1
|
Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL, Chen JJ. Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther 2024; 24:400. [PMID: 39550552 PMCID: PMC11568601 DOI: 10.1186/s12906-024-04689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In China, Tongguanteng injection (TGT) is widely used in the treatment or adjuvant treatment of various types of cancer. However, the effect and mechanism of TGT in osteosarcoma is not clear. METHODS The 143B and MG-63 cells were treated with different concentrations of TGT. Cell proliferation, migration, invasion and apoptosis were detected using CCK8 assay, transwell assay and flow cytometry. Differentially expressed genes (DEGs) were screened using RNA sequencing (RNA-seq). The identified mRNA and protein expression associated with the IRE1/CHOP pathway was validated by RT-PCR and western blot assay. To explore the underlying mechanisms, 4-phenylbutyric acid (4-PBA) was selected as a specific endoplasmic reticulum (ER) stress inhibitor. Small interfering RNA (siRNA) or pEX-3-ERN1 plasmid was transfected into 143B cells to silence or overexpress IRE1, respectively. The potential downstream proteins, including CHOP, and apoptosis associated proteins, caspase-3 and PARP1 were determined. Furthermore, the effect of TGT was demonstrated in 143B cell tumor-bearing mice in vivo. H&E staining, TUNEL staining and immunohistochemistry were conducted in tumor tissues obtained from the xenograft mouse model. RESULTS TGT was shown to dramatically suppress the proliferation, migration and invasion, and induce apoptosis of osteosarcoma 143B and MG-63 cells in vitro. The identified DEGs included HSPA5 (encoding BiP) and ERN1 (encoding the IRE1 protein), as well as apoptosis-associated gene DDIT3 (encoding the CHOP protein). The term "IRE1-mediated unfolded protein response" was screened to be the most enriched biological process GO term. The expression of ER stress-associated proteins including ATF6, BiP, p-IRE1, XBP1s and CHOP, as well as apoptosis-associated cleaved caspase-3 and cleaved PARP1 proteins, was significantly upregulated by TGT treatment in osteosarcoma 143B cells, suggesting that TGT might promote the apoptosis of osteosarcoma 143B cells through the IRE1/CHOP pathway. Furthermore, knocking down IRE1 with si-IRE1 or inhibiting of ER stress with 4-PBA suppressed the expression of ATF6, BiP, XBP1s and CHOP induced by TGT, as well as the expression of cleaved caspase-3 and cleaved PARP1. On the contrary, overexpressing IRE1 promoted CHOP expression and induced osteosarcoma cell apoptosis. Consistent with in vitro results, TGT dramatically inhibited the tumor growth and promoted the expression of p-IRE1 and CHOP in tumor-bearing mice. CONCLUSION The findings suggest that TGT exerts an anti-osteosarcoma effect in vitro and in vivo. The underlying mechanism might be associated with the activation of IRE1/CHOP pathway in ER stress. Our findings suggest that targeting IRE1/CHOP pathway might be a potential novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiao-Chuan Xue
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ling-Yan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lan-Yi Wei
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Meng-Yue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
2
|
Liao C, Zhao M, Jiang X, Sun W, Zeng Q, Cai C, Yin X. Obovatol inhibits proliferation, invasion and immune escape of hepatocellular carcinoma cells through modulating the JAK/STST3/PD-L1 pathway. Int Immunopharmacol 2024; 141:112775. [PMID: 39146776 DOI: 10.1016/j.intimp.2024.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer that is fatal and has a dismal prognosis. Obovatol (Ob), a novel lignan derived from the leaf and stem bark of Magnolia obovata Thunb, has exhibited anti-tumor effect on diverse tumors. However, its effect and mechanisms on HCC remain to be further explored. METHODS Huh7 and Hep3B cells, as well as BALB/c nude mice were used to determine the function and mechanisms of Ob on growth, invasion and immune escape by cell counting kit-8, transwell, enzyme-linked immunosorbent assay (ELISA) and western blot experiments. RESULTS Ob reduced the cell viability of Huh7 and Hep3B cells, with a IC50 value of 57.41 µM and 62.86 µM, respectively. Ob declined the invasion ability, the protein expression of N-cadherin and the concentrations of IL-10 and TGF-β, whereas increased the E-cadherin expression and the contents of IFN-γ and IL-2 in Hep3B and Huh7 cells. Mechanically, Ob decreased the protein level of p-JAK/JAK, p-STAT3/STAT3 and PD-L1, which was partly restored with the treatment of RO8191, an activator of JAK/STAT3 axis. The effect of Ob on the cell viability, the invasion ability, the protein level of N-cadherin and E-cadherin, and the concentrations of IL-10, TGF-β, IFN-γ and IL-2 in both Hep3B and Huh7 cells was reversed with the management of RO8191. In vivo, Ob reduced tumor volume and weight, the level of N-cadherin, PD-L1, p-JAK/JAK, and p-STAT3/STAT3, with an elevated expression of E-cadherin and IFN-γ. CONCLUSION Ob downregulated the JAK/STST3/PD-L1 pathway to attenuate the growth, invasion and immune escape of HCC.
Collapse
Affiliation(s)
- Chunhong Liao
- Department of Hepatobiliary Surgery Ward I Minimally Invasive Surgery& Bariatric Metabolic Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Human 410005, PR China
| | - Min Zhao
- Department of Hepatobiliary Surgery Ward I Minimally Invasive Surgery& Bariatric Metabolic Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Human 410005, PR China
| | - Xiao Jiang
- Department of Hepatobiliary Surgery Ward I Minimally Invasive Surgery& Bariatric Metabolic Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Human 410005, PR China
| | - Wei Sun
- Department of Hepatobiliary Surgery Ward I Minimally Invasive Surgery& Bariatric Metabolic Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Human 410005, PR China
| | - Qihong Zeng
- Department of Hepatobiliary Surgery, Changsha County People's Hospital, Human, PR China
| | - Chengzhi Cai
- Hunan Normal University, Human, 410005, PR China
| | - Xinmin Yin
- Department of Hepatobiliary Surgery Ward I Minimally Invasive Surgery& Bariatric Metabolic Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Human 410005, PR China.
| |
Collapse
|
3
|
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res 2021; 35:4804-4833. [PMID: 33856730 DOI: 10.1002/ptr.7118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase-1 activation and the downstream substrates involved with the processing and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and tumor necrosis factor-α (TNF- α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb-based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb-based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Khedmatgozar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Kim J, Ahn H, Han BC, Shin H, Kim JC, Jung EM, Kim J, Yang H, Lee J, Kang SG, Lee SH, Lee GS. Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153019. [PMID: 31302317 DOI: 10.1016/j.phymed.2019.153019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Obovatol, a biphenolic chemical originating from Magnolia obovata, has been utilized as a traditional medicine for the treatment of inflammatory diseases. Inflammasome induces maturation of inflammatory cytokines in response to intracellular danger signals, and its dysregulation induces inflammatory diseases. PURPOSE The effect of obovatol on inflammasome activation has not been reported, although its anti-inflammatory properties have been studied. STUDY DESIGN/METHODS Obovatol was treated to macrophages with inflammasome triggers, and secretions of interleukin (IL)-1β, IL-18, and caspase-1 were measured as readouts of inflammasome activation. In addition, Asc pyroptosome formation, caspase-1 activity, and mitochondrial reactive oxygen species (ROS) production were analyzed in mechanical studies. Anti-inflammasome properties of obovatol were confirmed in an animal model. RESULTS Obovatol inhibited NLRP3, AIM2, and non-canonical inflammasomes through inhibition of Asc pyroptosome formation and mitochondrial ROS generation. In addition, obovatol disrupted the priming step of inflammasome activation and inhibited transcription of inflammatory cytokines. In mice, obovatol attenuated serum IL-1β elevation in response to monosodium urate crystals. CONCLUSION Obovatol is suggested as an inhibitor of NLRP3, AIM2, and non-canonical inflammasomes.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Hyunjung Shin
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Juyeol Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jeonghyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, 34337, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Yang L, Zhang Y, Yu X. Protective Effect of Obovatol Against MCF-7 Human Breast Adenocarcinoma Cells via Inducing Apoptosis and Cell Cycle Arrest. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.823.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
He M, Zhu J, Yu N, Kong H, Zeng X, Xie W, Xu H. The Superior Antitumor Effect of Self-Assembled Paclitaxel Nanofilaments for Lung Cancer Cells. Curr Drug Deliv 2019; 16:171-178. [PMID: 30332958 DOI: 10.2174/1567201815666181017094003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Paclitaxel (Ptx) has been regarded as one of the most effective chemotherapeutic drugs for lung cancers. Increasing studies focused on the nano-delivery system of Ptx due to its poor solubility and hypersensitivity. The aim of the recent study was to investigate the antitumor effects of self-assembled Ptx nano-filaments for lung cancer cells. METHODS In the present study, we designed and synthesized novel Ptx-loaded nano-filaments through conjugation of Ptx and succinic acid (SA) (Ptx-SA, P-NFs). Non-small cell lung cancer (NSCLC) A549 and H460 cells were used for detecting the antitumor effects of P-NFs, including cytotoxicity, apoptosis, and migration. Western blotting was performed for analyzing mechanism. RESULTS P-NFs nano-filaments exerted superior antitumor effects against NSCLC cells compared with free Ptx using cytotoxicity tests. Furthermore, P-NFs nano-filaments were much more effective in inducing NSCLC cells apoptosis and inhibiting A549 cells migration than free Ptx. To elucidate the underlying mechanisms, the expression of apoptotic and endoplasmic reticulum (ER) stress proteins was detected. The results indicated that P-NFs nano-filaments enhanced the expression of bax/bcl-2, protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), phospho- c-Jun N-terminal kinase (p-JNK), and C/EPB homologous protein (CHOP), which suggested that the strong antitumor effect of P-NFs nano-filaments may be partially attributed to the activation ER stress. CONCLUSION The current work demonstrated that P-NFs nano-filaments showed superior cytotoxicity of lung cancer cells, highlighting a novel profile of nano-filaments delivery systems as potential strategies for facilitating the therapeutic efficacy of Ptx in lung cancer treatment.
Collapse
Affiliation(s)
- Mengyu He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jiali Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.,Department of Pain, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting No.42, Nanjing, Jiangsu 210009, China
| | - Na Yu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Huae Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.,School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Duan M, Du X, Ren G, Zhang Y, Zheng Y, Sun S, Zhang J. Obovatol inhibits the growth and aggressiveness of tongue squamous cell carcinoma through regulation of the EGF‑mediated JAK‑STAT signaling pathway. Mol Med Rep 2018; 18:1651-1659. [PMID: 29845251 DOI: 10.3892/mmr.2018.9078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
Migration and invasion are the most important characteristics of human malignancies which limit cancer drug therapies in the clinic. Tongue squamous cell carcinoma (TSCC) is one of the rarest types of cancer, although it is characterized by a higher incidence, rapid growth and greater potential for metastasis compared with other oral neoplasms worldwide. Studies have demonstrated that the phenolic compound obovatol exhibits anti‑tumor effects. However, the potential mechanisms underlying obovatol‑mediated signaling pathways have not been completely elucidated in TSCC. The present study investigated the anti‑tumor effects and potential molecular mechanisms mediated by obovatol in TSCC cells and tissues. The results of the present study demonstrated that obovatol exerted cytotoxicity in SCC9 TSCC cells, and inhibited their migration and invasion. In addition, obovatol induced apoptosis in SCC9 TSCC cells by increasing caspase 9/3 and apoptotic protease enhancing factor 1 expression levels. Western blot analysis demonstrated that obovatol inhibited the expression of pro‑epidermal growth factor (EGF), Janus kinase (JAK), and signal transducer and activator of transcription (STAT) in SCC9 TSCC cells. A study of the molecular mechanisms demonstrated that depletion of EGF reversed the obovatol‑mediated inhibition of SCC9 TSCC cell growth and aggressiveness. Animal experiments indicated that obovatol significantly inhibited TSCC tumor growth and increased the number of apoptotic cells in tumor tissues. In conclusion, the results of the present study provided scientific evidence that obovatol inhibited TSCC cell growth and aggressiveness through the EGF‑mediated JAK‑STAT signaling pathway, suggesting that obovatol may be a potential anti‑TSCC agent.
Collapse
Affiliation(s)
- Mingli Duan
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Xiaoming Du
- Department of Maxillofacial Surgery, Tianjin Stomatological Hospital and Maxillofacial Surgery, Tianjin, Hebei 300041, P.R. China
| | - Gang Ren
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Yongdong Zhang
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Yu Zheng
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Shuping Sun
- Department of Maxillofacial Surgery, Tianjin Stomatological Hospital and Maxillofacial Surgery, Tianjin, Hebei 300041, P.R. China
| | - Jun Zhang
- Department of Maxillofacial Surgery, Tianjin Stomatological Hospital and Maxillofacial Surgery, Tianjin, Hebei 300041, P.R. China
| |
Collapse
|
8
|
miR-211 Plays a Critical Role in Cnidium officinale Makino Extract-Induced, ROS/ER Stress-Mediated Apoptosis in U937 and U266 Cells. Int J Mol Sci 2018; 19:ijms19030865. [PMID: 29543750 PMCID: PMC5877726 DOI: 10.3390/ijms19030865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 01/17/2023] Open
Abstract
Though Cnidium officinale Makino (COM) was known to have anti-angiogenic, anti-oxidant, neuroprotective, and anti-cancer effects, the underlying anticancer mechanism of COM using endoplasmic reticulum (ER) stress and miRNA remained unclear until now. Thus, in the current study, the inhibitory mechanism of COM in lymphoma and multiple myeloma (MM) cells was elucidated. COM exerted cytotoxicity in U937 and U266 but not Raw264.7 cells. COM treatment increased the expression of ER stress-related proteins such as p-protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), p-eukaryotic initiation factor (p-eIF2α), and activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). COM also cleaved poly (ADP-ribose) polymerase (PARP) in a dose-dependent manner in both cells. Also, reactive oxygen species (ROS) generation was elevated by COM treatment. Conversely, the apoptotic effect of COM treatment was blocked by N-acetyl-l-cysteine (NAC) pretreatment. Also, the pro-survival miRNA, miR-211 was decreased by COM treatment in U937 and U266 cells. miR-211 mimic attenuated COM-induced apoptosis. Taken together, these results support the scientific evidence that COM induces apoptosis via ROS generation/CHOP activation and miR-211 suppression in U937 and U266 cells.
Collapse
|
9
|
Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B. Transcription Factor C/EBP Homologous Protein in Health and Diseases. Front Immunol 2017; 8:1612. [PMID: 29230213 PMCID: PMC5712004 DOI: 10.3389/fimmu.2017.01612] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
C/EBP homologous protein (CHOP), known also as DNA damage-inducible transcript 3 and as growth arrest and DNA damage-inducible protein 153 (GADD153), is induced in response to certain stressors. CHOP is universally acknowledged as a main conduit to endoplasmic reticulum stress-induced apoptosis. Ongoing research established the existence of CHOP-mediated apoptosis signaling networks, for which novel downstream targets are still being determined. However, there are studies that contradict this notion and assert that apoptosis is not the only mechanism by which CHOP plays in the development of pathologies. In this review, insights into the roles of CHOP in pathophysiology are summarized at the molecular and cellular levels. We further focus on the newest advances that implicate CHOP in human diseases including cancer, diabetes, neurodegenerative disorders, and notably, fibrosis.
Collapse
Affiliation(s)
- Yuan Yang
- Center for Molecular Medicine, Medical School of Yangtze University, Jingzhou, China
- Department of Radiology, Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, China
| | - Ishan Naik
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Boxu Ren
- Center for Molecular Medicine, Medical School of Yangtze University, Jingzhou, China
- Department of Radiology, Medical School of Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Kang M, Li Y, Zhao Y, He S, Shi J. miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol 2017; 20:457-466. [PMID: 28871425 DOI: 10.1007/s12094-017-1730-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/28/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Lung cancer continues to be one of the top five causes of cancer-related mortality. This study aims to identify down- and upregulated miRNAs and mRNA which can be used as potential biomarkers and/or therapeutic targets for lung cancer. METHODS Integrated analysis of differential expression profiles of miRNA and mRNA in lung cancer was performed by searching Gene Expression Omnibus datasets. Based on miRNA expression profiles, direct mRNA targets of miRNAs with experimental support were identified through miRTarBase. The levels of representative miRNAs and mRNAs were confirmed through qualitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS The miR-33a was decreased in non-small cell lung cancer (NSCLC) tissues compared with the para-carcinoma tissues, whereas its target mRNA of cullin-associated NEDD8-dissociated protein 1 (CAND1) was increased in NSCLC tissues. Further research has shown that miR-33a can inhibit lung cancer cell proliferation, cell cycle progression, and migration by targeting CAND1. Moreover, the CAND1 knockout lung cancer cells showed similar results as cells transfected with miR-33a mimic. CONCLUSIONS These results suggested that the data mining based on online databases was an effective method in finding novel target in cancer research, and the miR-33a and CAND1 played an important role in lung cancer proliferation and cell migration.
Collapse
Affiliation(s)
- M Kang
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Li
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Zhao
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - S He
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| | - J Shi
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|