1
|
Aslan M, Gül M, Üremiş N, Akbulut S, Gürünlüoğlu S, Nur Özsoy E, Türköz Y, Ateş H, Akpinar N, Gül S, Gürünlüoğlu K, Demircan M. Ninety Sixth-Hour Impact of Scalding Burns on End Organ Damage, Systemic Oxidative Stress, and Wound Healing in Rats Treated With Three Different Types of Dressings. J Burn Care Res 2024; 45:733-743. [PMID: 38079377 DOI: 10.1093/jbcr/irad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, we investigated the effects of 3 different burn dressing treatments, including experimental, silver, and modern dressing materials, on systemic oxidative stress in rats with severe scald burns within the first 96 h. The rats were divided into five groups: a burn group (n = 10), a polylactic membrane group (n = 10), a silver sulfadiazine group (n = 10), a curcumin group (n = 10), and a control group (n = 10), consisting of equal numbers of female and male rats. In the first 4 groups, 30% of the rats' total body surface area was scalded at 95°C. The burn group was not treated. Each group was treated with group-name dressing material. The control group was neither treated nor burned. The rats were sacrificed, and blood and tissue samples were obtained at the 96th hour when severe effects of oxidative stress developed postburns. Systemic inflammatory biomarkers and oxidative stress parameters were examined. In addition, apoptosis and organ damage in liver, kidney, lung, and skin tissues were evaluated biochemically and histopathologically. When the parameters were statistically analyzed, we found that the systemic levels of oxidative stress and inflammatory damage to liver, kidney, and lung tissues were lower in the 3 treated groups than in the burn group. We believe that the dressing material's efficacy in the treatment of severe burns may be dependent on its ability to combat oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Pediatrics, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Nuray Üremiş
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Sami Akbulut
- Department of General Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Semra Gürünlüoğlu
- Department of Pathology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Eda Nur Özsoy
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Yusuf Türköz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Hasan Ateş
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Necmettin Akpinar
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Semir Gül
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Kubilay Gürünlüoğlu
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Mehmet Demircan
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| |
Collapse
|
2
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
3
|
Araújo GDMS, Loureiro AIS, Rodrigues JL, Barros PAB, Halicki PCB, Ramos DF, Marinho MAG, Vaiss DP, Vaz GR, Yurgel VC, Bidone J, Muccillo-Baisch AL, Hort MA, Paulo AMC, Dora CL. Toward a Platform for the Treatment of Burns: An Assessment of Nanoemulsions vs. Nanostructured Lipid Carriers Loaded with Curcumin. Biomedicines 2023; 11:3348. [PMID: 38137569 PMCID: PMC10742090 DOI: 10.3390/biomedicines11123348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 μg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.
Collapse
Affiliation(s)
| | - Ana Isabel Sá Loureiro
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | | | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | - Daniela Pastorim Vaiss
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Artur Manuel Cavaco Paulo
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| |
Collapse
|
4
|
Gong Y, Wang P, Cao R, Wu J, Ji H, Wang M, Hu C, Huang P, Wang X. Exudate Absorbing and Antimicrobial Hydrogel Integrated with Multifunctional Curcumin-Loaded Magnesium Polyphenol Network for Facilitating Burn Wound Healing. ACS NANO 2023; 17:22355-22370. [PMID: 37930078 DOI: 10.1021/acsnano.3c04556] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Burns are among the most common causes of trauma worldwide. Reducing the healing time of deep burn wounds has always been a major challenge. Traditional dressings not only require a lengthy medical procedure but also cause unbearable pain and secondary damage to patients. In this study, we developed an exudate-absorbing and antimicrobial hydrogel with a curcumin-loaded magnesium polyphenol network (Cur-Mg@PP) to promote burn wound healing. That hydrogel was composed of an ε-poly-l-lysine (ε-PLL)/polymer poly(γ-glutamic acid) (γ-PGA) hydrogel (PP) and curcumin-loaded magnesium polyphenol network (Cur-Mg). Because of the strong water absorption property of ε-PLL and γ-PGA, Cur-Mg@PP powder can quickly absorb the wound exudate and transform into a moist and viscous hydrogel, thus releasing payloads such as magnesium ion (Mg2+) and curcumin (Cur). The released Mg2+ and Cur demonstrated good therapeutic efficacy on analgesic, antioxidant, anti-inflammation, angiogenesis, and tissue regeneration. Our findings provide a strategy for accelerating burn wound healing.
Collapse
Affiliation(s)
- Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ran Cao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
de Moraes Soares Araújo G, Lima Rodrigues J, Campello Yurgel V, Silva C, Manuel Cavaco Paulo A, Isabel Saì Loureiro A, Lima Dora C. Designing and characterization of curcumin-loaded nanotechnological dressings: A promising platform for skin burn treatment. Int J Pharm 2023; 635:122712. [PMID: 36803927 DOI: 10.1016/j.ijpharm.2023.122712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Burns affect the skin and appendages, impair their function, and become favorable regions for bacterial infections. Owing to time-consuming and costly treatments, burns have been considered a public health problem. The limitations of the treatments used for burns have motivated the search for more efficient alternatives. Curcumin has several potential properties such as anti-inflammatory, healing, and antimicrobial activities. However, this compound is unstable and has low bioavailability. Therefore, nanotechnology could offer a solution for its application. This study aimed to develop and characterize dressings (or gauzes) impregnated with curcumin nanoemulsions that were prepared using two different techniques as a promising platform for skin burn treatment. In addition, the effect of cationization on curcumin release from the gauze was evaluated. Nanoemulsions were successfully prepared using two methods, ultrasound and a high-pressure homogenizer, with sizes of 135 nm and 144.55 nm, respectively. These nanoemulsions exhibited a low polydispersity index, adequate zeta potential, high encapsulation efficiency, and stability for up to 120 d. In vitro assays demonstrated a controlled release of curcumin between 2 and 240 h. No cytotoxicity was observed at concentrations of curcumin up to 75 µg/mL, and cell proliferation was observed. The incorporation of nanoemulsions in the gauze was successfully achieved, and the evaluation of curcumin release showed a faster release from cationized gauzes, whereas the non-cationized gauze promoted a more constant release.
Collapse
Affiliation(s)
- Gabriela de Moraes Soares Araújo
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Carla Silva
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Ana Isabel Saì Loureiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil.
| |
Collapse
|
6
|
Qiao Y, Zhang Q, Peng Y, Qiao X, Yan J, Wang B, Zhu Z, Li Z, Zhang Y. Effect of stem cell treatment on burn wounds: A systemic review and a meta-analysis. Int Wound J 2023; 20:8-17. [PMID: 35560869 PMCID: PMC9797938 DOI: 10.1111/iwj.13831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
A meta-analysis was performed to evaluate the effect of stem cells treatment in managing burn wounds. A systematic literature search up to March 2022 incorporated 24 studies reported between 2013 and 2021 including 400 animals with burn wounds at the beginning of the study; 211 were using stem cells treatment, and 189 controlled. Statistical tools like the contentious method were used within a random or fixed-influence model to establish the mean difference (MD) with 95% confidence intervals (CIs) to evaluate the influence of stem cells treatment in managing burn wounds. Stem cells treatment had a significantly higher burn wound healing rate (MD, 15.18; 95% CI, 11.29-19.07, P < .001), higher blood vessel number (MD, 12.28; 95% CI, 10.06-14.51, P < .001), higher vascular endothelial growth factor (MD, 10.24; 95% CI, 7.19-13.29, P < .001), lower interleukin-1 level (MD, -98.48; 95% CI, -155.33 to -41.63, P < .001), and lower tumour necrosis factor α level (MD, -28.71; 95% CI, -46.65 to -10.76, P < .002) compared with control in animals' models with burn wounds. Stem cells treatment had a significantly higher burn wound healing rate, higher blood vessel number, higher vascular endothelial growth factor, lower interleukin-1 level, and lower tumour necrosis factor α level compared with control in animals' models with burn wounds. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Yating Qiao
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei UniversityBoadingChina
| | - Qingrong Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Ying Peng
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | | | - Jun Yan
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Bolin Wang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Zhihan Zhu
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Zihan Li
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
7
|
Kumari M, Nanda DK. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns 2022:S0305-4179(22)00278-9. [DOI: 10.1016/j.burns.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
8
|
Palackic A, Jay JW, Duggan RP, Branski LK, Wolf SE, Ansari N, El Ayadi A. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina (B Aires) 2022; 58:medicina58070922. [PMID: 35888643 PMCID: PMC9315582 DOI: 10.3390/medicina58070922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Burn wound conversion refers to the phenomenon whereby superficial burns that appear to retain the ability to spontaneously heal, convert later into deeper wounds in need of excision. While no current treatment can definitively stop burn wound conversion, attempts to slow tissue damage remain unsatisfactory, justifying the need for new therapeutic interventions. To attenuate burn wound conversion, various studies have targeted at least one of the molecular mechanisms underlying burn wound conversion, including ischemia, inflammation, apoptosis, autophagy, generation of reactive oxygen species, hypothermia, and wound rehydration. However, therapeutic strategies that can target various mechanisms involved in burn wound conversion are still lacking. This review highlights the pathophysiology of burn wound conversion and focuses on recent studies that have turned to the novel use of biologics such as mesenchymal stem cells, biomaterials, and immune regulators to mitigate wound conversion. Future research should investigate mechanistic pathways, side effects, safety, and efficacy of these different treatments before translation into clinical studies.
Collapse
Affiliation(s)
- Alen Palackic
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, A-8036 Graz, Austria
| | - Jayson W. Jay
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Robert P. Duggan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Ludwik K. Branski
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Steven E. Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Naseem Ansari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Correspondence:
| |
Collapse
|
9
|
Fu Y, Li C, Li X, Zeng L, Wang Y, Fu Z, Shu L, Liu Y, Liu N, Yang Y, Tang J, Wang Y, Yang X. Amphibian-derived peptide homodimer promotes regeneration of skin wounds. Biomed Pharmacother 2021; 146:112539. [PMID: 34923337 DOI: 10.1016/j.biopha.2021.112539] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the increasing treatments in skin wound repair, existing therapeutic drugs cannot meet current needs. As such, skin wound repair remains a considerable clinical challenge, and thus the discovery of new pro-healing agents is crucial. Here, we identified the first naturally occurring peptide homodimer named as OA-GP11 dimer (OA-GP11d) from Odorrana andersonii (odorous frog) through the combinational methods of peptidomics and genomics. OA-GP11d was linked by the intramolecular disulfide formed by the 10th cysteine residues from the monomer of peptide with sequence of GPLSGINAECM, which effectively promoted the repair of full-thickness and burn wounds in mice. The underlying molecular mechanisms revealed that OA-GP11d not only accelerated the migration and cell-scratch healing of mouse keratinocytes, but also activated the mitogen-activated protein kinases (MAPKs) signaling pathway (phosphorylation of p38 and ERK subgroups) in immortalized human keratinocytes (HaCaT). Besides, OA-GP11d reduced the phosphorylation of nuclear factor-κB (NF-κB) and inhibitor of NF-κB (I-κB) induced by lipopolysaccharide stimulation in mouse macrophages, and inhibited the release of associated inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6. OA-GP11d is the first identified naturally occurring peptide dimer with significant pro-healing potency. Our results highlight the importance of amphibians as a source of novel pro-healing agents and suggest OA-GP11d as a potential new pro-regenerative drug candidate.
Collapse
Affiliation(s)
- Yang Fu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinnology Department of affiliated Hospital of Yunnan University, Kunming 650021, Yunnan, China.
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
10
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
11
|
Kilinc L, Uz YH. Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways. Clin Exp Reprod Med 2021; 48:211-220. [PMID: 34352168 PMCID: PMC8421662 DOI: 10.5653/cerm.2020.04105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Leyla Kilinc
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yesim Hulya Uz
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
12
|
The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Shi Y, Yang R, Tu L, Liu D. Long non‑coding RNA HOTAIR promotes burn wound healing by regulating epidermal stem cells. Mol Med Rep 2020; 22:1811-1820. [PMID: 32582996 PMCID: PMC7411415 DOI: 10.3892/mmr.2020.11268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Local transplantation of epidermal stem cells (ESCs) exerts a therapeutic effect on burn wounds. However, cell viability can impede their clinical application. HOX antisense intergenic RNA (HOTAIR) is involved in regulating adult tissue stem cells, as well as in developmental patterning and pluripotency. However, little is known about its role in regulating ESCs. The present study was performed to investigate the effects of HOTAIR in the modulation of ESCs and wound repair. Firstly, reverse transcription‑quantitative PCR was used to detect the relative expression of HOTAIR during burn wound healing in mice to determine whether HOTAIR is associated with wound healing. Subsequently, ESCs derived from mouse skin were transfected with a lentiviral vector to overexpress or knockdown HOTAIR. The effects of HOTAIR on cell proliferation and differentiation were measured by 5‑bromodeoxyuridine and MTT assays, and by assessing NANOG mRNA expression. Lastly, mice with burns were administered a subcutaneous injection of HOTAIR‑overexpressing ESCs. Images were captured and histological analyses were performed to evaluate wound healing. The results revealed that the expression of HOTAIR gradually increased and peaked at day 7 post‑burn and maintained at relatively high levels until day 14 post‑burn during wound healing. Furthermore, overexpression of HOTAIR promoted ESC proliferation and maintained the stem cell state in vitro. By contrast, suppression of HOTAIR inhibited cell proliferation and cell stemness. It was also identified that HOTIR‑overexpressing ESCs accelerated re‑epithelialization and facilitated burn wound repair. In conclusion, the present findings confirmed an essential role of HOTAIR in the regulation of ESC proliferation and stemness. Therefore, targeting HOTAIR in ESCs may be a potentially promising therapy for burn wound healing.
Collapse
Affiliation(s)
- Yan Shi
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Plastic and Aesthetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330008, P.R. China
| | - Ronghua Yang
- Burns Department, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Longxiang Tu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dewu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Li Y, Xia WD, Van der Merwe L, Dai WT, Lin C. Efficacy of stem cell therapy for burn wounds: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:322. [PMID: 32727568 PMCID: PMC7389817 DOI: 10.1186/s13287-020-01839-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Burns remain a serious public health problem with high morbidity and mortality rates worldwide. Although there are various treatment options available, there is no consensus on the best treatment for severe burns as of yet. Stem cell therapy has a bright prospect in many preclinical studies of burn wounds. The systematic review was performed for these preclinical studies to assess the efficacy and possible mechanisms of stem cells in treating burn wounds. METHODS Twenty-two studies with 595 animals were identified by searching PubMed, EMBASE, Web of Science, and Cochrane Library databases from inception to 13 May 2020. In addition, a manual search of references of studies was performed to obtain potential studies. No language or time restrictions were enforced. RevMan 5.3 was used for all data analysis. RESULTS The overall meta-analysis showed that stem cell therapy significantly improved burn healing rate (SMD 3.06, 95% CI 1.98 to 4.14), irrespective of transplant type, burn area, and treatment method in the control group. Subgroup analyses indicated that hair follicle stem cells seemed to exert more beneficial effects on animals with burn wounds (SMD 7.53, 95% CI 3.11 to 11.95) compared with other stem cells. Furthermore, stem cell therapy seemed to exert more beneficial effects on burn wounds with second-degree (SMD 7.53, 95% CI 3.11 to 11.95) compared with third-degree (SMD 2.65, 95% CI 1.31 to 4.00). CONCLUSIONS Meta-analysis showed that stem cell therapy exerts a healing function for burn wounds, mainly through angiogenesis and anti-inflammatory actions. These findings also demonstrate the need for considering variations in future clinical studies using stem cells to treat a burn wound in order to maximize the effectiveness. In general, stem cells can potentially become a novel therapy candidate for burn wounds.
Collapse
Affiliation(s)
- Yuan Li
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Wei-Dong Xia
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Leanne Van der Merwe
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Wen-Tong Dai
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Cai Lin
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
15
|
Wu C, Zhang Z, Zhou K, Chen W, Tao J, Li C, Xin H, Song Y, Ai F. Preparation and characterization of borosilicate-bioglass-incorporated sodium alginate composite wound dressing for accelerated full-thickness skin wound healing. Biomed Mater 2020; 15:055009. [PMID: 32422624 DOI: 10.1088/1748-605x/ab9421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Full-thickness skin injury is a serious and intractable clinical problem. Wound dressing is urgently needed to treat serious skin defects or induce skin reconstruction. For the first time, we demonstrated a borosilicate bioglass (BBG)-incorporated sodium alginate (SA) wound dressing by a simple and effective technique for accelerated wound healing. The physical and chemical properties, in vitro and in vivo properties of SA-BBG composite wound dressing have been investigated. The results show that the SA-BBG composite dressing possesses good water absorption performance. The boron and silicon ions in BBG can maintain stable and sustained release. Most importantly, the SA-BBG composite wound dressing shows outstanding wound healing ability in full-thickness skin defects in rats. The wounds treated with SA-BBG composite dressing groups had almost closed at day 15. When the ratio of sodium alginate to bioglass in the sponge is 3:1, the wound healing effect is the best. In conclusion, the SA-BBG composite dressing shows great potential for application in skin wound healing and SA3BBG works best.
Collapse
Affiliation(s)
- Chunxuan Wu
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
- These authors contributed equally to this work
| | - Zhongjie Zhang
- Xiaogan Central Hospital, Xiaogan, Hubei 432000, People's Republic of China
- These authors contributed equally to this work
| | - Kui Zhou
- School of Mechanic & Electronic Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Weigao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jun Tao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yulin Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Fanrong Ai
- School of Mechanic & Electronic Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
16
|
Chen Q, Deng X, Qiang L, Yao M, Guan L, Xie N, Zhao D, Ma J, Ma L, Wu Y, Yan X. Investigating the effects of walnut ointment on non-healing burn wounds. Burns 2020; 47:455-465. [PMID: 32736884 DOI: 10.1016/j.burns.2020.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
Effective treatments for non-healing burn wounds are an unmet need for 95% of burn sufferers. Approaches currently available to treat non-healing burn wounds are not satisfactory due to undesirable side-effects or expense. The anti-oxidation and antibacterial activities of walnuts are recommended for treating chronic diseases. Walnut ointment has been developed and successfully applied to treat non-healing burn wounds in our hospital for decades. We report herein a detailed retrospective case review examining patients' response to the walnut ointment. The walnut ointment has shortened healing time of non-healing burn wounds and improved clinical outcomes. In order to investigate the mechanism of action, walnut ointment has been applied on wounds of porcine full-thickness burn wound models. Histological and immunohistochemical analysis indicated our walnut ointment supports wound healing through promoting keratinocyte proliferation and differentiation. Taken together, we recommend the walnut ointment offers an effective and economical treatment for patients presenting with non-healing burn wounds.
Collapse
Affiliation(s)
- Qian Chen
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, Xinyang Central Hospital, Henan, China
| | - Xingwang Deng
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, The First People's Hospital of Shizuishan, Ningxia, China
| | - Lijuan Qiang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; Department of Burns and Plastic Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Ming Yao
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Lifeng Guan
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Nan Xie
- Clinical Medicine Research Center, National Health Commission, Beijing National Health Hospital, Beijing, China
| | - Dan Zhao
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jiaxiang Ma
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Yinsheng Wu
- Department of Burns and Plastic Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xie Yan
- Tissue Organ Bank & Tissue Engineering Centre, General Hospital of Ningxia Medical University, Ningxia, China; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
17
|
|
18
|
Izzo AA. An updated PTR virtual issue on the pharmacology of the nutraceutical curcumin. Phytother Res 2020; 34:671-673. [PMID: 32077178 DOI: 10.1002/ptr.6635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Xing F, Li L, Zhou C, Long C, Wu L, Lei H, Kong Q, Fan Y, Xiang Z, Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int 2019; 2019:2180925. [PMID: 31949436 PMCID: PMC6948329 DOI: 10.1155/2019/2180925] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lang Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Cheng Long
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, Sichuan, China
| |
Collapse
|
20
|
Kruglikov IL, Scherer PE. Caveolin as a Universal Target in Dermatology. Int J Mol Sci 2019; 21:E80. [PMID: 31877626 PMCID: PMC6981867 DOI: 10.3390/ijms21010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 is strongly expressed in different dermal and subdermal cells and physically interacts with signaling molecules and receptors, among them with transforming growth factor beta (TGF-β), matrix metalloproteinases, heat shock proteins, toll-like and glucocorticoid receptors. It should therefore be heavily involved in the regulation of cellular signaling in various hyperproliferative and inflammatory skin conditions. We provide an overview of the role of the caveolin-1 expression in different hyperproliferative and inflammatory skin diseases and discuss its possible active involvement in the therapeutic effects of different well-known drugs widely applied in dermatology. We also discuss the possible role of caveolin expression in development of the drug resistance in dermatology. Caveolin-1 is not only an important pathophysiological factor in different hyperproliferative and inflammatory dermatological conditions, but can also serve as a target for their treatment. Targeted regulation of caveolin is likely to serve as a new treatment strategy in dermatology.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| |
Collapse
|
21
|
Sharifi S, Zununi Vahed S, Ahmadian E, Maleki Dizaj S, Abedi A, Hosseiniyan Khatibi SM, Samiei M. Stem Cell Therapy: Curcumin Does the Trick. Phytother Res 2019; 33:2927-2937. [DOI: 10.1002/ptr.6482] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Ahmadian
- Kidney Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Atefeh Abedi
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
| | | | - Mohammad Samiei
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
- Stem Cell Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
22
|
Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther 2019; 10:229. [PMID: 31358069 PMCID: PMC6664527 DOI: 10.1186/s13287-019-1312-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment. Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001 China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 512100 China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, 410013 Hunan China
| |
Collapse
|