1
|
Wu X, Chen Y, Zhang H, Wang J, Tian C, Jiang Z, Li X. Mechanisms and potential roles of active ingredients of traditional Chinese medicine in the treatment of chronic obstructive pulmonary disease. J Pharm Pharmacol 2025:rgaf018. [PMID: 40350160 DOI: 10.1093/jpp/rgaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is a respiratory condition with high rates of morbidity and mortality. Recent studies have shown that the increasing research on Traditional Chinese Medicine (TCM) also plays an important role in COPD. The purpose of this review is to categorize TCM and its active ingredients and to summarize their pharmacological effects. METHODS Articles published up to December 2024 were searched through PubMed, X-MOL, and the China National Knowledge Infrastructure. The keywords included TCM and its combination with COPD, pharmacologic activity, anti-inflammatory effects, pharmacology, as well as in vivo and in vitro studies. KEY FINDINGS Thus far, we have summarized the progress of research on the mechanisms of action of TCM and its active ingredients, such as flavonoids, terpenoids, and phenols, in the treatment of COPD. These mechanisms encompass the reduction of inflammatory responses and lung injury, regulation of the oxidation-antioxidation balance, and modulation of cellular apoptosis and aging, among other effects. CONCLUSION TCM and its active ingredients demonstrate strong anti-COPD properties. This provides a reference for accelerating the development of herbal components for the treatment of COPD and for exploring new potential multi-target therapeutic mechanisms. This will mitigate the geographical limitations of using TCM and enhance its application in future management strategies.
Collapse
Affiliation(s)
- Xilin Wu
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Hanyu Zhang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Chenchen Tian
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University Hospital, Yanbian University Yanji Jilin 133002 P.R. China
| |
Collapse
|
2
|
Zeng XT, Chen WH, Zhong DW, Dai QX, He Y, Ye RQ, Xiao XL, Liao YH. The Mechanism of HDAC2 Inhibitors on Chronic Pancreatitis Pain. J Neurol Surg Rep 2025; 86:e99-e106. [PMID: 40337468 PMCID: PMC12058284 DOI: 10.1055/a-2561-8065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/08/2025] [Indexed: 05/09/2025] Open
Abstract
Background Chronic pancreatitis (CP) is marked by persistent inflammation and fibrosis of the pancreas, often causing severe abdominal pain. The pain mechanism involves complex interactions between pancreatic inflammation and spinal nerve activity. Histone deacetylase 2 (HDAC2) is implicated in neural processes and pain modulation, making it a potential target for CP pain management. Aim This study investigates HDAC2's role in CP pain and evaluates the effects of its inhibition in a CP rat model. Methods CP was induced in male Sprague-Dawley rats using dibutyltin dichloride (DBTC). HDAC2 expression in spinal and pancreatic tissues was assessed through western blotting, quantitative Real-Time PCR, and enzyme-linked immunosorbent assay (ELISA). Pain sensitivity was evaluated using paw withdrawal tests. Co-cultures of AR42J pancreatic acinar cells and F11 spinal neurons were used to explore pancreatic-neural interactions. Chromatin immunoprecipitation (ChIP) and promoter assays examined HDAC2 transcriptional regulation. Results HDAC2 expression was significantly elevated in CP rats, which also displayed increased pain sensitivity and higher inflammatory markers (interleukin [IL]-1β [IL-1β], tumor necrosis factor-α [TNF-α], IL-6, and chemokine ligand 2 [CCL-2]). HDAC2 inhibition reduced pain sensitivity and pancreatitis. Co-culture experiments revealed that pancreatic inflammatory mediators upregulate HDAC2 in neurons. ChIP identified Sp1 as a regulatory factor for HDAC2, with the extracellular signal-regulated kinase-Specific protein 1 (ERK-Sp1) pathway critical for its expression. Conclusion HDAC2 is crucial in CP pain sensitization and inflammation. Its inhibition reduces pain and inflammation, offering potential for targeted pain management in CP.
Collapse
Affiliation(s)
- Xiang-tian Zeng
- Central Supply Service Department, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Wen-hui Chen
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Ding-wen Zhong
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Qi-xin Dai
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Yong He
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Rong-Qiang Ye
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Xiu-lin Xiao
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Yong-hui Liao
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, People's Republic of China
| |
Collapse
|
3
|
Xu C, Wang Y, Ni C, Xu M, Yin C, He Q, Ma B, Fu J, Zhao B, Chen L, Zhi T, Wei S, Cheng L, Xu H, Xiao J, Yang L, Xu Q, Kuang J, Liu B, Zhou Q, Lin X, Yao M, Ni H. Histone modifications and Sp1 promote GPR160 expression in bone cancer pain within rodent models. EMBO Rep 2024; 25:5429-5455. [PMID: 39448865 PMCID: PMC11624276 DOI: 10.1038/s44319-024-00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Bone cancer pain (BCP) affects ~70% of patients in advanced stages, primarily due to bone metastasis, presenting a substantial therapeutic challenge. Here, we profile orphan G protein-coupled receptors in the dorsal root ganglia (DRG) following tumor infiltration, and observe a notable increase in GPR160 expression. Elevated Gpr160 mRNA and protein levels persist from postoperative day 6 for over 18 days in the affected DRG, predominantly in small-diameter C-fiber type neurons specific to the tibia. Targeted interventions, including DRG microinjection of siRNA or AAV delivery, mitigate mechanical allodynia, cold, and heat hyperalgesia induced by the tumor. Tumor infiltration increases DRG neuron excitability in wild-type mice, but not in Gpr160 gene knockout mice. Tumor infiltration results in reduced H3K27me3 and increased H3K27ac modifications, enhanced binding of the transcription activator Sp1 to the Gpr160 gene promoter region, and induction of GPR160 expression. Modulating histone-modifying enzymes effectively alleviated pain behavior. Our study delineates a novel mechanism wherein elevated Sp1 levels facilitate Gpr160 gene transcription in nociceptive DRG neurons during BCP in rodents.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chengyu Yin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Bing Ma
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Jie Fu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Tong Zhi
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Shirong Wei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Hui Xu
- Department of Anesthesiology, The First People's Hospital of Bengbu, 233000, Bengbu, China
| | - Jiajun Xiao
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-Shang Road, 233000, Bengbu, China
| | - Lei Yang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Qingqing Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Jiao Kuang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Xuewu Lin
- Department of Pain Medicine, The First Affiliated Hospital of Bengbu Medical University, 233000, Bengbu, China.
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| |
Collapse
|
4
|
Tabeshpour J, Asadpour A, Norouz S, Hosseinzadeh H. The protective effects of medicinal plants against cigarette smoking: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156199. [PMID: 39492128 DOI: 10.1016/j.phymed.2024.156199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUNDS Cigarette smoking remains a pervasive and harmful habit, and it poses a significant public health concern globally. Tobacco smoke contains numerous toxicants and carcinogens that contribute to the incidence of various diseases, including respiratory ailments, cancer, and cardiovascular disorders. Over the past decade, there has been a growing interest in exploring natural remedies to mitigate the harmful effects of cigarette smoke (CS). Medicinal plants, with their rich phytochemical compositions, have emerged as potential sources of protective agents against CS-induced damage. OBJECTIVES The current review attempts to comprehensively review and provide a thorough analysis of the protective effects of medicinal plants, including ginseng, Aloe vera, Olea europaea, Zea mays, green tea, etc. against CS-related toxicities. MATERIALS AND METHODS A comprehensive research and compilation of existing literature were conducted. We conducted a literature search using the Web of Science, PubMed, Scopus, and Google Scholar. We selected articles published in English between 1987 and 2025. The search was performed using keywords including cigarette smoking, cigarette smokers, second-hand smokers, natural compounds, plant extracts, naturally derived products, natural resources, phytochemicals, and medicinal plants. RESULTS This review critically investigated recent literature focusing on the effects of medicinal plant extracts, essential oils, and isolated compounds on reducing the adverse consequences of CS exposure. These investigations encompassed several in vivo, in vitro, and clinical trials, clarifying the mechanisms underlying the protective effects of these plants. The notable antioxidant, anti-inflammatory, and detoxifying properties of these botanical interventions were also highlighted. CONCLUSION Collectively, this review emphasizes the potential of medicinal plants in alleviating the harmful effects of CS. The rich active constituents present in these plants offer various mechanisms that counteract oxidative stress, inflammation, and carcinogenesis induced by CS exposure. Further research is warranted to reveal the precise molecular mechanisms, derive dosing recommendations, and explore the efficacy of botanical interventions in large-scale clinical trials, ultimately improving public health outcomes and providing valuable insights for the smoking population worldwide.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amirali Asadpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sayena Norouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lee SJ, Pak SW, Kim WI, Park SH, Cho YK, Ko JW, Kim TW, Kim JS, Kim JC, Lim JO, Shin IS. Silibinin Suppresses Inflammatory Responses Induced by Exposure to Asian Sand Dust. Antioxidants (Basel) 2024; 13:1187. [PMID: 39456441 PMCID: PMC11505622 DOI: 10.3390/antiox13101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Asian sand dust (ASD), generated from the deserts of China and Mongolia, affects Korea and Japan during spring and autumn, causing harmful effects on various bio-organs, including the respiratory system, due to its irritants such as fine dust, chemicals, and toxic materials. Here, we investigated the therapeutic effects of silibinin against ASD-induced airway inflammation using mouse macrophage-like cell line RAW264.7 and a murine model. ASD was intranasally administered to mice three times a week and silibinin was administered for 6 days by oral gavage. In ASD-stimulated RAW264.7 cells, silibinin treatment decreased tumor necrosis factor-α production and reduced the expression of p-p65NF-κB, p-p38, and cyclooxygenase (COX)-2, while increasing heme oxygenase (HO)-1 expression. In ASD-exposed mice, silibinin administration reduced inflammatory cell count and cytokines in bronchoalveolar lavage fluid and decreased inflammatory cell infiltration in lung tissue. Additionally, silibinin lowered oxidative stress, as evidenced by decreased 8-hydroxy-2'-deoxyguanosin (8-OHdG) expression and increased HO-1 expression. The expression of inflammatory-related proteins, including p-p65NF-κB, COX-2, and p-p38, was markedly reduced by silibinin administration. Overall, silibinin treatment reduced the expression of p-p65NF-κB, COX-2, and p-p38 in response to ASD exposure, while increasing HO-1 expression both in vitro and in vivo. These findings suggest that silibinin mitigates pulmonary inflammation caused by ASD exposure by reducing inflammatory signaling and oxidative stress, indicating its potential as a therapeutic agent for ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Se-Jin Lee
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - So-Won Pak
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Woong-Il Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Sin-Hyang Park
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si 28503, Republic of Korea;
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Joong-Sun Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Jong-Choon Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Republic of Korea
| | - In-Sik Shin
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| |
Collapse
|
6
|
Ou JY, Liu SH, Tang DK, Shi LZ, Yan LJ, Huang JY, Zou LF, Quan JY, You YT, Chen YY, Yu LZ, Lu ZB. Protective Effect of Silibinin on Lipopolysaccharide-Induced Endotoxemia by Inhibiting Caspase-11-Dependent Cell Pyroptosis. Chin J Integr Med 2024:10.1007/s11655-024-3656-1. [PMID: 38532152 DOI: 10.1007/s11655-024-3656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 β, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 β were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 β, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.
Collapse
Affiliation(s)
- Jin-Ying Ou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Shan-Hong Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Dong-Kai Tang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Ling-Zhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Li-Jun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Jing-Yan Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Jing-Yu Quan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Yan-Ting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Yao Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
8
|
Zhang M, Wang W, Liu K, Jia C, Hou Y, Bai G. Astragaloside IV protects against lung injury and pulmonary fibrosis in COPD by targeting GTP-GDP domain of RAS and downregulating the RAS/RAF/FoxO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155066. [PMID: 37690229 DOI: 10.1016/j.phymed.2023.155066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by the replacement of lung parenchyma with fibrous scar tissue, usually as the final stage of lung injury like COPD. Astragaloside IV (AST), a bioactive compound found in the Astragalus membranaceus (Fisch.) used in traditional Chinese medicine, has been shown to improve pulmonary function and exhibit anti-pulmonary fibrosis effects. However, the exact molecular mechanisms through which it combats pulmonary fibrosis, especially in COPD, remain unclear. PURPOSE This study aimed to identify the potential therapeutic target and molecular mechanisms for AST in improving lung injury especially treating COPD type pulmonary fibrosis both in vivo and in vitro. METHODS Multi lung injury models were established in mice using lipopolysaccharide (LPS), cigarette smoke (CS), or LPS plus CS to simulate the processes of pulmonary fibrosis in COPD. The effect of AST on lung function protection was evaluated, and proteomic and metabolomic analysis were applied to identify the signaling pathway affected by AST and to find potential targets of AST. The interaction between AST and wild-type and mutant RAS proteins was studied. The RAS/RAF/FoxO signaling pathway was stimulated in BEAS-2B cells and in mice lung tissues by LPS plus CS to investigate the anti-pulmonary fibrosis mechanism of AST analyzed by western blotting. The regulatory effects of AST on the RAS/RAF/FoxO pathway dependent on RAS were further confirmed using RAS siRNA. RESULTS RAS was predicted and identified as the target protein of AST in anti-pulmonary fibrosis in COPD and improving lung function. The administration of AST was observed to impede the conversion of fibroblasts into myofibroblasts, reduce the manifestation of inflammatory factors and extracellular matrix, and hinder the activation of epithelial mesenchymal transition (EMT). Furthermore, AST significantly suppressed the RAS/RAF/FoxO signaling pathway in both in vitro and in vivo settings. CONCLUSION AST exhibited lung function protection and anti-pulmonary fibrosis effect by inhibiting the GTP-GDP domain of RAS, which downregulated the RAS/RAF/FoxO signaling pathway. This study revealed AST as a natural candidate molecule for the protection of pulmonary fibrosis in COPD.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
9
|
Xi JJ, Cao Y, He RY, Zhang JK, Zhao YM, Tong Q, Bao JF, Dong YC, Zhuang RX, Huang JS, Chen Y, Liu SR. Design, Synthesis and Biological Evaluation of Glycosylated Derivatives of Silibinin as Potential Anti-Tumor Agents. Drug Des Devel Ther 2023; 17:2063-2076. [PMID: 37457888 PMCID: PMC10349574 DOI: 10.2147/dddt.s404036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Silibinin, a natural product extracted from the seeds of the Silybum marianum, is versatile with various pharmacological effects. However, its clinical application was strongly hampered by its low bioavailability and poor water solubility. Herein, a series of glycosylated silibinin derivatives were identified as novel anti-tumor agents. Materials and Methods The cell viability was evaluated by CCK8 assay. Furthermore, cell apoptosis and cell cycle progression were tested by flow cytometry. In addition, the pharmacokinetic assessment of compound 15 and silibinin through intravenous administration (i.v., 2 mg/kg) to ICR mice were performed. Results The synthesized compounds showed better water solubilities than silibinin. Among them, compound 15 exhibited inhibitory activity against DU145 cells with IC50 value of 1.37 ± 0.140 μM. Moreover, it arrested cell cycle at G2/M phase and induced apoptosis in DU145 cells. Additionally, compound 15 also displayed longer half-life (T1/2 = 128.3 min) in liver microsomes than that of silibinin (T1/2 = 82.5 min) and appropriate pharmacokinetic parameters in mice. Conclusion Overall, glycosylation of silibinin would be a valid strategy for the development of silibinin derivatives as anti-tumor agents.
Collapse
Affiliation(s)
- Jian-Jun Xi
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yu Cao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ruo-Yu He
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian-Kang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, People’s Republic of China
| | - Yan-Mei Zhao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiao Tong
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian-Feng Bao
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yi-Chen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Rang-Xiao Zhuang
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jin-Song Huang
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Wenzou, People’s Republic of China
| | - Shou-Rong Liu
- Department of Pharmacy, Hangzhou Xixi Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, Weng CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev 2022; 31:31/164/220028. [PMID: 35705209 PMCID: PMC9648508 DOI: 10.1183/16000617.0028-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1β and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers. This review compiles current investigations into the role of polyphenols/flavonoids in the alleviation of cigarette smoke-induced inflammasome; notably it provides a promising hit for rectifying the treatment of COPD.https://bit.ly/36OcUO9
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ning Kang
- Dept of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Yu
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Mi
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jialin Guo
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingyi Wu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China .,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
11
|
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, Zhang CH, Zhang H. Potential Natural Small Molecular Compounds for the Treatment of Chronic Obstructive Pulmonary Disease: An Overview. Front Pharmacol 2022; 13:821941. [PMID: 35401201 PMCID: PMC8988065 DOI: 10.3389/fphar.2022.821941] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major diseases threatening human life and health. According to the report released by the World Health Organization (WHO) in 2020, COPD has become the third leading cause of death in the world, featuring a sustainable growth of incidence rate as well as population age. The purpose of this review focuses on the advancement of bioactive natural compounds, such as baicalin, quercetin, resveratrol, and curcumin, which demonstrate promising therapeutic/interventional effects on CODP in vitro and in vivo. Information emphasizing on COPD was systematically collected from several authoritative internet databases including Web of Science, PubMed, Elsevier, Wiley Online Library, and Europe PMC, with a combination of keywords containing “COPD” and “natural small molecular compounds”. The new evidence indicated that these valuable molecules featured unique functions in the treatment of COPD through various biological processes such as anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-airway fibrosis. Moreover, we found that the promising effects of these natural compounds on COPD were mainly achieved through JAK3/STAT3/NF-κB and MAPK inflammatory signaling pathways, Nrf2 oxidative stress signaling pathway, and TGF-β1/Smad 2/3 fibrosis signaling pathway, which referenced to multiple targets like TNF-α, IL-6, IL-8, TIMP-1, MMP, AKT, JAK3, IKK, PI3K, HO-1, MAPK, P38, ERK, etc. Current challenges and future directions in this promising field are also discussed at the end of this review. For the convenience of the readers, this review is divided into ten parts according to the structures of potential natural small molecular compounds. We hope that this review brings a quick look and provides some inspiration for the research of COPD.
Collapse
Affiliation(s)
- Liu-Ying Li
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chuan-Tao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ya Zhu
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Gang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Yu-Fei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chen-Hui Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| | - Hong Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| |
Collapse
|
12
|
Zhu Z, Zhang G, Li D, Yin X, Wang T. Silencing of specificity protein 1 protects H9c2 cells against lipopolysaccharide-induced injury via binding to the promoter of chemokine CXC receptor 4 and suppressing NF-κB signaling. Bioengineered 2022; 13:3395-3409. [PMID: 35048778 PMCID: PMC8973921 DOI: 10.1080/21655979.2022.2026548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled protein receptor CXC chemokine receptor 4 (CXCR4) has been shown to be involved in the development of sepsis; however, it remains unclear whether CXCR4 participates in the septic myocardial injury. In our study, treatment with lipopolysaccharide (LPS) increased the expression of specificity protein 1 (SP1) and CXCR4 in H9c2 cells. Notably, a positive association between SP1 and CXCR4 expression was observed in LPS-treated H9c2 cells, and SP1 positively regulated CXCR4 expression in H9c2 cells. Moreover, silencing of SP1 or CXCR4 suppressed LPS-induced inflammation and cell apoptosis in H9c2 cells, as evidenced by the increase in cell viability and decrease in lactate dehydrogenase release, interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels, and caspase-3 activity. Additionally, overexpression of CXCR4 abolished the protective effects of SP1 silencing on LPS-induced injury in H9c2 cells. SP1 was also shown to enhance the promoter activity of CXCR4 by directly binding with the binding motif site – 109/–100 in CXCR4 promoter. Besides, downregulation of SP1 or CXCR4 blocked LPS-induced activation of the NF-кB signaling in H9c2 cells. Furthermore, inhibition of NF-кB signaling by DHMEQ abolished LPS-induced myocardial inflammation and apoptosis. In conclusion, silencing of SP1 protected H9c2 cells against LPS-induced injury by binding to the promoter of CXCR4 and suppressing the NF-κB signaling pathway. Hence, our findings provide evidence that manipulation of SP1 or CXCR4 may be an effective approach to promote prevention or recovery of septic myocardial injury, and thereby, may serve as a potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Zhao Zhu
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Guoxiu Zhang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Dahuan Li
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Xiaojun Yin
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Tianzhong Wang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| |
Collapse
|
13
|
Song L, Wang X, Qu X, Lv C. Transcription Factor Specificity Protein 1 Regulates Inflammation and Fibrin Deposition in Nasal Polyps Via the Regulation of microRNA-125b and the Wnt/β-catenin Signaling Pathway. Inflammation 2022; 45:1118-1132. [PMID: 34988755 DOI: 10.1007/s10753-021-01605-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Nasal polyps (NPs) are multifactorial soft growths inside the nasal passages and are associated with chronic inflammation that originate from the nasal and paranasal sinus mucosae. This study focused on the role of microRNA (miR)-125b and the molecules associated with NP development. Differentially expressed miRNAs between nasal tissues from patients with chronic rhinosinusitis (CRS) with NP (CRSwNP) and CRS without NP (CRSsNP) were screened using microarray analysis. A murine model of CRSwNP was established. The expression of miR-125b in murine tissues was examined using reverse transcription quantitative polymerase chain reaction. Candidate upstream regulators of miR-125b were predicted using bioinformatics tools, and the binding relationship between specificity protein 1 (Sp1) and miR-125b was validated using luciferase and chromatin immunoprecipitation assays. Altered expression of Sp1 and miR-125b was induced to evaluate their relevance to the progression of NPs. miR-125b expression was significantly upregulated in NP tissues from patients with CRSwNP. Sp1 was confirmed as an upstream regulator that promotes miR-125b transcription in NPs. Overexpression of Sp1 reduced levels of d-dimer (an indicator of fibrinogen degradation products) and tissue-type plasminogen activator (t-PA) but increased eosinophil cationic protein and peroxidase levels, as well as the levels of inflammatory factors interleukin-5 (IL-5) and IL-8 in murine NP tissues. However, these trends were reversed after miR-125b downregulation. Sp1 and miR-125b were found to activate the Wnt/β-catenin signaling pathway in NPs. This study demonstrated that Sp1, an upstream transcription factor of miR-125b, accumulates on the miR-125b promoter to activate its transcription, which induces inflammation and fibrin deposition in NP by activating the Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Li Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, 264100, Shandong, People's Republic of China
| | - Xi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, 264100, Shandong, People's Republic of China
| | - Xiangyang Qu
- Department of Orthopedic Trauma, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, 264100, Shandong, People's Republic of China
| | - Chao Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Mountain Hospital, Laishan District, No. 10087, Keji Avenue, Yantai, 264001, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Chen J, Li DL, Xie LN, Ma YR, Wu PP, Li C, Liu WF, Zhang K, Zhou RP, Xu XT, Zheng X, Liu X. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153309. [PMID: 32890914 DOI: 10.1016/j.phymed.2020.153309] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Combination drug therapy has become an effective strategy for inflammation control. The anti‑inflammatory capacities of silibinin and thymol have each been investigated on its own, but little is known about the synergistic anti-inflammatory effects of these two compounds. PURPOSE This study aims to investigate the synergistic anti-inflammatory effects of silibinin and thymol when administered in combination to lipopolysaccharide (LPS)-induced RAW264.7 cells. METHODS RAW264.7 cells were pre-treated with silibinin and thymol individually or in combination for 2 h before LPS stimulation. Cell viability was detected by the MTT assay. Nitric oxide (NO) production was measured by Griess reagent. Reactive oxygen species (ROS) was evaluated by 2',7'-dichlorofluorescein-diacetate. ELISA was used to detect tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Western blot was performed to analyse the protein expression of LPS-induced RAW264.7 cells. RESULTS We observed a synergistic anti-inflammatory effect of silibinin and thymol when administered in combination to LPS-induced RAW264.7 cells. Silibinin combined with thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) had more potent effects on the inhibition of NO, TNF-α, and IL-6 than those exerted by individual administration of these compounds in LPS-induced RAW264.7 cells. The combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) strongly inhibited ROS and cyclooxygenase-2 (COX-2). More importantly, the combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) was also successful in inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activities. Our results suggest that the synergistic anti-inflammatory effects of silibinin with thymol were associated with the inhibition of NF-κB and MAPK signalling pathways. CONCLUSION The combination of silibinin and thymol (40 μM and 120 μM, respectively, with the molar ratio 1:3) could inhibit inflammation by suppressing NF-κB and MAPK signalling pathways in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Jie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Ling-Na Xie
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yu-Ran Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Pan-Pan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Chen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Wen-Feng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Ren-Ping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China.
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Xia Liu
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
15
|
Zhu M, Ye M, Wang J, Ye L, Jin M. Construction of Potential miRNA-mRNA Regulatory Network in COPD Plasma by Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2020; 15:2135-2145. [PMID: 32982206 PMCID: PMC7490070 DOI: 10.2147/copd.s255262] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has become a major cause of morbidity and mortality worldwide. Increasing evidence indicates that aberrantly expressed microRNAs (miRNAs) are involved in the pathogenesis of COPD. However, an integrative exploration of miRNA–mRNA regulatory network in COPD plasma remains lacking. Methods The microarray datasets GSE24709, GSE61741, and GSE31568 were downloaded from the GEO database and analyzed using GEO2R tool to identify differentially expressed miRNAs (DEMs) between COPD and normal plasma. The consistently changing miRNAs in the three datasets were screened out as candidate DEMs. Potential upstream transcription factors and downstream target genes of candidate DEMs were predicted by FunRich and miRNet, respectively. Next, GO annotation and KEGG pathway enrichment analysis for target genes were performed using DAVID. Then, PPI and DEM-hub gene network were constructed using the STRING database and Cytoscape software. Finally, GSE56768 was used to evaluate the hub gene expressions. Results A total of nine (six upregulated and three downregulated) DEMs were screened out in the above three datasets. SP1 was predicted to potentially regulate most of the downregulated DEMs, while YY1 and E2F1 could regulate both upregulated and downregulated DEMs. 1139 target genes were then predicted, including 596 upregulated DEM target genes and 543 downregulated DEM target genes. Target genes of DEMs were mainly enriched in PI3K/Akt signaling pathway, mTOR signaling pathway, and autophagy. Through the DEM-hub gene network construction, most of the hub genes were found to be potentially modulated by miR-497-5p, miR-130b-5p, and miR-126-5p. Among the top 12 hub genes, MYC and FOXO1 expressions were consistent with that in the GSE56768 dataset. Conclusion In the study, potential miRNA–mRNA regulatory network was firstly constructed in COPD plasma, which may provide a new insight into the pathogenesis and treatment of COPD.
Collapse
Affiliation(s)
- Mengchan Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Maosong Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ling Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Meiling Jin
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Li X, Jin F, Lee HJ, Lee CJ. Recent Advances in the Development of Novel Drug Candidates for Regulating the Secretion of Pulmonary Mucus. Biomol Ther (Seoul) 2020; 28:293-301. [PMID: 32133827 PMCID: PMC7327140 DOI: 10.4062/biomolther.2020.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Hypersecretion of pulmonary mucus is a major pathophysiological feature in allergic and inflammatory respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). Overproduction and/or oversecretion of mucus cause the airway obstruction and the colonization of pathogenic microbes. Developing a novel pharmacological agent to regulate the production and/or secretion of pulmonary mucus can be a useful strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma. Thus, in the present review, we tried to give an overview of the conventional pharmacotherapy for mucus-hypersecretory diseases and recent research results on searching for the novel candidate agents for controlling of pulmonary mucus hypersecretion, aiming to shed light on the potential efficacious pharmacotherapy of mucus-hypersecretory diseases.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Fengri Jin
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
17
|
Li H, Lin L, Chong L, Gu S, Wen S, Yu G, Hu X, Dong L, Zhang H, Li C. Time-resolved mRNA and miRNA expression profiling reveals crucial coregulation of molecular pathways involved in epithelial-pneumococcal interactions. Immunol Cell Biol 2020; 98:726-742. [PMID: 32592597 PMCID: PMC7586809 DOI: 10.1111/imcb.12371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia worldwide and its complex interaction with the lung epithelium has not been thoroughly characterized. In this study, we exploited both RNA‐sequencing and microRNA (miRNA)‐sequencing approaches to monitor the transcriptional changes in human lung alveolar epithelial cells infected by S. pneumoniae in a time‐resolved manner. A total of 1330 differentially expressed (DE) genes and 45 DE miRNAs were identified in all comparisons during the infection process. Clustering analysis showed that all DE genes were grouped into six clusters, several of which were primarily involved in inflammatory or immune responses. In addition, target gene enrichment analyses identified 11 transcription factors that were predicted to link at least one of four clusters, revealing transcriptional coregulation of multiple processes or pathways by common transcription factors. Notably, pharmacological treatment suggested that phosphorylation of p65 is important for optimal transcriptional regulation of target genes in epithelial cells exposed to pathogens. Furthermore, network‐based clustering analysis separated the DE genes negatively regulated by DE miRNAs into two functional modules (M1 and M2), with an enrichment in immune responses and apoptotic signaling pathways for M1. Integrated network analyses of potential regulatory interactions in M1 revealed that multiple DE genes related to immunity and apoptosis were regulated by multiple miRNAs, indicating the coordinated regulation of multiple genes by multiple miRNAs. In conclusion, time‐series expression profiling of messenger RNA and miRNA provides a wealth of information for global transcriptional changes, and offers comprehensive insight into the molecular mechanisms underlying host–pathogen interactions.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chong
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuge Gu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shunhang Wen
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Yu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoguang Hu
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Dong
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Silibinin Upregulates CXCR4 Expression in Cultured Bone Marrow Cells (BMCs) Especially in Pulmonary Arterial Hypertension Rat Model. Cells 2020; 9:cells9051276. [PMID: 32455728 PMCID: PMC7290890 DOI: 10.3390/cells9051276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Previously we reported that silibinin ameliorated pulmonary arterial hypertension (PAH) in rat PAH models, possibly through the suppression of the CXCR4/SDF-1, until the point where PAH became a severe and irreversible condition. To further investigate how silibinin ameliorates PAH, we first attempted to clarify its effect on bone marrow cells (BMCs), since the CXCR4/SDF-1 axis is known to regulate stem cell migration and attachment in BM niches. Rat PAH models were established through a combination of a single subcutaneous injection of monocrotaline (MCT) and chronic hypoxic conditions (10% O2). BMCs were harvested and cultured, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry (FCM) were performed to investigate whether silibinin affected CXCR4 expression. Silibinin upregulated the gene expression of stem cell related markers CXCR4, SDF-1, SCF, and c-Kit, inflammatory markers IL-6 and TNFα, mesenchymal stem cell (MSC)-related markers CD44 and CD29, and the granulocyte/monocyte-macrophage marker CD14 in cultured BM in PAH rats, but not in normal rats, except CXCR4. FCM showed that silibinin increased the CXCR4-positive cell population in a granulocyte fraction of cultured BMCs. However, immunohistochemical (IHC) staining showed no significant change in CXCR4 expression in the BM of the tibias. These results suggest that silibinin increases the expression of CXCR4 in BM, and the increased CXCR4-positive cells could be granulocytes/monocyte-macrophages.
Collapse
|
19
|
Lim JO, Shin NR, Seo YS, Nam HH, Ko JW, Jung TY, Lee SJ, Kim HJ, Cho YK, Kim JC, Lee IC, Kim JS, Shin IS. Silibinin Attenuates Silica Dioxide Nanoparticles-Induced Inflammation by Suppressing TXNIP/MAPKs/AP-1 Signaling. Cells 2020; 9:cells9030678. [PMID: 32164364 PMCID: PMC7140632 DOI: 10.3390/cells9030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022] Open
Abstract
Silica dioxide nanoparticles (SiONPs) have been applied to several fields, such as drug delivery and gene therapy. However, SiONPs are a constituent of fine dust and can induce excessive inflammatory responses in the lungs via the airways. Silibinin, a major component of silymarin, has been known for its anti-oxidant and anti-inflammatory effects. In the present study, we explored the protective effects of silibinin against SiONPs-induced airway inflammation and explored its underlying mechanism of action, focusing on thioredoxin-interacting protein (TXNIP)/mitogen-activated protein kinases (MAPKs) in vitro and in vivo. In SiONPs-stimulated NCI-H292 airway epithelial cells, silibinin treatment effectively suppressed the elevation of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, which was accompanied by the reduction in the expression of TXNIP, MAPKs, and activator protein-1 (AP-1). In SiONPs-treated mice, silibinin administration inhibited the increase in inflammatory cell counts and proinflammatory mediators, and it alleviated airway inflammation by SiONPs exposure. In addition, silibinin administration effectively suppressed the elevation of TXNIP/MAPKs/AP-1 signaling by SiONPs exposure. Taken together, silibinin effectively inhibited SiONPs-induced inflammatory responses, and this effect was closely related to the inhibition of TXNIP/MAPK/AP-1 signaling. These results suggested that silibinin might be useful for reducing pulmonary inflammation induced by SiONPs.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Na-Rae Shin
- Research Institute of Radiation & Medical Science, Korea Institute of Radiation & Medical Sciences, Seoul 01812, Korea
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Geonjae-ro 177, Naju-si, Jeollanam-do 58245, Korea
| | - Hyeon-Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Geonjae-ro 177, Naju-si, Jeollanam-do 58245, Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Tae-Yang Jung
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Se-Jin Lee
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Ha-Jung Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk 28503, Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Jeonbuk Branch, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Korea
| | - Joong-Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Geonjae-ro 177, Naju-si, Jeollanam-do 58245, Korea
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
20
|
Samsuzzaman M, Uddin MS, Shah MA, Mathew B. Natural inhibitors on airway mucin: Molecular insight into the therapeutic potential targeting MUC5AC expression and production. Life Sci 2019; 231:116485. [PMID: 31116959 DOI: 10.1016/j.lfs.2019.05.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
Airway mucin overproduction is the hallmark risk factor of asthma, which is associated with the reduction of lung function. An aberrant mucin expression is responsible for airway obstruction due to its high viscous characteristics. Among the mucins discovered, MUC5AC is the prime mucin of airway epithelia. Nowadays, mucins induced asthma and chronic obstructive pulmonary disease (COPD) are a great concern all over the world. This review focuses on the effects of natural compounds that can be beneficial to explore new drugs to halt MUC5AC secretion and production in airway epithelial, and also their underlying molecular mechanisms based on recent studies. Several researchers are seeking natural sources to identify a new potent MUC5AC inhibitory agent for clinical applications, because of countable limitations of existing synthetic drugs. Currently, flavonoids, glycoside and steroids like natural compounds have acquired great attention due to their anti-inflammatory and mucoregulatory effects. Most importantly, many natural compounds have shown their potential effects as the modulator of mucin expression, secretion, and production. Therefore, targeting airway MUC5AC expression and production represents an auspicious area of research for the development of drugs against various respiratory diseases.
Collapse
Affiliation(s)
- Md Samsuzzaman
- Department of Molecular Medicine, School of Medicine, Keimyung University, Daegu 42601, South Korea; Department of Food and Life Science, Pukyong National University, Busan 48513, South Korea
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| |
Collapse
|
21
|
Sharifpanah F, Ali EH, Wartenberg M, Sauer H. The milk thistle (Silybum marianum) compound Silibinin stimulates leukopoiesis from mouse embryonic stem cells. Phytother Res 2019; 33:452-460. [PMID: 30548344 DOI: 10.1002/ptr.6241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
The milk thistle compound Silibinin (i.e., a 1:1 mixture of Silybin A and Silybin B) stimulates vasculogenesis of mouse embryonic stem (ES) cells. Because vasculogenesis and leukopoiesis are interrelated, the effect of Silibinin on leukopoiesis of ES cells was investigated. Treatment of differentiating ES cells with hydrosoluble Silibinin-C-2',3-dihydrogen succinate dose-dependent increased the number of CD18+ , CD45+ , and CD68+ cells, indicating leukocyte/macrophage differentiation. Silibinin treatment activated phosphoinositide 3-kinase (PI3K), AKT (protein kinase B), signal transducer and activator of transcription 3 (STAT3), stimulated hypoxia-induced factor-1α (HIF-1α), and vascular endothelial growth factor receptor 2 (VEGFR2) expression and raised intracellular nitric oxide (NO). Western blot experiments showed that upon coincubation with either the PI3K inhibitor LY294002, the STAT3 inhibitor Stattic, the AKT antagonist AKT inhibitor VIII, or the NO inhibitor L-NAME, the Silibinin-induced expression of CD18, CD45, and CD68 was abolished. Moreover, the stimulation of HIF-1α and VEGFR2 expression was blunted upon STAT3 and PI3K/AKT inhibition. Treatment of differentiating ES cells with L-NAME abolished the stimulation of VEGFR2 and VE-cadherin expression achieved with Silibinin, indicating that NO is involved in vasculogenesis and leukocyte differentiation pathways. In summary, the data of the present study demonstrate that Silibinin stimulates leukocyte differentiation of ES cells, which is associated to vasculogenesis and regulated by PI3K/AKT-, STAT3-, and NO-mediated signaling.
Collapse
Affiliation(s)
- Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Enas Hussein Ali
- Department of Physiology, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Preventive Effect of Garlic Oil and Its Organosulfur Component Diallyl-Disulfide on Cigarette Smoke-Induced Airway Inflammation in Mice. Nutrients 2018; 10:nu10111659. [PMID: 30400352 PMCID: PMC6267300 DOI: 10.3390/nu10111659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022] Open
Abstract
Garlic (Allium sativum) has traditionally been used as a medicinal food and exhibits various beneficial activities, such as antitumor, antimicrobial, hypolipidemic, antiarthritic, and hypoglycemic activities. The aim of this study was to explore the preventive effect of garlic oil (GO) and its organosulfur component diallyl disulfide (DADS) on cigarette smoke (CS)-induced airway inflammation. Mice were exposed to CS daily for 1 h (equivalent to eight cigarettes per day) for two weeks, and intranasally instilled with lipopolysaccharide (LPS) on day 12 after the initiation of CS exposure. GO and DADS were administered to mice by oral gavage, both at rates of 20 and 40 mg/kg, for 1 h before CS exposure for two weeks. In the bronchoalveolar lavage fluid, GO and DADS inhibited the elevation in the counts of inflammatory cells, particularly neutrophils, which were induced in the CS and LPS (CS + LPS) group. This was accompanied by the lowered production (relative to the CS + LPS group) of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Histologically, GO and DADS inhibited the CS- and LPS-induced infiltration of inflammatory cells into lung tissues. Additionally, GO and DADS inhibited the phosphorylation of extracellular signal-regulated kinase and the expression of matrix metalloproteinase-9 in the lung tissues. Taken together, these findings indicate that GO and DADS could be a potential preventive agent in CS-induced airway inflammation.
Collapse
|
23
|
Li XX, Jiang ZH, Zhou B, Chen C, Zhang XY. Hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice. J Physiol Biochem 2018; 75:29-37. [PMID: 30242628 DOI: 10.1007/s13105-018-0647-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/02/2018] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a common and serious threat to human health worldwide. In this study, the hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice was examined. Mice with alcohol-induced hepatotoxicity were treated intragastrically with gastrodin (50, 80, or 100 mg/kg). The mice treated with gastrodin experienced better outcomes than those who received only one dose of alcohol (50%, 10 mL/kg b.w.). Gastrodin treatment reduced the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), decreased hepatic malondialdehyde (MDA) content, and increased hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities in a dose-dependent manner. Gastrodin also alleviated histopathological changes induced by alcohol. Gastrodin protected against alcohol-induced increases in expression levels of the cytochrome P450 2E1 (CYP2E1) and mRNA levels of chemokine (C-X-C motif) ligand 1 (CXCL-1), interferon-γ (IFN-γ), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), vascular cell adhesion molecule 1 (VCAM-1), nuclear factor-kappa B (NF-κB), Toll-like receptor 4 (TLR-4), and activator of transcription 3 (STAT-3). Moreover, gastrodin-increased nuclear transcription factor 2 (Nrf2) translocates to the nucleus and enhanced the activity of anti-oxidant enzymes, and could thereby ameliorate alcohol-induced liver injury in mice. This study demonstrated that gastrodin may be an effective therapeutic agent against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Xin-Xin Li
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China
| | - Zhi-Hui Jiang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China
| | - Bo Zhou
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China.
| | - Xiao-Ying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China. .,College of Veterinary Medicine, Northwest A&F University (North Campus), Xinong Rd. 22, Post Box 19, Yangling, 712100, Shaanxi Province, China. .,Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
24
|
Park SH, Ko JW, Shin NR, Shin DH, Cho YK, Seo CS, Kim JC, Kim JS, Shin IS. 4-Hydroxycinnamic acid protects mice from cigarette smoke-induced pulmonary inflammation via MAPK pathways. Food Chem Toxicol 2017; 110:151-155. [PMID: 29054824 DOI: 10.1016/j.fct.2017.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/01/2023]
Abstract
Cigarette smoke (CS) is the main etiological cause of chronic obstructive pulmonary disease, the prevalence of which has continuously increased in recent years. 4-Hydroxycinnamic acid (HA) is a plant phenolic acid that has anti-inflammatory activities. In this study, we explored the therapeutic effects of HA on airway inflammation caused by CS and lipopolysaccharide (LPS) in mice. The animals received 1 h of CS exposure for 7 days and intranasal instillation of LPS on day 4. HA (10 and 20 mg/kg) was administered to animals via oral gavage 1 h before CS exposure. HA treatment significantly decreased the accumulation of inflammatory cells and production of cytokines, including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, caused by CS and LPS exposure. After histological examination, we observed that HA treatment significantly reduced the infiltration of inflammatory cells into lung tissue caused by CS and LPS exposure. Furthermore, HA-treated groups showed significantly decreased phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor-κB, and activity of cytochrome c oxidase subunit-2 caused by CS and LPS. In conclusion, HA effectively suppresses the airway inflammatory response induced by CS and LPS exposure, and is closely associated with the downregulation of mitogen-activated protein kinases signaling.
Collapse
Affiliation(s)
- Sung-Hyeuk Park
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Na-Rae Shin
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Ho Shin
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si 360-764, Chungbuk, Republic of Korea
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joong-Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
25
|
Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M. Emerging Importance of Phytochemicals in Regulation of Stem Cells Fate via Signaling Pathways. Phytother Res 2017; 31:1651-1668. [DOI: 10.1002/ptr.5908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Stem Cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
26
|
Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep 2017; 69:57-70. [DOI: 10.1016/j.pharep.2016.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
|