has not been reported yet. In this study, high-performance liquid chromatography (HPLC) was used to establish the fingerprint and determine the multiple components of SGD. The common peaks of fingerprints were evaluated by the similarity with the chromatographic fingerprints of the TCM. Meanwhile, the multiple components were quantified and analysed using the heatmap and box size analysis. Furthermore, data on the antispasmodic effect were extracted through in vitro smooth muscle contraction assay. Grey relational analysis combined with partial least square regression was used to study the spectrum-effect correlation of SGD. Finally, the potential antispasmolytic components were validated using an isolated tissue experiment. The HPLC fingerprint was established, and 20 common peaks were identified. The similarities of 15 batches of SGD were all above 0.965. The HPLC method for simultaneous determination of the multiple components was accurate and reliable. The contents of albiflorin, paeoniflorin, liquiritin, and glycyrrhizic acid were higher than the other components in SGD. The heatmap and box size also showed that X3 (albiflorin), X4 (paeoniflorin), X5 (liquiritin), X11 (liquirtigenin), and X16 (glycyrrhizic acid) could be used as quality indicators in the further establishment of quality standards. The spectrum-effect correlation results indicated that X4, X11, and X16 were highly correlated with antispasmolytic activity. Verification tests showed that paeoniflorin (11.7-29.25 μg/mL) and liquirtigenin (17.19-28.65 μg/mL) could significantly reduce the maximum contractile (P < 0.01). These compounds exerted concentration-dependent spasmolytic effects with the inhibitory response for acetylcholine (Ach)-evoked contraction. Thus, SGD had a significant antispasmodic effect, which resulted from the synergistic activity of its multiple components. These findings can be used for the pharmacodynamics study of SGD and are of great significance for the determination of quality markers and quality control.
Collapse
Affiliation(s)
- Yanli Xu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Chenxi Li
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Ting Chen
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Xiaochun Li
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Xiaoyu Wu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed By Gansu Province & MOE of PRC, Lanzhou 730000, China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou 730000, China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou 730000, China
| | - Qili Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed By Gansu Province & MOE of PRC, Lanzhou 730000, China
| | - Lei Zhao
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed By Gansu Province & MOE of PRC, Lanzhou 730000, China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou 730000, China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou 730000, China
| |
Collapse
|
5
|
Joyce KM, Wong CP, Scriven IA, Olson DA, Doerge DR, Branscum AJ, Sattgast LH, Helferich WG, Turner RT, Iwaniec UT. Isoliquiritigenin Decreases Bone Resorption and Osteoclast Differentiation. Mol Nutr Food Res 2022; 66:e2100974. [PMID: 35319818 PMCID: PMC10906349 DOI: 10.1002/mnfr.202100974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Indexed: 01/22/2023]
Abstract
SCOPE A dose-ranging study is performed using young estrogen-depleted rats to determine whether dietary isoliquiritigenin (ILQ) alters bone metabolism and if the effects are associated with estrogen receptor signaling. METHODS AND RESULTS Six-week-old rats (ovariectomized at 4 weeks of age) are fed diets containing 0, 100, 250, or 750 ppm ILQ (n = 5/treatment) for 7 days. Gene expression in femur and uterus, blood markers of bone turnover, body composition, and uterine weight and epithelial cell height are determined. Because ILQ lowers bone resorption, the effect of ILQ on in vitro differentiation of osteoclasts from bone marrow of mice is assessed. Treatment resulted in a dose-dependent increases in serum ILQ but no changes in serum osteocalcin, a marker of global bone formation. Contrastingly, ILQ administration results in reduced serum CTX-1, a marker of global bone resorption, and reduces tartrate resistant acid phosphatase expression in osteoclast culture. ILQ treatment and endogenous estrogen production had limited overlap on gene expression in femur and uterus. However, uterine epithelial cell hyperplasia is observed in two of five animals treated with 750 ppm. CONCLUSIONS In conclusion, dietary ILQ reduces bone resorption in vivo and osteoclast differentiation in vitro, by mechanisms likely differing from actions of ovarian hormones.
Collapse
Affiliation(s)
- Kaitlyn M Joyce
- Botanical Research Center, Department of Food Science and, Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Ian A Scriven
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Lara H Sattgast
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - William G Helferich
- Botanical Research Center, Department of Food Science and, Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
6
|
Antispasmodic, antidepressant and anxiolytic effects of extracts from Schinus lentiscifolius Marchand leaves. J Tradit Complement Med 2021; 12:141-151. [PMID: 35528474 PMCID: PMC9072823 DOI: 10.1016/j.jtcme.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Schinus lentiscifolius (Anacardiaceae) is widely used in folk medicine for treating gastrointestinal and emotional complaints but there are no scientific studies that support these uses. This work aims at evaluating the antispasmodic and central effects of S. lentiscifolius as well as the flavonoids presence in the tincture (SchT) and the composition of the essential oil (SchO). SchT inhibited the concentration-response curves (CRC) of carbachol and calcium in a non-competitive way in isolated rat intestine, bladder and uterus. SchT also non-competitively inhibited the CRC of histamine in guinea-pig intestine and the CRCs of serotonin and oxytocin in rat uterus. Isoquercetin and rutin were identified in SchT. The behavioral effects of SchT, SchO and infusion of S. lentiscifolius leaves (SchW) were tested in mice. These extracts showed an anxiolytic-like effect in the novelty-suppressed feeding test, which was reversed by flumazenil except in SchO-treated mice. Only SchO reduced the spontaneous locomotor function in the open field test. Also, SchT and SchW decreased immobility time in both, the tail suspension (TST) and forced swimming tests, while SchO produced the same effect in the TST. d-limonene and α-santalol were the main components found in SchO. The results demonstrated that extracts obtained from S. lentiscifolius leaves were effective as intestinal, urinary and uterine antispasmodics. SchT and SchW exhibited anxiolytic and antidepressant properties without sedation, whereas SchO showed also sedative properties. Therefore, the present study gives preclinical support to the traditional use of this plant for gastrointestinal and depressive or emotional symptoms. Schinus lentiscifolius is popularly consumed for its medicinal properties but there are no scientific studies in this regard. •We evaluated its effects on visceral smooth muscle and central nervous system. Our findings reinforce its traditional uses. •In addition, we propose possible new therapeutic applications.
Collapse
|
7
|
Isoliquiritigenin, an active ingredient of Glycyrrhiza, elicits antinociceptive effects via inhibition of Nav channels. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:967-980. [DOI: 10.1007/s00210-020-02030-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
|
8
|
Hasheminasab FS, Sharififar F, Hashemi SM, Setayesh M. An Evidence-Based Research on Botanical Sources for Oral Mucositis Treatment in Traditional Persian Medicine. Curr Drug Discov Technol 2021; 18:225-234. [PMID: 32013832 DOI: 10.2174/1570163817666200203110803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/03/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is one of the most prevalent diseases associated with heavy complications in treatment. Mucotoxic cancer therapies such as head and neck radiotherapy and some of the chemotherapy agents may lead to oral mucositis. In addition to its economic consequences, mucositis also affects patients' quality of life. In Traditional Persian Medicine (TPM) manuscripts, several medicaments have been suggested for the treatment of mucositis. OBJECTIVE Considering the public welcome for herbal medicine, the current evidence-based review study is conducted to investigate the herbal remedies which have been proposed for oral mucositis in TPM. METHODS At first, a comprehensive survey was done on Qanon fi al-Teb, which is the most important textbook of TPM; then the scientific name of the herbs was authenticated according to the botanical textbooks. At last, data banks including Scopus, Pubmed, Web of science and Science direct were investigated for possible relevant properties of each medicinal plant in the literature. RESULTS In total, 30 herbs are introduced in this study. According to the registered documents, 18 herbs are reported to have antioxidant, anti-inflammatory, antimicrobial, anti-nociceptive and wound healing properties of which the therapeutic effect of only a few herbs including Glycyrrhiza glabra, Malva sylvestris, Morus nigra, Punica granatum, and Solanum nigrum were directly evaluated against oral mucositis on the literature. CONCLUSION Despite the lack of human studies on mucositis for the other discussed herbs, their related pharmacological properties can be considered for new natural drug discovery supported by medieval and traditional experiments.
Collapse
Affiliation(s)
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mehdi Hashemi
- Clinical Immunology Research Center, Ali-ebne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Setayesh
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|
10
|
Chiang YF, Hung HC, Chen HY, Huang KC, Lin PH, Chang JY, Huang TC, Hsia SM. The Inhibitory Effect of Extra Virgin Olive Oil and Its Active Compound Oleocanthal on Prostaglandin-Induced Uterine Hypercontraction and Pain-Ex Vivo and In Vivo Study. Nutrients 2020; 12:nu12103012. [PMID: 33008039 PMCID: PMC7599558 DOI: 10.3390/nu12103012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Primary dysmenorrhea is a common occurrence in adolescent women and is a type of chronic inflammation. Dysmenorrhea is due to an increase in oxidative stress, which increases cyclooxygenase-2 (COX-2) expression, increases the concentration of prostaglandin F2α (PGF2α), and increases the calcium concentration in uterine smooth muscle, causing excessive uterine contractions and pain. The polyphenolic compound oleocanthal (OC) in extra virgin olive oil (EVOO) has been shown to have an anti-inflammatory and antioxidant effect. This study aimed to investigate the inhibitory effect of extra virgin olive oil and its active ingredient oleocanthal (OC) on prostaglandin-induced uterine hyper-contraction, its antioxidant ability, and related mechanisms. We used force-displacement transducers to calculate uterine contraction in an ex vivo study. To analyze the analgesic effect, in an in vivo study, we used an acetic acid/oxytocin-induced mice writhing model and determined uterus contraction-related signaling protein expression. The active compound OC inhibited calcium/PGF2α-induced uterine hyper-contraction. In the acetic acid and oxytocin-induced mice writhing model, the intervention of the EVOO acetonitrile layer extraction inhibited pain by inhibiting oxidative stress and the phosphorylation of the protein kinase C (PKC)/extracellular signal-regulated kinases (ERK)/ myosin light chain (MLC) signaling pathway. These findings supported the idea that EVOO and its active ingredient, OC, can effectively decrease oxidative stress and PGF2α-induced uterine hyper-contraction, representing a further treatment for dysmenorrhea.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
| | - Hui-Chih Hung
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
| | - Po-Han Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
| | - Jen-Yun Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (Y.-F.C.); (H.-C.H.); (H.-Y.C.); (K.-C.H.); (P.-H.L.); (J.-Y.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6558)
| |
Collapse
|
11
|
Wang D, Zhao H, Li B, Sun Y, Wei DH. Mechanism of cAMP-PKA Signaling Pathway Mediated by Shaoyao Gancao Decoction (芍药甘草汤) on Regulation of Aquaporin 5 and Muscarinic Receptor 3 Levels in Sjögren’s Syndrome. Chin J Integr Med 2020; 26:502-509. [DOI: 10.1007/s11655-020-3205-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
|
12
|
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, M. Abdel-Daim M, Prasad Devkota H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10:E352. [PMID: 32106571 PMCID: PMC7175350 DOI: 10.3390/biom10030352] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional herbal remedies have been attracting attention as prospective alternative resources of therapy for diverse diseases across many nations. In recent decades, medicinal plants have been gaining wider acceptance due to the perception that these plants, as natural products, have fewer side effects and improved efficacy compared to their synthetic counterparts. Glycyrrhiza glabra L. (Licorice) is a small perennial herb that has been traditionally used to treat many diseases, such as respiratory disorders, hyperdipsia, epilepsy, fever, sexual debility, paralysis, stomach ulcers, rheumatism, skin diseases, hemorrhagic diseases, and jaundice. Moreover, chemical analysis of the G. glabra extracts revealed the presence of several organic acids, liquirtin, rhamnoliquirilin, liquiritigenin, prenyllicoflavone A, glucoliquiritin apioside, 1-metho-xyphaseolin, shinpterocarpin, shinflavanone, licopyranocoumarin, glisoflavone, licoarylcoumarin, glycyrrhizin, isoangustone A, semilicoisoflavone B, licoriphenone, and 1-methoxyficifolinol, kanzonol R and several volatile components. Pharmacological activities of G. glabra have been evaluated against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium falciparum, and completely eradicated P. yoelii parasites. Additionally, it shows antioxidant, antifungal, anticarcinogenic, anti-inflammatory, and cytotoxic activities. The current review examined the phytochemical composition, pharmacological activities, pharmacokinetics, and toxic activities of G. glabra extracts as well as its phytoconstituents.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Menofia Governorate 32511, Egypt;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan;
| |
Collapse
|
13
|
Cruz LA, Díaz MA, Gupta MP, López-Pérez JL, Mondolis E, Morán-Pinzón J, Guerrero E. Assessment of the antinociceptive and anti-inflammatory activities of the stem methanol extract of Diplotropis purpurea. PHARMACEUTICAL BIOLOGY 2019; 57:432-436. [PMID: 31242794 PMCID: PMC6598500 DOI: 10.1080/13880209.2019.1628074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Context: Since there is still a great need to search for plant species with antinociceptive and anti-inflammatory activities, Diploptropis purpurea (Rich.) Amshoff (Fabaceae) is studied for the first time. Objective: This evaluates the analgesic and anti-inflammatory activities of the stem methanol extract of Diplotropis purpurea (MEDP). Material and methods: The anti-inflammatory and analgesic effects of MEDP of D. purpurea were evaluated in vivo. The antinociceptive activity was assessed in CD1 male mice were treated by oral gavage with 500 mg/kg of MEDP 30 min before submitting to acetic acid-induced abdominal writhing, hot-plate, and formalin tests. Paws oedema induced by carrageenan, histamine or serotonin were performed in male Sprague-Dawley rats to determinate the anti-inflammatory activity. Results: Oral administration of MEDP produced significant antinociceptive effects on the inflammatory phase in the formalin test [12.0 s versus 72.5 s in carboxymethyl cellulose (CMC) control group]. MEDP produced an analgesic effect in the hot-plate model, although the effect was modest compared to tramadol (40 and 60%, respectively). The oral administration of MEDP in a dose of 500 mg/kg showed maximum inhibition (75.1%) after 0.5 h in carrageenan-induced oedema, but it did not modify histamine or serotonin-induced oedemas. Discussion and conclusion: In the peripheral nociception model, acetic acid-induced abdominal writhing, the MEDP did not show a protective effect, but its analgesic effects were evident in the inflammatory phase of the formalin test and in the hot-plate model. These results show that the anti-inflammatory effect was accompanied by a reduction in the perception of painful stimuli.
Collapse
Affiliation(s)
- Lorena A. Cruz
- Dirección Nacional de Farmacia y Drogas, Ministerio de salud, Panama, Panama
| | - Miguel A. Díaz
- Dirección Nacional de Farmacia y Drogas, Ministerio de salud, Panama, Panama
| | - Mahabir P. Gupta
- Centro de Estudios Farmacognósticos de la Flora Panameña, Facultad de Farmacia, Universidad de Panamá, Panama, Panama
| | - José Luis López-Pérez
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
- Departmento de Ciencias Farmacéuticas, IBSAL-CIETUS, Universidad de Salamanca, Salamanca, Spain
| | - Eily Mondolis
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
| | - Juan Morán-Pinzón
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
| | - Estela Guerrero
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
| |
Collapse
|
14
|
Cao ZX, Wen Y, He JL, Huang SZ, Gao F, Guo CJ, Liu QQ, Zheng SW, Gong DY, Li YZ, Zhang RQ, Chen JP, Peng C. Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti-Acute Myeloid Leukemia Efficacy In Vitro and In Vivo. Mol Pharmacol 2019; 96:589-599. [PMID: 31462456 DOI: 10.1124/mol.119.116129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Licorice is a medicinal herb widely used to treat inflammation-related diseases in China. Isoliquiritigenin (ISL) is an important constituent of licorice and possesses multiple bioactivities. In this study, we examined the selective anti-AML (acute myeloid leukemia) property of ISL via targeting FMS-like tyrosine kinase-3 (FLT3), a certified valid target for treating AML. In vitro, ISL potently inhibited FLT3 kinase, with an IC50 value of 115.1 ± 4.2 nM, and selectively inhibited the proliferation of FLT3-internal tandem duplication (FLT3-ITD) or FLT3-ITD/F691L mutant AML cells. Moreover, it showed very weak activity toward other tested cell lines or kinases. Western blot immunoassay revealed that ISL significantly inhibited the activation of FLT3/Erk1/2/signal transducer and activator of transcription 5 (STAT5) signal in AML cells. Meanwhile, a molecular docking study indicated that ISL could stably form aromatic interactions and hydrogen bonds within the kinase domain of FLT3. In vivo, oral administration of ISL significantly inhibited the MV4-11 flank tumor growth and prolonged survival in the bone marrow transplant model via decreasing the expression of Ki67 and inducing apoptosis. Taken together, the present study identified a novel function of ISL as a selective FLT3 inhibitor. ISL could also be a potential natural bioactive compound for treating AML with FLT3-ITD or FLT3-ITD/F691L mutations. Thus, ISL and licorice might possess potential therapeutic effects for treating AML, providing a new strategy for anti-AML.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yi Wen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jun-Lin He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shen-Zhen Huang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Fei Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Chuan-Jie Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Qing-Qing Liu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Shu-Wen Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Dao-Yin Gong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Jian-Ping Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.)
| |
Collapse
|
15
|
Wang Z, An R, Du G, Liang K, Li G. Validation of an LC-MS/MS method for simultaneous detection of diverse components of Qinxing Qingre Zhike Granule in rat plasma and its application to pharmacokinetic study after oral administration to rats. Biomed Chromatogr 2019; 33:e4524. [PMID: 30821835 DOI: 10.1002/bmc.4524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
A sensitive and validated method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established to test the plasma concentrations of active ingredients in Qinxing Qingre Zhike Granule, namely geniposide, liquiritin, isoliquiritin, baicalin, wogonoside, baicalein, liquiritigenin, isoliquiritigenin and glycyrrhetinic acid. The analysis was performed on an Ultimate XB-C18 column at the flow rate of 0.4 mL min-1 in a single run of 18 min. The mobile phase was composed of 0.05% formic acid in water and acetonitrile with gradient elution. Positive and negative scanning and selected multiple reaction monitoring modes were applied for quantization. The proposed method showed good linearity in the given ranges from 0.6800-340.0 to 3.920-1960 ng mL-1 with r2 > 0.9917 for all the analytes. The precision (RSD) was no more than 12%, and the accuracy (RE) was less than ±11% for intra- and inter-day. The extract recovery and matrix effect were acceptable for the requirements of biological sample analysis. Moreover, the developed method was effectively applied to the pharmacokinetic investigation of Qinxing Qingre Zhike Granule after oral administration in rats.
Collapse
Affiliation(s)
- Zilingyun Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangli Du
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guowen Li
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Duan SN, Qi W, Zhang SW, Huang KK, Yuan D. Simultaneous quantification combined with multivariate statistical analysis of multiple chemical markers of Wu Ji Bai Feng Pill by UHPLC–MS/MS. J Food Drug Anal 2019; 27:275-283. [PMID: 30648581 PMCID: PMC9298634 DOI: 10.1016/j.jfda.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/22/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Wu Ji Bai Feng Pill (WJBFP) is a traditional Chinese medicine (TCM) complex formula, which has been widely used in the treatment of various gynecological disorders. However, the quality control of multiple components in WJBFP is challengeable by using the methods applicable to analysis of several phytochemicals in single herbs or simple herbal preparations. The purpose of this study is to establish an ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC–MS/MS) method for the quantitative determination of 20 bioactive compounds in WJBFP. The modified chromatographic conditions were achieved on an Agilent Poroshell 120 EC-C18 column with a gradient elution consisted of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid (v/v). All analytes were determined using a triple quadrupole mass spectrometry in positive or negative ionization modes with multiple reaction monitoring (MRM) mode. An UHPLC–MS/MS method was optimized and validated for linearity, limits of detection and quantification, precision, repeatability, stability and recovery. The proposed method was applied for the analysis of 20 compounds in 19 batches of commercial WJBFP products. principal component analysis and hierarchical cluster analysis were applied to evaluate intrinsic quality and to identify chemical markers most responsible for quality evaluation. In conclusion, the established method offered speedy and sensitive determination for 20 compounds and is helpful for chemical standardization of commercial WJBFP products.
Collapse
|
17
|
Sosorburam D, Wu ZG, Zhang SC, Hu P, Zhang HY, Jiang T, Ahiasi-Mensah J, He X. Therapeutic effects of traditional Chinese herbal prescriptions for primary dysmenorrhea. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3819714. [PMID: 30402474 PMCID: PMC6196993 DOI: 10.1155/2018/3819714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022]
Abstract
Natural products with antispasmodic activity have been used in traditional medicine to alleviate different illnesses since the remote past. We searched the literature and compiled the antispasmodic activity of 248 natural compounds isolated from terrestrial plants. In this review, we summarized all the natural products reported with antispasmodic activity until the end of 2017. We also provided chemical information about their extraction as well as the model used to test their activities. Results showed that members of the Lamiaceae and Asteraceae families had the highest number of isolated compounds with antispasmodic activity. Moreover, monoterpenoids, flavonoids, triterpenes, and alkaloids were the chemical groups with the highest number of antispasmodic compounds. Lastly, a structural comparison of natural versus synthetic compounds was discussed.
Collapse
|
19
|
Protective effect of isoliquiritigenin against cerebral injury in septic mice via attenuation of NF-κB. Inflammopharmacology 2018; 27:809-816. [DOI: 10.1007/s10787-018-0503-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
|
20
|
Carreiro JDN, Souza ILLD, Pereira JC, Vasconcelos LHC, Travassos RDA, Santos BVDO, Silva BAD. Tocolytic action and underlying mechanism of galetin 3,6-dimethyl ether on rat uterus. Altern Ther Health Med 2017; 17:514. [PMID: 29197370 PMCID: PMC5712072 DOI: 10.1186/s12906-017-2007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
Abstract
Background Galetin 3,6-dimethyl ether (FGAL) is a flavonoid isolated from aerial parts of Piptadenia stipulacea. Previously, FGAL was shown to inhibit both carbachol- and oxytocin-induced phasic contractions in the rat uterus, which was more potent with oxytocin. Thus, in this study, we aimed to investigate the tocolytic action mechanism of FGAL on the rat uterus. Methods Segments of rat uterus ileum were suspended in organ bath containing modified Locke-Ringer solution at 32 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer. Results FGAL was more potent in relaxing uterus pre-contracted with oxytocin than with KCl. Additionally, FGAL shifted oxytocin-induced cumulative contractions curves to the right in a non-parallel manner, with Emax reduction, indicating a pseudo-irreversible noncompetitive antagonism of oxytocin receptors (OTR) or a downstream pathway target. Moreover, FGAL shifted CaCl2-induced cumulative contraction curves to the right in a non-parallel manner in depolarizing medium, nominally without Ca2+, with Emax reduction, suggesting the inhibition of Ca2+ influx through CaV. The relaxant potency of FGAL was reduced by CsCl, a non-selective K+ channel blocker, suggesting positive modulation of these channels. Furthermore, in presence of apamin, 4-aminopyridine, glibenclamide or 1 mM TEA+, the relaxant potency of FGAL was attenuated, indicating the participation of SKCa, KV, KATP and highlighting BKCa. Aminophylline, a non-selective phosphodiesterase (PDE) blocker, did not affect the FGAL relaxant potency, excluding the modulation of cyclic nucleotide PDEs pathway by FGAL. Conclusion Tocolytic effect of FGAL on rat uterus occurs by pseudo-irreversible noncompetitive antagonism of OTR and activation of K+ channels, primarily BKCa, leading to calcium influx reduction through CaV.
Collapse
|
21
|
Hashempur MH, Khademi F, Rahmanifard M, Zarshenas MM. An Evidence-Based Study on Medicinal Plants for Hemorrhoids in Medieval Persia. J Evid Based Complementary Altern Med 2017; 22:969-981. [PMID: 29228790 PMCID: PMC5871264 DOI: 10.1177/2156587216688597] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/28/2016] [Accepted: 12/11/2016] [Indexed: 01/27/2023] Open
Abstract
Hemorrhoids is one of the most common gastrointestinal diseases. There are several therapeutic options associated with some complications. Therefore, researchers look for traditional medicines as a potential resource for introduction of new natural drugs. The current study reports an evidence-based review of herbal remedies for hemorrhoids in traditional Persian medicine. A comprehensive survey about hemorrhoids on the most important manuscripts of traditional Persian medicine was done. Then, scientific data banks were searched for possible related properties of each herb in the conventional medicine. We reported some historical aspects of traditional Persian medicine view on classification, examination, and predisposing factors of hemorrhoids. In addition, we have reported 105 medicinal plants belonging to 51 families. More than half of the reported herbs exhibited anti-inflammatory and analgesic effects. Although lack of human studies regarding the mentioned herbs is noted, positive results from experimental findings can be considered for new drug discovery supported by traditional and medieval experiences.
Collapse
Affiliation(s)
- Mohammad Hashem Hashempur
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Essence of Parsiyan Wisdom Institute, Traditional Medicine and Medicinal Plant Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khademi
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rahmanifard
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Hu FW, Yu CC, Hsieh PL, Liao YW, Lu MY, Chu PM. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget 2017; 8:93912-93923. [PMID: 29212198 PMCID: PMC5706844 DOI: 10.18632/oncotarget.21338] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells (CSCs) are cells that drive tumorigenesis, contributing to metastasis and cancer recurrence as well as resistance to chemotherapy of oral squamous cell carcinomas (OSCC). Therefore, approaches to target CSCs become the subject of intense research for cancer therapy. In this study, we demonstrated that isoliquiritigenin, a chalcone-type flavonoid isolated from licorice root, exhibited more toxicity in oral cancer stem cells (OSCC-CSCs) compared to normal cells. Treatment of isoliquiritigenin not only inhibited the self-renewal ability but also reduced the expression of CSC markers, including the ALDH1 and CD44. In addition, the capacities of OSCC-CSCs to invade, metastasize and grow into a colony were suppressed by isoliquiritigenin. Most importantly, we showed that isoliquiritigenin potentiated chemotherapy along with downregulated expression of an ABC transporter that is associated with drug resistance, ABCG2. Moreover, a combination of isoliquiritigenin and Cisplatin significantly repressed the invasion and colony formation abilities of OSCC-CSCs. Our results suggested that administration of isoliquiritigenin reduced the protein expression of mRNA and membrane GRP78, a critical mediator of tumor biology. Overexpression of GRP78 reversed the inhibitory effect of isoliquiritigenin on OSCC-CSCs. Furthermore, isoliquiritigenin retarded the tumor growth in nude mice bearing OSCC xenografts. Taken together, these findings showed that isoliquiritigenin is an effective natural compound that can serve as an adjunct to chemotherapy for OSCC.
Collapse
Affiliation(s)
- Fang-Wei Hu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy and Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
23
|
Yang L, Chai CZ, Yan Y, Duan YD, Henz A, Zhang BL, Backlund A, Yu BY. Spasmolytic Mechanism of Aqueous Licorice Extract on Oxytocin-Induced Uterine Contraction through Inhibiting the Phosphorylation of Heat Shock Protein 27. Molecules 2017; 22:molecules22091392. [PMID: 28850076 PMCID: PMC6151720 DOI: 10.3390/molecules22091392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Licorice derived from the roots and rhizomes of Glycyrrhiza uralensis Fisch. (Fabaceae), is one of the most widely-used traditional herbal medicines in China. It has been reported to possess significant analgesic activity for treating spastic pain. The aim of this study is to investigate the spasmolytic molecular mechanism of licorice on oxytocin-induced uterine contractions and predict the relevant bioactive constituents in the aqueous extract. The aqueous extraction from licorice inhibited the amplitude and frequency of uterine contraction in a concentration-dependent manner. A morphological examination showed that myometrial smooth muscle cells of oxytocin-stimulated group were oval-shaped and arranged irregularly, while those with a single centrally located nucleus of control and licorice-treated groups were fusiform and arranged orderly. The percentage of phosphorylation of HSP27 at Ser-15 residue increased up to 50.33% at 60 min after oxytocin stimulation. Furthermore, this increase was significantly suppressed by licorice treatment at the concentration of 0.2 and 0.4 mg/mL. Colocalization between HSP27 and α-SMA was observed in the myometrial tissues, especially along the actin bundles in the oxytocin-stimulated group. On the contrary, the colocalization was no longer shown after treatment with licorice. Additionally, employing ChemGPS-NP provided support for a preliminary assignment of liquiritigenin and isoliquiritigenin as protein kinase C (PKC) inhibitors in addition to liquiritigenin, isoliquiritigenin, liquiritin and isoliquiritin as MAPK-activated protein kinase 2 (MK2) inhibitors. These assigned compounds were docked with corresponding crystal structures of respective proteins with negative and low binding energy, which indicated a high affinity and tight binding capacity for the active site of the kinases. These results suggest that licorice exerts its spasmolytic effect through inhibiting the phosphorylation of HSP27 to alter the interaction between HSP27 and actin. Furthermore, our results provide support for the prediction that potential bioactive constituents from aqueous licorice extract inhibit the relevant up-stream kinases that phosphorylate HSP27.
Collapse
Affiliation(s)
- Lu Yang
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Cheng-Zhi Chai
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China.
| | - Ying-Dan Duan
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Astrid Henz
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Bo-Li Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Anders Backlund
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Bo-Yang Yu
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| |
Collapse
|
24
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
25
|
Hitomi S, Ono K, Terawaki K, Matsumoto C, Mizuno K, Yamaguchi K, Imai R, Omiya Y, Hattori T, Kase Y, Inenaga K. [6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via action on Na + channels. Pharmacol Res 2016; 117:288-302. [PMID: 28043879 DOI: 10.1016/j.phrs.2016.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/17/2023]
Abstract
The traditional Japanese herbal medicine hangeshashinto (HST) has beneficial effects for the treatment of oral ulcerative mucositis (OUM) in cancer patients. However, the ingredient-based mechanism that underlies its pain-relieving activity remains unknown. In the present study, to clarify the analgesic mechanism of HST on OUM-induced pain, we investigated putative HST ingredients showing antagonistic effects on Na+ channels in vitro and in vivo. A screen of 21 major ingredients using automated patch-clamp recordings in channel-expressing cells showed that [6]-gingerol and [6]-shogaol, two components of a Processed Ginger extract, considerably inhibited voltage-activated Na+ currents. These two ingredients inhibited the stimulant-induced release of substance P and action potential generation in cultured rat sensory neurons. A submucosal injection of a mixture of [6]-gingerol and [6]-shogaol increased the mechanical withdrawal threshold in healthy rats. In a rat OUM model, OUM-induced mechanical pain was alleviated 30min after the swab application of HST despite the absence of anti-bacterial and anti-inflammatory actions in the OUM area. A swab application of a mixture of [6]-gingerol and [6]-shogaol induced sufficient analgesia of OUM-induced mechanical or spontaneous pain when co-applied with a Ginseng extract containing abundant saponin. The Ginseng extract demonstrated an acceleration of substance permeability into the oral ulcer tissue without an analgesic effect. These findings suggest that Na+ channel blockage by gingerol/shogaol plays an essential role in HST-associated analgesia of OUM-induced pain. This pharmacological mechanism provides scientific evidence supporting the use of this herbal medicine in patients suffering from OUM-induced pain.
Collapse
Affiliation(s)
- Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - Kiyoshi Terawaki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Chinami Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Keita Mizuno
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kiichiro Yamaguchi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; Division of Dental Anesthesiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Ryota Imai
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yuji Omiya
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kiyotoshi Inenaga
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
26
|
Mahalingam S, Gao L, Eisner J, Helferich W, Flaws JA. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod Toxicol 2016; 66:107-114. [PMID: 27773742 PMCID: PMC5125911 DOI: 10.1016/j.reprotox.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin is a botanical estrogen used as a dietary supplement. Previous studies show that other botanical estrogens affect ovarian estradiol synthesis, but isoliquiritigenin's effects on the ovary are unknown. Thus, this study tested the hypothesis that isoliquiritigenin inhibits ovarian antral follicle growth and steroidogenesis. Antral follicles from CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or isoliquiritigenin (0.6μM, 6 μM, 36 μM, and 100 μM) for 48-96h. During culture, follicle diameters were measured daily to assess follicle growth. After culture, media were collected for hormone assays and follicles were collected for gene expression analysis of steroidogenic enzymes. Isoliquiritigenin inhibited antral follicle growth and altered estradiol, testosterone, and progesterone levels. Additionally, isoliquiritigenin altered the mRNA levels of cytochrome P450 steroid 17-α-hydroxylase 1, aromatase, 17β-hydroxysteroid dehydrogenase 1, and steroidogenic acute regulatory protein. These data indicate that exposure to isoliquiritigenin inhibits growth and disrupts steroid production in antral follicles.
Collapse
Affiliation(s)
- Sharada Mahalingam
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Liying Gao
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - Jacqueline Eisner
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801, United States.
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, United States.
| |
Collapse
|
27
|
Sui F, Zhou HY, Meng J, Du XL, Sui YP, Zhou ZK, Dong C, Wang ZJ, Wang WH, Dai L, Ma H, Huo HR, Jiang TL. A Chinese Herbal Decoction, Shaoyao-Gancao Tang, Exerts Analgesic Effect by Down-Regulating the TRPV1 Channel in a Rat Model of Arthritic Pain. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1363-1378. [PMID: 27785943 DOI: 10.1142/s0192415x16500762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shaoyao-Gancao Tang (SGT) is one of the most frequently used compound formulas in the treatment of pain-related diseases in the medical practice of traditional Chinese medicine (TCM). To investigate the anti-inflammatory and antinociceptive effects, as well as to uncover the molecular mechanism of SGT, the rat pain model of arthritis was experimentally induced by single unilateral injection of rats' left hind paw with Freund's complete adjuvant (FCA). SGT was orally administered to the rats daily at three doses individually for a period of 16 days post-model induction. Swollen degrees and pain thresholds of the rats in different groups were measured for evaluation of the anti-inflammatory and anti-nociceptive effects of SGT. Furthermore, the mRNA and protein expression levels of transient receptor potential ion channel protein vanilloid receptor 1 (TRPV1) channel as well as its calcium-mediating function in the isolated DRG neurons were further detected to provide indexes for exploration of the molecular mechanisms mediating anti-arthritic activities of SGT. As a result, FCA injection induced significant allodynia, inflammation and edema, accompanied by a significant increase in both expression and calcium-mediating function of the TRPV1 channel. Pharmacologically, oral administration of SGT at a high or middle dose demonstrated a significant relief from the above-mentioned pathological conditions in a dose-dependent manner. Simultaneously the mRNA and protein expressional levels of TRPV1 channel, as well as its calcium-mediating function, were down-regulated greatly. These findings suggest that SGT possesses a significant analgesic and anti-inflammatory effect on arthritis rats; its therapeutic activities might be achieved through reversing the elevated expression and function of TRPV1 channel evoked by FCA.
Collapse
Affiliation(s)
- Feng Sui
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhou
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Jing Meng
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Xin-Liang Du
- † Graduate School of China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yun-Peng Sui
- ‡ Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhi-Kun Zhou
- § Department of Pharmacology, Guangdong Medical University, Guangzhou 523808, P.R. China
| | - Cheng Dong
- ¶ The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, P.R. China
| | - Zhu-Ju Wang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Wei-Hao Wang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li Dai
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai Ma
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Ru Huo
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ting-Liang Jiang
- * Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
28
|
Peng XQ, Zhou HF, Lu YY, Chen JK, Wan HT, Zhang YY. Protective effects of Yinhuapinggan granule on mice with influenza viral pneumonia. Int Immunopharmacol 2016; 30:85-93. [DOI: 10.1016/j.intimp.2015.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/03/2023]
|
29
|
Komes D, Belščak-Cvitanović A, Jurić S, Bušić A, Vojvodić A, Durgo K. Consumer acceptability of liquorice root (Glycyrrhiza glabraL.) as an alternative sweetener and correlation with its bioactive content and biological activity. Int J Food Sci Nutr 2015; 67:53-66. [DOI: 10.3109/09637486.2015.1126563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Sadakane C, Watanabe J, Fukutake M, Nisimura H, Maemura K, Kase Y, Kono T. Pharmacokinetic Profiles of Active Components After Oral Administration of a Kampo Medicine, Shakuyakukanzoto, to Healthy Adult Japanese Volunteers. J Pharm Sci 2015; 104:3952-3959. [PMID: 26211516 DOI: 10.1002/jps.24596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 11/08/2022]
Abstract
Shakuyakukanzoto (SKT), a traditional Japanese (Kampo) medicine, has been used by patients with muscle cramps and abdominal pains. In this trial, we analyzed plasma concentrations of active components after SKT was administered as a single oral dose of 2.5 or 5.0 g/day per person. The study was a randomized, open-label, two-arm, two-period, crossover trial conducted in healthy Japanese volunteers. Albiflorin (ALB), paeoniflorin (PAE), glycycoumarin (GCM), isoliquiritigenin (ILG), glycyrrhetic acid (GA), and glycyrrhetic acid-3-O-monoglucuronide were targeted, and the plasma concentration of each component was measured using a liquid chromatography-tandem mass spectrometry method. The pharmacokinetic parameters were calculated, and the linearity was assessed. All targeted components were detected in the plasma after oral administration of SKT. ALB, PAE, GCM, and ILG were detected at an early stage. The linearity was observed for the maximum plasma concentration of GCM, ILG, and GA and for the area under the plasma concentration-time curve of GA. In this trial, we demonstrated for the first time in humans that these components were absorbed into the blood after oral administration of SKT. The results of this pharmacokinetic trial in humans are also important and useful for understanding the mechanism of action of SKT, verifying the active components predicted in basic research, and conducting pharmacokinetics and safety studies in the future.
Collapse
Affiliation(s)
- Chiharu Sadakane
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan.
| | - Miwako Fukutake
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Hiroaki Nisimura
- Kampo Formulations Development Center, Production Division, Tsumura & Co., Ibaraki, Japan
| | - Kazuya Maemura
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki, Japan
| | - Toru Kono
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan; Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
31
|
Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, Shen J, Chen J. A Review: The Pharmacology of Isoliquiritigenin. Phytother Res 2015; 29:969-77. [DOI: 10.1002/ptr.5348] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/06/2015] [Accepted: 03/13/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Fu Peng
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Qiaohui Du
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| | - Neng Wang
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
| | - Hailin Tang
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Guangdong China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangzhou Guangdong China
| | - Jiangang Shen
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
| | - Jianping Chen
- School of Chinese Medicine; The University of Hong Kong; 10 Sassoon Road Pokfulam Hong Kong
- Chengdu University of Traditional Chinese Medicine; Chengdu 610075 China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources; Sichuan Province and Ministry of Science and Technology; Chengdu 610075 China
| |
Collapse
|
32
|
Shergis JL, Wu L, May BH, Zhang AL, Guo X, Lu C, Xue CC. Natural products for chronic cough: Text mining the East Asian historical literature for future therapeutics. Chron Respir Dis 2015; 12:204-11. [PMID: 25901012 DOI: 10.1177/1479972315583043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic cough is a significant health burden. Patients experience variable benefits from over the counter and prescribed products, but there is an unmet need to provide more effective treatments. Natural products have been used to treat cough and some plant compounds such as pseudoephedrine from ephedra and codeine from opium poppy have been developed into drugs. Text mining historical literature may offer new insight for future therapeutic development. We identified natural products used in the East Asian historical literature to treat chronic cough. Evaluation of the historical literature revealed 331 natural products used to treat chronic cough. Products included plants, minerals and animal substances. These natural products were found in 75 different books published between AD 363 and 1911. Of the 331 products, the 10 most frequently and continually used products were examined, taking into consideration findings from contemporary experimental studies. The natural products identified are promising and offer new directions in therapeutic development for treating chronic cough.
Collapse
Affiliation(s)
- Johannah Linda Shergis
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia
| | - Lei Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Brian H May
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia
| | - Anthony Lin Zhang
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia
| | - Xinfeng Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Charlie Changli Xue
- Traditional and Complementary Medicine Research Program, School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Bundoora, Victoria, Australia Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
A review of in vitro and in vivo studies on the efficacy of herbal medicines for primary dysmenorrhea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:296860. [PMID: 25431607 PMCID: PMC4238180 DOI: 10.1155/2014/296860] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 01/25/2023]
Abstract
Purpose. Primary dysmenorrhea (PD) is a common gynecological complaint among adolescent girls and women of reproductive age. This study aims to review the findings of published articles on the in vitro and in vivo efficacy of herbal medicines for PD. Methods. In vitro and in vivo studies of herbal compounds, individual herbal extracts, or herbal formula decoctions published from their inception to April 2014 were included in this review. Results. A total of 18 studies involving herbal medicines exhibited their inhibitory effect on PD. The majority of in vitro studies investigated the inhibition of uterine contractions. In vivo studies suggest that herbal medicines exert a peripheral analgesic effect and a possible anti-inflammatory activity via the inhibition of prostaglandin (PG) synthesis. The mechanisms of herbal medicines for PD are associated with PG level reduction, suppression of cyclooxygenase-2 expression, superoxide dismutase activation and malondialdehyde reduction, nitric oxide, inducible nitric oxide synthase, and nuclear factor-kappa B reduction, stimulation of somatostatin receptor, intracellular Ca(2+) reduction, and recovery of phospholipid metabolism. Conclusions. Herbal medicines are thought to be promising sources for the development of effective therapeutic agents for PD. Further investigations on the appropriate herbal formula and their constituents are recommended.
Collapse
|
34
|
Simmler C, Jones T, Anderson JR, Nikolić DC, van Breemen RB, Soejarto DD, Chen SN, Pauli GF. Species-specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:378-88. [PMID: 25859589 PMCID: PMC4391967 DOI: 10.1002/pca.2472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Major phenolics from licorice roots (Glycyrrhiza sp.) are glycosides of the flavanone liquiritigenin (F) and its 2′-hydroxychalcone isomer, isoliquiritigenin (C). As the F and C contents fluctuate between batches of licorice, both quality control and standardisation of its preparations become complex tasks. OBJECTIVE To characterise the F and C metabolome in extracts from Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch. ex DC. by addressing their composition in major F–C pairs and defining the total F:C proportion. MATERIAL AND METHODS Three types of extracts from DNA-authenticated samples were analysed by a validated UHPLC/UV method to quantify major F and C glycosides. Each extract was characterised by the identity of major F–C pairs and the proportion of Fs among all quantified Fs:Cs. RESULTS The F and C compositions and proportions were found to be constant for all extracts from a Glycyrrhiza species. All G. uralensis extracts contained up to 2.5 more Fs than G. glabra extracts. Major F–C pairs were B-ring glycosidated in G. uralensis, and A-/B-ring apiosyl-glucosidated in the G. glabra extracts. The F:C proportion was found to be linked to the glycosidation site: the more B-ring F-C glycosides were present, the higher was the final F:C proportion in the extract. These results enable the chemical differentiation of extracts from G. uralensis and G. glabra, which are characterised by total F:C proportions of 8.37:1.63 and 7.18:2.82, respectively. CONCLUSION Extracts from G. glabra and G. uralensis can be differentiated by their respective F and C compositions and proportions, which are both useful for further standardisation of licorice botanicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guido F. Pauli
- Correspondence to: G. F. Pauli, UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 S. Wood Street, Chicago, Illinois, 60612, USA.
| |
Collapse
|
35
|
Mohseni R, Noorbakhsh F, Moazeni M, Nasrollahi Omran A, Rezaie S. Antitoxin Characteristic of Licorice Extract: The Inhibitory Effect on Aflatoxin Production in A
spergillus parasiticus. J Food Saf 2014. [DOI: 10.1111/jfs.12104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rashin Mohseni
- Young Researchers Club; Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Fatemeh Noorbakhsh
- Department of Biology; Faculty of Science; Islamic Azad University; Varamin-Pishva Iran
| | - Maryam Moazeni
- Invasive Fungal Research Centre/Department of Medical Mycology and Parasitology; Faculty of Medicine; Mazandaran University of Medical Sciences; Sari Iran
| | | | - Sassan Rezaie
- Biotechnology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Division of Molecular Biology; Department of Medical Mycology and Parasitology, School of Public Health; Tehran University of Medical Science; Poursina St. Keshavarz Blv. PO Box: 14155-6446 Tehran 14155 Iran
| |
Collapse
|
36
|
Feng Yeh C, Wang KC, Chiang LC, Shieh DE, Yen MH, San Chang J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:466-73. [PMID: 23643542 PMCID: PMC7126896 DOI: 10.1016/j.jep.2013.04.040] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhiza uralensis Fisch., Leguminosae) has been used in herbal medicine and food supplement worldwide for centuries. Licorice is a common ingredient of several prescriptions of traditional Chinese medicine which have been proved to inhibit infection of human respiratory syncytial virus (HRSV). There are two preparations of licorice, Radix Glycyrrhizae and Radix Glycyrrhizae Preparata. However, it is unknown whether licorice or which preparation of licorice is effective against HRSV, nor is its active constituent. AIM OF THE STUDY We tested the hypothesis that Radix Glycyrrhizae can effectively decrease HRSV-induced plaque formation in respiratory mucosal cell lines. We also tried to find out the active constituent. MATERIALS AND METHODS Anti-HRSV activities of hot water extracts of preparations of licorice, glycyrrhizin and 18β-glycyrrhetinic acid (18β-GA), the active constituents of licorice, were examined by plaque reduction assay in both human upper (HEp-2) and low (A549) respiratory tract cell lines. Abilities of crude licorice to inhibit viral replication and to stimulate IFN-β were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. RESULTS Radix Glycyrrhizae and Radix Glycyrrhizae Preparata dose-dependently inhibited HRSV-induced plaque formation in both HEp-2 and A549 cell lines (p<0.0001). The effect of Radix Glycyrrhizae was better than that of Radix Glycyrrhizae Preparata on HEp-2 cells. However, there was no difference of their anti-HRSV effects on A549 cells. Besides, glycyrrhizin was ineffective at all. Nevertheless, 18β-GA showed a potent anti-HRSV activity. Radix Glycyrrhizae was more effective when given before viral inoculation (p<0.0001) which may be due to its inhibition of viral attachment on (p<0.0001) and penetration (p<0.0001) into the host cells. The anti-HRSV activity of Radix Glycyrrhizae was further confirmed by RT-PCR and qRT-PCR. 300 μg/ml Radix Glycyrrhizae markedly decreased the viral amounts within the cells and in the suspension. Radix Glycyrrhizae might further stimulate mucosal cells to secrete IFN-β to counteract viral infection. CONCLUSIONS Both Radix Glycyrrhizae and Radix Glycyrrhizae Preparata are effective against HRSV infection on airway epithelial cells. Radix Glycyrrhizae inhibited HRSV mainly by preventing viral attachment, internalization, and by stimulating IFN secretion. 18β-GA may be one of its active constituents.
Collapse
Key Words
- 18β-ga, 18β-glycyrrhetinic acid
- a549, human lung carcinoma cell
- atcc, the american type culture collection
- cc50, 50% cytotoxic concentration
- elisa, enzyme-linked immunosorbent assay
- fcs, fetal calf serum
- fda, food and drug administration
- hep-2, human larynx epidermoid carcinoma cell
- ic50, minimal concentration required to inhibit 50% cytopathic effect
- ifn, interferon
- dmem, dulbecco’s modified eagle’s medium
- pbs, phosphate-buffered saline
- pfu, plaque forming unit
- hrsv, human respiratory syncytial virus
- glycyrrhiza uralensis
- respiratory tract infection
- rsv
Collapse
Affiliation(s)
- Chia Feng Yeh
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F. Novel Insights into the Pharmacology of Flavonoids. Phytother Res 2013; 27:1588-96. [DOI: 10.1002/ptr.5023] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Barbara Romano
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Ester Pagano
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Vittorino Montanaro
- Department of Pharmacy; University of Naples Federico II; via Pansini 5 80131 Naples Italy
| | - Alfonso L. Fortunato
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| | - Natasa Milic
- Department of Pharmacy; Faculty of Medicine, University of Novi Sad; Hajduk Veljkova, 3 21000 Novi Sad Serbia
| | - Francesca Borrelli
- Department of Urology; University of Naples Federico II; via D. Montesano 49 80131 Naples Italy
| |
Collapse
|
38
|
Yin Q, Wang P, Zhang A, Sun H, Wu X, Wang X. Ultra-performance LC-ESI/quadrupole-TOF MS for rapid analysis of chemical constituents of Shaoyao-Gancao decoction. J Sep Sci 2013; 36:1238-46. [DOI: 10.1002/jssc.201201198] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/31/2012] [Accepted: 01/12/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Quanwei Yin
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Ping Wang
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Aihua Zhang
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Hui Sun
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Xiuhong Wu
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Xijun Wang
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| |
Collapse
|
39
|
Lee SK, Park KK, Park JHY, Lim SS, Chung WY. The inhibitory effect of roasted licorice extract on human metastatic breast cancer cell-induced bone destruction. Phytother Res 2013; 27:1776-83. [PMID: 23401151 DOI: 10.1002/ptr.4930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 11/05/2022]
Abstract
The aim of this study was to determine whether the ethanol extract of roasted licorice (rLE) could inhibit breast cancer-mediated bone destruction. rLE treatment reduced the viability of MDA-MB-231 human metastatic breast cancer cells but did not show any cytotoxicity in hFOB1.19 human osteoblastic cells and murine bone marrow-derived macrophages (BMMs). rLE inhibited expression and secretion of receptor activator of nuclear factor κB ligand (RANKL) as well as the mRNA and protein expression of cyclooxygenase-2 in osteoblastic cells exposed to the conditioned medium of breast cancer cells. rLE dramatically inhibited RANKL-induced osteoclastogenesis in BMMs, thereby reducing osteoclast-mediated pit formation. Moreover, treatment with licochalcone A and isoliquiritigenin as the active components, whose contents are increased by the roasting process, remarkably suppressed RANKL-induced osteoclast formation in BMMs, respectively. Furthermore, orally administered rLE substantially blocked tumor growth and bone destruction in mice inoculated with breast cancer cells in the tibiae. Serum levels of tartrate-resistant acid phosphatase and C-terminal cross-linking telopeptide of type I collagen and trabecular bone morphometric parameters were reversed to almost the same levels as the control mice by the rLE treatment. In conclusion, rLE may be a beneficial agent for preventing and treating bone destruction in patients with breast cancer.
Collapse
Affiliation(s)
- Sun Kyoung Lee
- Department of Oral Biology and Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, 120-752, Korea; Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, 120-749, Korea
| | | | | | | | | |
Collapse
|