1
|
Onisuru O, Achilonu I. High-throughput virtual screening and empirical validation of probable inhibitors of Plasmodium falciparum and vivax glutathione transferase using bromosulfophthalein as the benchmark ligand. Int J Biol Macromol 2025; 302:140526. [PMID: 39892549 DOI: 10.1016/j.ijbiomac.2025.140526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Plasmodium falciparum Glutathione S-Transferase (PfGST) and Plasmodium vivax Glutathione S-Transferase (PvGST) play vital roles in detoxification and parasite survival, making them key targets for antimalarial drug development. These enzymes offer potential for creating therapies with improved efficacy, reduced resistance, and minimal toxicity. Natural compounds like flavonoids, known for their antiplasmodial properties, are promising scaffolds for new drug designs. This study computationally screened baicalin (BA) and 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone (TTMF), synthesizable and affordable flavonoids from the MedChemExpress database, as potential inhibitors of PfGST and PvGST, outperforming BSP. Molecular dynamics simulations revealed that BA and TTMF stabilize enzyme interactions through hydrogen bonds and van der Waals forces, altering protein compactness and dynamics, suggesting non-competitive, allosteric inhibition. Empirical validation showed complete enzymatic inhibition by BA and TTMF with IC50 values of 1.69 and 1.71 μM, respectively, while minimizing human GST inhibition. Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as substrates, BA and TTMF demonstrated tight binding near the hydrophobic substrate-binding sites of PfGST and PvGST. Spectroscopic analysis using 8-anilino-1-naphthalenesulfonate (ANS) confirmed their ligandin effects and binding at the dimer interface. These findings highlight BA and TTMF as promising candidates for developing effective antimalarial therapies.
Collapse
Affiliation(s)
- Olalekan Onisuru
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa.
| |
Collapse
|
2
|
Owumi S, Olanlokun JO, Wu B, Duro-Ladipo AM, Oyelere SE, Khan SI, Oyelere AK. Elucidation of the Active Agents in a West African Ground Herbal Medicine Formulation That Elicit Antimalarial Activities in In Vitro and In Vivo Models. Molecules 2024; 29:5658. [PMID: 39683816 DOI: 10.3390/molecules29235658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Agunmu (ground herbal medicine) is a form of West African traditional medicine consisting of a cocktail of herbs. The goal of this study is to evaluate a formulation of Agunmu made from M. indica, A. repens, E. chlorantha, A. boonei, and B. ferruginea, sold in the open market and commonly used for the treatment of malaria by the locals, for its antimalarial effects and to determine the active principles that may contribute to the antimalarial effect. The ethanolic extract obtained from this formulation (Ag-Iba) was analyzed, using TLC, LC-MS, and Tandem-MS techniques, to determine its phytochemical properties. The extract was tested in vitro against representative bacteria strains, cancer and normal human cell lines, and susceptible (D6) and resistant (W2) Plasmodium falciparum. In subsequent in vivo experiments, graded doses of the extract were used to treat mice infected with chloroquine-susceptible (NK-65) and chloroquine-resistant (ANKA) strains of Plasmodium berghei. Bacteria growth was monitored with a disc diffusion assay, cancer cell viability was determined with MTS assay, and percentage parasitemia and parasite clearance were determined by microscopy. Bound heme content, host mitochondria permeability transition (mPT) pore opening, F0F1-ATPase, and lipid peroxidation were determined via spectrophotometry. Indices of oxidative stress, anti-oxidant activities, toxicity, cell death, and inflammatory responses were obtained using biochemical and ELISA techniques. The histology of the liver and spleen was performed using the standard method. We elucidated the structures of the critical active principles in the extract to be flavonoids: kaempferol, quercetin, myricetin, and their glycosides with little or no detectable levels of the toxic Aristolochic acids that are found in Aristolochia repens, one of the components of the formulation. The extract also showed anti-plasmodial activity in in vitro and in vivo models. Furthermore, the extract dose-dependently decreased mitochondrial dysfunction, cell death, and inflammatory and oxidative damage but increased antioxidant potentials. Presumably, the active principles in the extract work as a combinatorial therapy to elicit potent antimalarial activity. Overall, our study unraveled the active components from a commercial herbal formulation that could be reformulated for antimalarial therapy.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan 200005, Nigeria
| | - John O Olanlokun
- Laboratories for Biomembrane and Biotechnology Research, Department of Biochemistry, University of Ibadan, Ibadan 200005, Nigeria
| | - Bocheng Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Shabana I Khan
- NCNPR, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Al-Huqail AA, Bekhit AA, Ullah H, Ayaz M, Mostafa NM. Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers. AGRONOMY 2023; 13:2765. [DOI: 10.3390/agronomy13112765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Calendula officinalis L. (Asteraceae), commonly known as English or pot marigold, is an herbaceous plant with edible flowers. In this study, UPLC-ESI-MS/MS analysis was used for tentative identification of compounds in marigold flower methanol extract (MFE). In addition, RP-HPLC-DAD analysis was used to quantify the flavonoids hesperidin and rutin in MFE. The antileishmanial potentials of the crude extract and compounds were evaluated against Leishmania major promastigotes and amastigotes. Further, in vivo 4-day antimalarial testing of the extract and compounds was carried out at doses of 25 mg kg−1 per day using mice infected with ANKA strain of Plasmodium berghei, following standard procedure. Molecular docking studies were carried out to assess the binding mode of flavonoids against the vital targets of L. major, including pteridine reductase 1 and farnesyl diphosphate synthase enzymes. The in silico antimalarial potentials of flavonoids were evaluated against wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase and phosphoethanolamine methyltransferase enzymes. Twenty compounds were tentatively identified by UPLC-ESI-MS/MS analysis of MFE, of which, seven flavonoids, six saponins, three phenolic acids, three fatty acids, and a triterpene glycoside were identified. MFE phytochemical analysis revealed that hesperidin content was 36.17 mg g−1 extract, that is, 9.9-fold their content of rutin (3.65 mg g−1 extract). The method was validated to ensure reproducibility of the results. The tested samples exhibited antileishmanial potentials against L. major promastigotes, with IC50 values of 98.62, 118.86, and 104.74 ng µL−1 for hesperidin, rutin, and MFE, respectively. Likewise, hesperidin showed inhibitory potentials against L. major amastigote with an IC50 value of 108.44 ± 11.2 µM, as compared to miltefosine. The mean survival time, parasitemia, and suppression percentages showed similar results for the three samples against ANKA strain of P. berghei. The docking studies showed good binding affinities of rutin and hesperidin with numerous H-bonding and van der Waals interactions. Marigold flowers are nutraceuticals, presenting important sources of bioactive flavonoids with potential against neglected tropical diseases.
Collapse
Affiliation(s)
- Arwa A. Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq 32038, Bahrain
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
4
|
Gudla CS, Selvam V, Selvaraj SS, Tripathi R, Joshi P, Shaham SH, Singh M, Shandil RK, Habib S, Narayanan S. Novel Baicalein-Derived Inhibitors of Plasmodium falciparum. Pathogens 2023; 12:1242. [PMID: 37887758 PMCID: PMC10610289 DOI: 10.3390/pathogens12101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria, a life-threatening mosquito-borne disease caused by Plasmodium parasites, continues to pose a significant global health burden. Despite notable progress in combating the disease in recent years, malaria remains prevalent in many regions, particularly in Southeast Asia and most of sub-Saharan Africa, where it claims hundreds of thousands of lives annually. Flavonoids, such as the baicalein class of compounds, are known to have antimalarial properties. In this study, we rationally designed and synthesized a series of baicalein derivatives and identified a lead compound, FNDR-10132, that displayed potent in vitro antimalarial activity against Plasmodium falciparum (P. falciparum), both chloroquine-sensitive (60 nM) and chloroquine-resistant (177 nM) parasites. FNDR-10132 was evaluated for its antimalarial activity in vivo against the chloroquine-resistant strain Plasmodium yoelii N67 in Swiss mice. The oral administration of 100 mg/kg of FNDR-10132 showed 44% parasite suppression on day 4, with a mean survival time of 13.5 ± 2.3 days vs. 8.4 ± 2.3 days of control. Also, FNDR-10132 displayed equivalent activity against the resistant strains of P. falciparum in the 200-300 nM range. This study offers a novel series of antimalarial compounds that could be developed into potent drugs against chloroquine-resistant malarial parasites through further chemistry and DMPK optimization.
Collapse
Affiliation(s)
| | - Vignesh Selvam
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| | | | - Renu Tripathi
- Molecular Microbiology and Immunology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Prince Joshi
- Molecular Microbiology and Immunology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Salique Hassan Shaham
- Molecular Microbiology and Immunology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Mayas Singh
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| | | | - Saman Habib
- Biochemistry and Structural Biology, CSIR—Central Drug Research Institute, Lucknow 226301, Uttar Pradesh, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Bangalore 561203, Karnataka, India
| |
Collapse
|
5
|
Caleffi GS, Rosa AS, de Souza LG, Avelar JLS, Nascimento SMR, de Almeida VM, Tucci AR, Ferreira VN, da Silva AJM, Santos-Filho OA, Miranda MD, Costa PRR. Aurones: A Promising Scaffold to Inhibit SARS-CoV-2 Replication. JOURNAL OF NATURAL PRODUCTS 2023; 86:1536-1549. [PMID: 37257024 DOI: 10.1021/acs.jnatprod.3c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aurones are a small subgroup of flavonoids in which the basic C6-C3-C6 skeleton is arranged as (Z)-2-benzylidenebenzofuran-3(2H)-one. These compounds are structural isomers of flavones and flavonols, natural products reported as potent inhibitors of SARS-CoV-2 replication. Herein, we report the design, synthesis, and anti-SARS-CoV-2 activity of a series of 25 aurones bearing different oxygenated groups (OH, OCH3, OCH2OCH3, OCH2O, OCF2H, and OCH2C6H4R) at the A- and/or B-rings using cell-based screening assays. We observed that 12 of the 25 compounds exhibit EC50 < 3 μM (8e, 8h, 8j, 8k, 8l, 8m, 8p, 8q, 8r, 8w, 8x, and 8y), of which five presented EC50 < 1 μM (8h, 8m, 8p, 8q, and 8w) without evident cytotoxic effect in Calu-3 cells. The substitution of the A- and/or B-ring with OCH3, OCH2OCH3, and OCF2H groups seems beneficial for the antiviral activity, while the corresponding phenolic derivatives showed a significant decrease in the anti-SARS-CoV-2 activity. The most potent compound of the series, aurone 8q (EC50 = 0.4 μM, SI = 2441.3), is 2 to 3 times more effective than the polyphenolic flavonoids myricetin (2) and baicalein (1), respectively. Investigation of the five more active compounds as inhibitors of SARS-CoV-2 3CLpro based on molecular dynamic calculations suggested that these aurones should detach from the active site of 3CLpro, and, probably, they could bind to another SARS-CoV-2 protein target (either receptor or enzyme).
Collapse
Affiliation(s)
| | - Alice S Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | | | | | | | | - Amanda R Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | - Vivian N Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | | | | - Milene D Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
7
|
Bezerra JJL, Pinheiro AAV, Dourado D. Antimalarial potential of Moringa oleifera Lam. (Moringaceae): A review of the ethnomedicinal, pharmacological, toxicological, and phytochemical evidence. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220079. [PMID: 37266375 PMCID: PMC10231345 DOI: 10.1590/1678-9199-jvatitd-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Several regions of the world frequently use the species Moringa oleifera Lam. (Moringaceae) in traditional medicine. This situation is even more common in African countries. Many literature reports point to the antimalarial potential of this species, indicating the efficacy of its chemical compounds against malaria-causing parasites of the genus Plasmodium. From this perspective, the present study reviews the ethnobotanical, pharmacological, toxicological, and phytochemical (flavonoids) evidence of M. oleifera, focusing on the treatment of malaria. Scientific articles were retrieved from Google Scholar, PubMed®, ScienceDirect®, and SciELO databases. Only articles published between 2002 and 2022 were selected. After applying the inclusion and exclusion criteria, this review used a total of 72 articles. These documents mention a large use of M. oleifera for the treatment of malaria in African and Asian countries. The leaves (63%) of this plant are the main parts used in the preparation of herbal medicines. The in vivo antimalarial activity of M. oleifera was confirmed through several studies using polar and nonpolar extracts, fractions obtained from the extracts, infusion, pellets, and oils obtained from this plant and tested in rodents infected by the following parasites of the genus Plasmodium: P. berghei, P. falciparum, P. yoelii, and P. chabaudi. Extracts obtained from M. oleifera showed no toxicity in preclinical tests. A total of 46 flavonoids were identified in the leaves and seeds of M. oleifera by different chromatography and mass spectrometry methods. Despite the scarcity of research on the antimalarial potential of compounds isolated from M. oleifera, the positive effects against malaria-causing parasites in previous studies are likely to correlate with the flavonoids that occur in this species.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Graduate Program in Plant Biology, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Douglas Dourado
- Graduate Program in Biosciences and Biotechnology in Health, Department of Immunology, Aggeu Magalhães-Fiocruz Institute, Recife, PE, Brazil
| |
Collapse
|
8
|
Peres RB, Batista MM, Bérenger ALR, Camillo FDC, Figueiredo MR, Soeiro MDNC. Antiparasitic Activity of Plumbago auriculata Extracts and Its Naphthoquinone Plumbagin against Trypanosoma cruzi. Pharmaceutics 2023; 15:pharmaceutics15051535. [PMID: 37242777 DOI: 10.3390/pharmaceutics15051535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) caused by the protozoan Trypanosoma cruzi affects more than six million people worldwide. Treatment is restricted to benznidazole (Bz) and nifurtimox (Nf) that display low activity in the later chronic stage besides triggering toxic events that result in treatment abandonment. Therefore, new therapeutic options are necessary. In this scenario, natural products emerge as promising alternatives to treat CD. In the family Plumbaginaceae, Plumbago sp. exhibits a broad spectrum of biological and pharmacological activities. Thus, our main objective was to evaluate, in vitro and in silico, the biological effect of crude extracts of root and of aerial parts of P. auriculata, as well as its naphthoquinone Plumbagin (Pb) against T. cruzi. The phenotypic assays revealed potent activity of the root extract against different forms (trypomastigote and intracellular forms) and strains (Y and Tulahuen), with a compound concentration that reduced 50% of the number of the parasite (EC50) values ranging from 1.9 to 3.9 µg/mL. In silico analysis showed that Pb is predicted to have good oral absorption and permeability in Caco2 cells, besides excellent probability of absorption by human intestinal cells, without toxic or mutagenic potential effects, not being predicted as a substrate or inhibitor of P-glycoprotein. Pb was as potent as Bz against intracellular forms and displayed a superior trypanosomicidal effect (about 10-fold) in bloodstream forms (EC50 = 0.8 µM) as compared to the reference drug (8.5 µM). The cellular targets of Pb on T. cruzi were evaluated using electron microscopy assays and the findings on bloodstream trypomastigotes showed several cellular insults related to the autophagic process. Regarding toxicity in mammalian cells, the root extracts and the naphthoquinone present a moderate toxic profile on fibroblasts and cardiac cell lines. Then, aiming to reduce host toxicity, the root extract and Pb were tested in combination with Bz, and the data showed additive profiles with the sum of the fractional inhibitory concentration indexes (ΣFICIs) being 1.45 and 0.87, respectively. Thus, our work reveals the promising antiparasitic activity of Plumbago auriculata crude extracts and its purified naphthoquinone Plumbagin against different forms and strains of Trypanosoma cruzi in vitro.
Collapse
Affiliation(s)
- Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 210360-040, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 210360-040, Brazil
| | - Ana Luíza Rangel Bérenger
- Laboratório de Tecnologia para Biodiversidade em Saúde-TecBio/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Flávia da Cunha Camillo
- Laboratório de Tecnologia para Biodiversidade em Saúde-TecBio/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Maria Raquel Figueiredo
- Laboratório de Tecnologia para Biodiversidade em Saúde-TecBio/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 210360-040, Brazil
| |
Collapse
|
9
|
Majumder N, Banerjee A, Saha S. A review on new natural and synthetic anti-leishmanial chemotherapeutic agents and current perspective of treatment approaches. Acta Trop 2023; 240:106846. [PMID: 36720335 DOI: 10.1016/j.actatropica.2023.106846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Leishmaniases are considered among the most neglected yet dangerous parasitic diseases worldwide. According to the recent WHO report (Weekly Epidemiological Record, Sep, 2021), 200 countries and territories reported leishmanises cases in 2020; of which 89 (45%) for CL, and 79 (40%) for VL were endemic. Indian subcontinent (India, Bangladesh and Nepal), one of the three eco-epidemiological hotspots of VL, currently reported 18% of the total cases of VL worldwide. Eastern Mediterranean region and the Region of the Americas together reported >90% of the new CL cases, of which >80% were from Afghanistan, Algeria, Brazil, Colombia, Iraq, Pakistan and the Syrian Arab Republic. While considering the current therapeutic options, conventional anti-leishmanial drugs have long been proved to be toxic and/or expensive and have resulted in extensive drug resistance in India. Recent searches for novel anti-leishmanial drugs have led to find out the prime cellular targets and metabolic pathways to bridge the gap between the known facts and unexplored data. Cutting edge knowledge based drug designing has simplified the search for novel molecules with leishmanicidal efficacy by identifying ligand-receptor interactions and has accelerated the cost effective primary discovery of molecules through computational validation against Leishmaniases. This review focuses on the limitations of conventional drugs, and discusses the chemotherapeutic potential of many novel natural and synthetic anti-leishmanial agents reported since the last decade. It is also interpreted that some of the reported molecules might be tested singly or as a part of combinatorial therapy on pre-clinical and clinical level.
Collapse
Affiliation(s)
- Nilanjana Majumder
- Department of Biotechnology, Visva-Bharati, Santiniketan, 731235 West Bengal, India
| | - Antara Banerjee
- Department of Zoology, Bangabasi College, 19 Rajkumar Chakraborty Sarani, Kolkata, 700009 West Bengal, India
| | - Samiran Saha
- Department of Biotechnology, Visva-Bharati, Santiniketan, 731235 West Bengal, India.
| |
Collapse
|
10
|
Zothantluanga JH, Chetia D, Rajkhowa S, Umar AK. Unsupervised machine learning, QSAR modelling and web tool development for streamlining the lead identification process of antimalarial flavonoids. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:117-146. [PMID: 36744427 DOI: 10.1080/1062936x.2023.2169347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Identification of lead compounds with the traditional laboratory approach is expensive and time-consuming. Nowadays, in silico techniques have emerged as a promising approach for lead identification. In this study, we aim to develop robust and predictive 2D-QSAR models to identify lead flavonoids by predicting the IC50 against Plasmodium falciparum. We applied machine learning algorithms (Principal component analysis followed by K-means clustering) and Pearson correlation analysis to select 9 molecular descriptors (MDs) for model building. We selected and validated the three best QSAR models after execution of multiple linear regression (MLR) 100 times with different combinations of MDs. The developed models have fulfilled the five principles for QSAR models as specified by the Organization for Economic Co-operation and Development. The outcome of the study is a reliable and sustainable in silico method of IC50 (Mean ± SD) prediction that will positively impact the antimalarial drug development process by reducing the money and time required to identify potential antimalarial lead compounds from the class of flavonoids. We also developed a web tool (JazQSAR, https://etflin.com/news/4) to offer an easily accessible platform for the developed QSAR models.
Collapse
Affiliation(s)
- J H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - D Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - S Rajkhowa
- Centre for Biotechnology and Bioinformatics, Faculty of Biological Sciences, Dibrugarh University, Dibrugarh, India
| | - A K Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
11
|
Pereira AM, Cidade H, Tiritan ME. Stereoselective Synthesis of Flavonoids: A Brief Overview. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010426. [PMID: 36615614 PMCID: PMC9823814 DOI: 10.3390/molecules28010426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Stereoselective synthesis has been emerging as a resourceful tool because it enables the obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are natural products with several biological activities. Owing to their biological potential and aiming to achieve enantiomerically pure forms, several methodologies of stereoselective synthesis have been implemented. Those approaches encompass stereoselective chalcone epoxidation, Sharpless asymmetric dihydroxylation, Mitsunobu reaction, and the cycloaddition of 1,4-benzoquinone. Chiral auxiliaries, organo-, organometallic, and biocatalysis, as well as the chiral pool approach were also employed with the goal of obtaining chiral bioactive flavonoids with a high enantiomeric ratio. Additionally, the employment of the Diels-Alder reaction based on the stereodivergent reaction on a racemic mixture strategy or using catalyst complexes to synthesise pure enantiomers of flavonoids was reported. Furthermore, biomimetic pathways displayed another approach as illustrated by the asymmetric coupling of 2-hydroxychalcones driven by visible light. Recently, an asymmetric transfer hydrogen-dynamic kinetic resolution was also applied to synthesise (R,R)-cis-alcohols which, in turn, would be used as building blocks for the stereoselective synthesis of flavonoids.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
12
|
Design, synthesis, in vitro, in silico, and SAR studies of flavone analogs towards anti-dengue activity. Sci Rep 2022; 12:21646. [PMID: 36517573 PMCID: PMC9751290 DOI: 10.1038/s41598-022-25836-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Flavone has recently been proved as a promising scaffold for the development of a novel drug against dengue fever, one of the major health threats globally. However, the structure-activity relationship study of flavones on the anti-dengue activity remains mostly limited to the natural-occuring analogs. Herein, 27 flavone analogs were successfully synthesized, of which 5 analogs (5e, 5h, 5o, 5q, and 5r) were novel. In total, 33 analogs bearing a diverse range of substituents were evaluated for their efficacy against DENV2-infected LLC/MK2 cells. The introduction of electron-withdrawing groups on ring B such as Br (5m) or NO2 (5n and 5q) enhanced the activity significantly. In particular, the tri-ester 5d and di-ester 5e exhibited low toxicity against normal cell, and exceptional DENV2 inhibition with the EC50 as low as 70 and 68 nM, respectively, which is over 300-fold more active compared to the original baicalein reference. The viral targets for these potent flavone analogs were predicted to be NS5 MTase and NS5 RdRp, as suggested by the likelihood ratios from the molecular docking study. The great binding interaction energy of 8-bromobaicalein (5f) confirms the anti-dengue activity at atomistic level. The physicochemical property of all the synthetic flavone analogs in this study were predicted to be within the acceptable range. Moreover, the QSAR model showed the strong correlation between the anti-dengue activity and the selected molecular descriptors. This study emphasizes the great potential of flavone as a core structure for further development as a novel anti-dengue agent in the future.
Collapse
|
13
|
Hitting drug-resistant malaria infection with triazole-linked flavonoid-chloroquine hybrid compounds. Future Med Chem 2022; 14:1865-1880. [PMID: 36622669 DOI: 10.4155/fmc-2022-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Malaria represents the major parasitic disease in tropical regions, and the development of new potent drugs is of pivotal importance. In this study, a series of hybrid molecules were designed by linking the 7-chloroquinoline core of chloroquine to different fluorinated flavonoid-related scaffolds. Materials & methods: Compounds were prepared by exploiting the click chemistry approach, allowing the introduction of a 1,2,3-triazole, a privileged structural motif in antiparasitic dug discovery. Results: Compounds 1b and 1c were the most interesting and were endowed with the highest in vitro activity, mainly against a resistant Plasmodium falciparum strain. They also inhibited hemozoin formation, and 1c was more effective than chloroquine against stage V gametocytes. Conclusion: The homoisoflavone core is a new, promising antimalarial scaffold that deserves further investigation.
Collapse
|
14
|
Prasad SR, Kumar P, Mandal S, Mohan A, Chaurasia R, Shrivastava A, Nikhil P, Aishwarya D, Ramalingam P, Gajbhiye R, Singh S, Dasgupta A, Chourasia M, Ravichandiran V, Das P, Mandal D. Mechanistic insight into the role of mevalonate kinase by a natural fatty acid-mediated killing of Leishmania donovani. Sci Rep 2022; 12:16453. [PMID: 36180490 PMCID: PMC9525708 DOI: 10.1038/s41598-022-20509-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
We evaluated the anti-leishmanial efficacy of different saturated medium-chain fatty acids (FAs, C8–C18) where FA containing C8 chain, caprylic acid (CA), was found to be most potent against Leishmania donovani, the causative agent for visceral leishmaniasis (VL). Different analogs of CA with C8 linear chain, but not higher, along with a carboxyl/ester group showed a similar anti-leishmanial effect. Ergosterol depletion was the major cause of CA-mediated cell death. Molecular docking and molecular dynamic simulation studies indicated the enzyme mevalonate kinase (MevK) of the ergosterol biosynthesis pathway as a possible target of CA. Enzyme assays with purified recombinant MevK and CA/CA analogs confirmed the target with a competitive inhibition pattern. Using biochemical and biophysical studies; strong binding interaction between MevK and CA/CA analogs was established. Further, using parasites with overexpressed MevK and proteomics studies of CA-treated parasites the direct role of MevK as the target was validated. We established the mechanism of the antileishmanial effect of CA, a natural product, against VL where toxicity and drug resistance with current chemotherapeutics demand an alternative. This is the first report on the identification of an enzymatic target with kinetic parameters and mechanistic insights against any organism for a natural medium-chain FA.
Collapse
Affiliation(s)
- Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna Bihta, Bihar, 801106, India
| | - Anu Mohan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Radhika Chaurasia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, 201314, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - P Ramalingam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Rahul Gajbhiye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Rd, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Rd, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Chourasia
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201301, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India.,National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna Bihta, Bihar, 801106, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India.
| |
Collapse
|
15
|
Zothantluanga JH, Zonunmawii, Das P, Sarma H, Umar AK. Nanotherapeutics of Phytoantioxidants for Parasitic Diseases and Neglected Tropical Diseases. PHYTOANTIOXIDANTS AND NANOTHERAPEUTICS 2022:351-376. [DOI: 10.1002/9781119811794.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Tajuddeen N, Swart T, Hoppe HC, van Heerden FR. Antiplasmodial Activity of Vachellia xanthophloea (Benth.) P.J.H. Hurter (African Fever Tree) and Its Constituents. Pharmaceuticals (Basel) 2022; 15:ph15040470. [PMID: 35455467 PMCID: PMC9033093 DOI: 10.3390/ph15040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/11/2023] Open
Abstract
Vachellia xanthophloea is used in Zulu traditional medicine as an antimalarial remedy. A moderate antiplasmodial activity was previously reported for extracts of the plant against D10 Plasmodium falciparum. This study aimed to identify the phytochemicals responsible for the antiplasmodial activity of the leaf extract. The compounds were isolated by chromatography and their structures were determined using spectroscopic and spectrometric methods. The antiplasmodial activity was evaluated using a parasite lactate dehydrogenase assay and cytotoxicity was determined using a resazurin assay. The ethyl acetate fraction inhibited P. falciparum with IC50 = 10.6 µg/mL and showed minimal cytotoxicity (98% cell viability at 33 µg/mL). The chromatographic purification of this fraction afforded sixteen compounds, including two new flavonoids. A 1:1 mixture of phytol and lupeol was also isolated from the hexane fraction. All the compounds were reported from V. xanthophloea for the first time. Among the isolated metabolites, methyl gallate displayed the best activity against P. falciparum (IC50 = 1.2 µg/mL), with a 68% viability of HeLa cells at 10 µg/mL. Therefore, methyl gallate was responsible for the antiplasmodial activity of the V. xanthophloea leaf extract and its presence in the leaf extract might account for the folkloric use of the plant as an antimalarial remedy.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Tarryn Swart
- Department of Biochemistry & Microbiology, Rhodes University, Grahamstown 6140, South Africa; (T.S.); (H.C.H.)
| | - Heinrich C. Hoppe
- Department of Biochemistry & Microbiology, Rhodes University, Grahamstown 6140, South Africa; (T.S.); (H.C.H.)
| | - Fanie R. van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
- Correspondence: ; Tel.: +27-82-823-8642
| |
Collapse
|
17
|
Albani CM, Borgo J, Fabbri J, Pensel P, Fasciani L, Elso O, Papademetrio D, Grasso D, Paladini A, Beer MF, Farias NE, Elissondo N, Gambino G, Zoppi J, Sülsen V, Elissondo MC. Anthelmintic activity of Stevia multiaristata extract against Echinococcus granulosus sensu stricto. Parasitology 2022; 149:519-528. [PMID: 35331352 PMCID: PMC11010565 DOI: 10.1017/s0031182021002109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis is a zoonotic disease caused by the larval stage of the parasite Echinococcus granulosus sensu lato. The available anti-parasitic treatment is mostly limited to a continuous administration of albendazole. However, due to its numerous side-effects and efficacy of around 50%, there is a need to find new drugs to improve the treatment for this disease. In the current study, the in vitro and in vivo efficacy of a Stevia multiaristata extract against E. granulosus sensu stricto (s.s.) was demonstrated. Stevia multiaristata extract (100 and 50 μg mL−1) caused a quick viability decrease on protoscoleces which was consistent with the observed tegumental alterations. Loss of turgidity was detected in 95 ± 3.4% of cysts incubated with S. multiaristata extract during 2 days (100 μg mL−1) and the collapse of the germinal layer was observed in 60 ± 9.3% of cysts treated with 100 μg mL−1 of the S. multiaristata extract during 4 days. The half maximal effective concentration value was 69.6 μg mL−1 and the selectivity index for E. granulosus s.s. cysts was 1.9. In this clinical efficacy study, the treatment of infected mice with the S. multiaristata extract (50 mg kg−1) caused a significant decrease in the weight of the cysts compared with the control group. These results coincided with the tissue damage observed in the cysts at the ultrastructural level. In conclusion, we observed high protoscolicidal and cysticidal effects, and significant reduction in the weight of the cysts in experimentally infected mice following treatment with the S. multiaristata extract.
Collapse
Affiliation(s)
- C. M. Albani
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - J. Borgo
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J. Fabbri
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - P. Pensel
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - L. Fasciani
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - O. Elso
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D. Papademetrio
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D. Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiopatología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A. Paladini
- Facultad de Ciencias Veterinarias (UNLP), Cátedra de Parasitología Comparada, Buenos Aires, Argentina
| | - M. F. Beer
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N. E. Farias
- Laboratorio de Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMYC) (UNMDP-CONICET), Mar del Plata, Argentina
| | - N. Elissondo
- Laboratorio de Análisis Clínicos, Santisteban, 7000Tandil, Buenos Aires, Argentina
| | - G. Gambino
- Laboratorio de Análisis Clínicos, Santisteban, 7000Tandil, Buenos Aires, Argentina
| | - J. Zoppi
- Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, Argentina
| | - V. Sülsen
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. C. Elissondo
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
18
|
Caleffi GS, Demidoff FC, Nájera C, Costa PRR. Asymmetric hydrogenation and transfer hydrogenation in the enantioselective synthesis of flavonoids. Org Chem Front 2022. [DOI: 10.1039/d1qo01503f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we explore the applications of Asymmetric Hydrogenation (AH) and Asymmetric Transfer Hydrogenation (ATH) in the total synthesis of natural flavonoids and their analogues, highlighting the limitations and opportunities in the field.
Collapse
Affiliation(s)
- Guilherme S. Caleffi
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Felipe C. Demidoff
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Sharma A, Sharma S, Kumar A, Kumar V, Sharma AK. Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect. PLANT SECONDARY METABOLITES 2022:1-45. [DOI: 10.1007/978-981-16-4779-6_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Prasanna P, Kumar P, Mandal S, Payal T, Kumar S, Hossain SU, Das P, Ravichandiran V, Mandal D. 7,8-dihydroxyflavone-functionalized gold nanoparticles target the arginase enzyme of Leishmania donovani. Nanomedicine (Lond) 2021; 16:1887-1903. [PMID: 34397295 DOI: 10.2217/nnm-2021-0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To analyze the efficacy and possible mechanism of action of 7,8-dihydroxyflavone (DHF) and DHF synthesized gold nanoparticles (GNPs) against the parasite Leishmania donovani. Methods: GNPs were synthesized using DHF and characterized by dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction. The efficacy of DHF and DHF-GNP were tested against sensitive and drug-resistant parasites. GNP uptake was measured on macrophages by atomic absorption spectroscopy. Results: DHF and DHF-GNP (∼35 nm) were equally effective against sensitive and drug-resistant strains and inhibited the arginase activity of parasites. Increased IFN-γ and reduced IL-12 cytokine response showed a Th1/Th2-mediated cell death in macrophages. Conclusion: The low cytotoxicity and high biological activity of DHF-GNP may be useful for chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - Tanvi Payal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,Cognizant Technology Solution, Hyderabad, 800051, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sk Ugir Hossain
- Department of Clinical and Translational Medicine, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, 700054, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| |
Collapse
|
21
|
Phytoconstituents as Lead Compounds for Anti-Dengue Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:159-193. [PMID: 34258741 DOI: 10.1007/978-981-16-0267-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dengue is an arthropod-borne viral disease common in subtropical and tropical regions. The widespread use of traditional medicines in these regions for dengue fever (DF) has encouraged researchers to explore the therapeutic effect of herbs and their phytochemicals in dengue infection. Phytochemicals such as quercetin, baicalein, luteolin, oxindole alkaloids, celastrol and geraniin have shown significant inhibition of dengue virus in vitro. Many phytoconstituents have better selectivity index supporting their safety profile for future development. However, in vivo studies supporting therapeutic potency for these active phytoconstituents are limited. There is a need for studies translating anti-dengue profile of active phytoconstituents to find successful anti-dengue compounds.
Collapse
|
22
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Borgo J, Laurella LC, Martini F, Catalán CAN, Sülsen VP. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021; 26:2733. [PMID: 34066562 PMCID: PMC8125113 DOI: 10.3390/molecules26092733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cesar A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina;
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
24
|
Heredia Díaz Y, Tuenter E, Garcia-Díaz J, Ochoa Pacheco A, Cos P, Pieters L, Escalona Arranz JC. Novel flavonol-3- O-methylethers from Zanthoxylum pistaciifolium Griseb. (Rutaceae). Nat Prod Res 2021; 36:4869-4878. [PMID: 33813981 DOI: 10.1080/14786419.2021.1906240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Zanthoxylum pistaciifolium Griseb. is a tree endemic to Cuba, occasionally used in herbal medicine. Previously, the antitrypanosomal activity of a n-hexane-2-butanone extract of Z. pistaciifolium leaves and of its constituent skimmianine were published. In the current study a more thorough examination of the respective extract is performed, which led to the isolation and identification of three flavonoids, more specifically, the flavonol-3-O-methylethers kaempferol-3-O-methylether (1) and novel compounds kaempferol-3-O-methylether-5-O-β-D-glucoside (2) and kaempferol-8-hydroxy-3,7-O-dimethylether-5-O-β-D-glucoside (3). All compounds were screened for their antimicrobial and antiprotozoal activity and cytotoxicity towards MRC-5 SV2 cells. Compound 1 showed a moderate to weak activity against Trypanosoma cruzi (IC50 30.8 μM), T. brucei (IC50 15.4 μM) and Plasmodium falciparum (IC50 53.8 μM), but also showed cytotoxicity (CC50 19.0 μM). Compounds 2 and 3 did not display activity in any of the assays (IC50 and CC50 > 64 μM).
Collapse
Affiliation(s)
- Yamilé Heredia Díaz
- Faculty of Natural and Exact Sciences, Pharmacy Department, University of Oriente, Santiago de Cuba, Cuba.,Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jesús Garcia-Díaz
- Faculty of Natural and Exact Sciences, Pharmacy Department, University of Oriente, Santiago de Cuba, Cuba
| | - Ania Ochoa Pacheco
- Faculty of Natural and Exact Sciences, Pharmacy Department, University of Oriente, Santiago de Cuba, Cuba
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
25
|
Arraché Gonçalves G, Eifler-Lima VL, von Poser GL. Revisiting nature: a review of iridoids as a potential antileishmanial class. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:101-126. [PMID: 33746658 PMCID: PMC7960493 DOI: 10.1007/s11101-021-09750-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Leishmaniasis still stands as one of the most prevalent neglected tropical diseases in the least developed and emerging countries. The recommended therapeutic arsenal to treat leishmaniasis is characterized by several shortcomings, and resistance has already been reported. Hence, this dramatic background highlights the pressing need to develop novel, affordable, and safe antileishmanial drugs. Multiple classes of natural compounds have been reported to possess antileishmanial activity. Among these classes, iridoids stand out as a special type of monoterpenoids with diverse biological properties-including their antileishmanial potential. This review aims to discuss the available literature between 1991 and 2020 related to the antileishmanial activity of the iridoid class. Throughout the past decades, various investigations attributed antileishmanial action to assorted iridoid types, including inhibitory potential towards validated drug targets and immunomodulatory activity. The latter deserves special attention due to the ability of some iridoids to improve the host's immune response against parasites. It opens the possibility of iridoids become adjuncts in leishmaniasis treatments by improving the efficacy of currently employed drugs. Furthermore, the present study intends to provide a convenient visual representation of which iridoids and Leishmania spp. species have been most investigated as a guide for further researches.
Collapse
Affiliation(s)
- Guilherme Arraché Gonçalves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| | - Gilsane Lino von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
26
|
Kamdem BP, Elizabeth FI. The Role of Nitro (NO 2-), Chloro (Cl), and Fluoro (F) Substitution in the Design of Antileishmanial and Antichagasic Compounds. Curr Drug Targets 2021; 22:379-398. [PMID: 33371845 DOI: 10.2174/1389450121666201228122239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas diseases are among the most severe NTDs, and are caused by the Leishmania sp and Trypanosoma cruzi, respectively. Glucantime, pentamidine, and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, are known to improve biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluorosynthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand-searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth mentioning that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro-, and chloro-groups in the compound backbone. All in all, nitro and halogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as the baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts in in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.
Collapse
Affiliation(s)
- Boniface P Kamdem
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
27
|
Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine 2021; 16:249-268. [PMID: 33469285 PMCID: PMC7811472 DOI: 10.2147/ijn.s295053] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have advantages over other nanomaterials because of the promising role of selenium in the stabilization of the immune system and activation of the defense response. The use of SeNPs and their supplements not only have pharmacological significance but also boost and prepare the body's immune system to fight the pathogens. This review summarizes the recent progress in the biogenesis of plant-based SeNPs by using various plant species and the role of secondary metabolites on their biocompatible functioning. Phyto-synthesis of SeNPs results in the synthesis of nanomaterials of various, size, shape and biochemical nature and has advantages over other routine physical and chemical methods because of their biocompatibility, eco-friendly nature and in vivo actions. Unfortunately, the plant-based SeNPs failed to attain considerable attention in the pharmaceutical industry. However, a few studies were performed to explore the therapeutic potential of the SeNPs against various cancer cells, microbial pathogens, viral infections, hepatoprotective actions, diabetic management, and antioxidant approaches. Further, some of the selenium-based drug delivery systems are developed by engineering the SeNPs with the functional ligands to deliver drugs to the targeted sites. This review also provides up-to-date information on the mechanistic actions that the SeNPs adopt to achieve their designated tasks as it may help to develop precision medicine with customized treatment and healthcare for the ailing population.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
28
|
Joshi N, Hada R, Gupta S, Khan J, Dobrowolski J, Dhar PK, Kumar N, Singh S. Highly potent anti-malarial activity of benzopyrano(4,3-b)benzopyran derivatives and in silico interaction analysis with putative target Plasmodium falciparum lactate dehydrogenase. J Biomol Struct Dyn 2021; 40:5159-5174. [PMID: 33416018 DOI: 10.1080/07391102.2020.1868336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Malaria infection caused by Plasmodium falciparum is majorly responsible for millions of deaths in humans every year. Moreover, a rapid increase in resistance to existing drugs has posed an urgent need for new anti-malarials. Herein, we report the highly potent anti-malarial activity of benzopyrano(4,3-b)benzopyran derivatives, inspired from naturally occurring dependensin against chloroquine (CQ) sensitive and resistant P. falciparum strains. Chemically synthesized, four dependensin analogs 85(A-D) exhibited growth inhibition at nanomolar concentrations ranging from 63.96 to 725.8 nM by blocking the parasite development at the ring and early trophozoite stages. The growth inhibitory activity of dependensin analogs was correlated with their anti-plasmodial lactate dehydrogenase activity by computational analysis. Molecular docking, 50 ns simulation and a 2D-Quantitative Structure-Activity Relationship (2D-QSAR) modelling revealed the interaction with their putative target P. falciparum lactate dehydrogenase (PfLDH). Here, developing the predictive 2D descriptors such as thermodynamic, spatial, electronic, and topological with multiple linear regression analysis (MLRA), the structural requirements for potent and selective PfLDH inhibitory activity has been identified. The strong binding of compound 85D to the catalytic Nicotinamide adenine dinucleotide (NADH) binding pocket of the PfLDH further supported the PfLDH targeting potential of dependensin analogs. Overall, this study revealed a highly potent anti-malarial activity of benzopyrano(4,3-b)benzopyran derivatives with their putative anti-PfLDH activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nishant Joshi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Rahul Hada
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,ICMR-National Institute of Malaria Research, New Delhi, India
| | - Juveria Khan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Pawan K Dhar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Zeouk I, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Bethencourt-Estrella CJ, Bazzocchi IL, Bekhti K, Lorenzo-Morales J, Jiménez IA, Piñero JE. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomed Pharmacother 2020; 130:110518. [DOI: 10.1016/j.biopha.2020.110518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
|
30
|
Pereira IAG, Mendonça DVC, Tavares GSV, Lage DP, Ramos FF, Oliveira-da-Silva JA, Antinarelli LMR, Machado AS, Carvalho LM, Carvalho AMRS, Salustiano IV, Reis TAR, Bandeira RS, Silva AM, Martins VT, Chávez-Fumagalli MA, Humbert MV, Roatt BM, Duarte MC, Menezes-Souza D, Coimbra ES, Leite JPV, Coelho EAF, Gonçalves DU. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol 2020; 42:e12784. [PMID: 32772379 DOI: 10.1111/pim.12784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
AIMS Treatment for visceral leishmaniasis (VL) is hampered by the toxicity and/or high cost of drugs, as well as by emergence of parasite resistance. Therefore, there is an urgent need for new antileishmanial agents. METHODS AND RESULTS In this study, the antileishmanial activity of a diprenylated flavonoid called 5,7,3,4'-tetrahydroxy-6,8-diprenylisoflavone (CMt) was tested against Leishmania infantum and L amazonensis species. Results showed that CMt presented selectivity index (SI) of 70.0 and 165.0 against L infantum and L amazonensis promastigotes, respectively, and of 181.9 and 397.8 against respective axenic amastigotes. Amphotericin B (AmpB) showed lower SI values of 9.1 and 11.1 against L infantum and L amazonensis promastigotes, respectively, and of 12.5 and 14.3 against amastigotes, respectively. CMt was effective in the treatment of infected macrophages and caused alterations in the parasite mitochondria. L infantum-infected mice treated with miltefosine, CMt alone or incorporated in polymeric micelles (CMt/Mic) presented significant reductions in the parasite load in distinct organs, when compared to the control groups. An antileishmanial Th1-type cellular and humoral immune response were developed one and 15 days after treatment, with CMt/Mic-treated mice presenting a better protective response. CONCLUSION Our data suggest that CMt/Mic could be evaluated as a chemotherapeutic agent against VL.
Collapse
Affiliation(s)
- Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M R Antinarelli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia M Carvalho
- Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Maria R S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iorrana V Salustiano
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maria V Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England
| | - Bruno M Roatt
- Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine S Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - João Paulo V Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
31
|
Dunstan MS, Robinson CJ, Jervis AJ, Yan C, Carbonell P, Hollywood KA, Currin A, Swainston N, Feuvre RL, Micklefield J, Faulon JL, Breitling R, Turner N, Takano E, Scrutton NS. Engineering Escherichia coli towards de novo production of gatekeeper (2 S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synth Biol (Oxf) 2020; 5:ysaa012. [PMID: 33195815 PMCID: PMC7644443 DOI: 10.1093/synbio/ysaa012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Natural plant-based flavonoids have drawn significant attention as dietary supplements due to their potential health benefits, including anti-cancer, anti-oxidant and anti-asthmatic activities. Naringenin, pinocembrin, eriodictyol and homoeriodictyol are classified as (2S)-flavanones, an important sub-group of naturally occurring flavonoids, with wide-reaching applications in human health and nutrition. These four compounds occupy a central position as branch point intermediates towards a broad spectrum of naturally occurring flavonoids. Here, we report the development of Escherichia coli production chassis for each of these key gatekeeper flavonoids. Selection of key enzymes, genetic construct design and the optimization of process conditions resulted in the highest reported titers for naringenin (484 mg/l), improved production of pinocembrin (198 mg/l) and eriodictyol (55 mg/l from caffeic acid), and provided the first example of in vivo production of homoeriodictyol directly from glycerol (17 mg/l). This work provides a springboard for future production of diverse downstream natural and non-natural flavonoid targets.
Collapse
Affiliation(s)
- Mark S Dunstan
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Christopher J Robinson
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Adrian J Jervis
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Cunyu Yan
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Pablo Carbonell
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Katherine A Hollywood
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Andrew Currin
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Neil Swainston
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Rosalind Le Feuvre
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Jean-Loup Faulon
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
- MICALIS, INRA-AgroParisTech, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | - Rainer Breitling
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Nicholas Turner
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Eriko Takano
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
32
|
Barbosa Gomes de Carvalho YM, Shanmugam S, Batista MS, Serafini MR, Araújo AADS, Quintans Júnior LJ. Pharmaceutical agents for treatment of leishmaniasis: a patent landscape. Expert Opin Ther Pat 2020; 30:633-641. [PMID: 32602760 DOI: 10.1080/13543776.2020.1789100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. Worldwide, approximately 1.5-2 million new cases of leishmaniasis and 20,000-30,000 deaths occurs each year. Effective treatment for all forms of leishmaniasis have numerous adverse effects contributing to poor adherence and/or treatment interruption by the patient. Development of novel therapies, as multitarget drugs, for example, can contribute to accelerate discover safer, more active, and patient-compliant drugs for leishmaniasis treatment. AREAS COVERED In this review, authors summarize pharmaceutical agents for treatment of leishmaniasis developed between 2014 and 2019, which includes synthetic and natural drugs for specific treatments, as well as considering new approaches and strategies using drug delivery system. EXPERT OPINION Universities or public research institutes produced most of the patents related to pharmaceutical agents for treatment of leishmaniasis in this review, and the majority of the inventions disclosed did not conduct clinical trials. In other words, there is still a lot of investment to be done for the identification of new drugs.
Collapse
Affiliation(s)
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe , São Cristóvão, Brazil
| | | | | | | | | |
Collapse
|
33
|
Boniface PK, Elizabeth FI. An Insight into the Discovery of Potent Antifilarial Leads Against Lymphatic Filariasis. Curr Drug Targets 2019; 21:657-680. [PMID: 31800381 DOI: 10.2174/1389450120666191204152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Lymphatic filariasis is a neglected tropical disease caused by infection with filarial worms that are transmitted through mosquito bites. Globally, 120 million people are infected, with nearly 40 million people disfigured and disabled by complications such as severe swelling of the legs (elephantiasis) or scrotum (hydrocele). Current treatments (ivermectin, diethylcarbamazine) have limited effects on adult parasites and produce side effects; therefore, there is an urgent to search for new antifilarial agents. Numerous studies on the antifilarial activity of pure molecules have been reported accross the recent literature. The present study describes the current standings of potent antifilarial compounds against lymphatic filariasis. METHODS A literature search was conducted for naturally occurring and synthetic antifilarial compounds by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, and Springer, among others) from their inception until September 2019. RESULTS Numerous compounds have been reported to exhibit antifilarial acitivity in adult and microfilariae forms of the parasites responsible for lymphatic filariasis. In silico studies of active antifilarial compounds (ligands) showed molecular interactions over the protein targets (trehalose-6-phosphate phosphatase, thymidylate synthase, among others) of lymphatic filariasis, and supported the in vitro results. CONCLUSION With reference to in vitro antifilarial studies, there is evidence that natural and synthetic products can serve as basic scaffolds for the development of antifilarial agents. The optimization of the most potent antifilarial compounds can be further performed, followed by their in vivo studies.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Nazhand A, Durazzo A, Lucarini M, Romano R, Mobilia MA, Izzo AA, Santini A. Human health-related properties of chromones: an overview. Nat Prod Res 2019; 34:137-152. [PMID: 31631696 DOI: 10.1080/14786419.2019.1678618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural compounds occurring throughout the world are scientifically and practically valuable because of their unique and beneficial properties to control a wide range of disorders in the human body. Chromones are attracting increasing attention as novel therapeutic agents due to their effective bioactivities for human health. Accordingly, the present overview article was designed to scan the biological and pharmacological performance of chromones, including their anti-inflammatory, anticancer, anti-oxidant, and anti-microbial activities.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, Moji, Iran
| | | | | | - Raffaele Romano
- Department of Agriculture, University of Napoli Federico II, Napoli, Italy
| | | | - Angelo A Izzo
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|