1
|
Wu H, Li Y, Shi L, Liu Y, Shen J. New Advances in Periodontal Functional Materials Based on Antibacterial, Anti-Inflammatory, and Tissue Regeneration Strategies. Adv Healthc Mater 2025; 14:e2403206. [PMID: 39895157 DOI: 10.1002/adhm.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Indexed: 02/04/2025]
Abstract
With the global population aging, awareness of oral health is rising. Periodontitis, a widespread bacterial infectious disease, is gaining attention. Current novel biomaterials address key clinical issues like bacterial infection, gum inflammation, tooth loosening, and loss, focusing on antibacterial, anti-inflammatory, and tissue regeneration properties. However, strategies that integrate the advantages of these biomaterials to achieve synergistic therapeutic effects by clearing oral biofilms, inhibiting inflammation activation, and restoring periodontal soft and hard tissue functions remain very limited. Recent studies highlight the link between periodontitis and systemic diseases, underscoring the complexity of the periodontal disease. There is an urgent need to find comprehensive treatment plans that address clinical requirements. Whether by integrating new biomaterials to enhance existing periodontal treatments or by developing novel approaches to replace traditional therapies, these efforts will drive advancements in periodontitis treatment. Therefore, this review compares novel biomaterials with traditional treatments. It highlights the design concepts and mechanisms of these functional materials, focusing on their antibacterial, anti-inflammatory, and tissue regeneration properties, and discusses the importance of developing comprehensive treatment strategies. This review aims to provide guidance for emerging periodontitis research and to promote the development of precise and efficient treatment strategies.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
2
|
Mu YF, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P, Gao ZX. Macrophage-driven inflammation in acute kidney injury: Therapeutic opportunities and challenges. Transl Res 2025; 278:1-9. [PMID: 39954848 DOI: 10.1016/j.trsl.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Acute kidney injury (AKI) is increasingly being recognized as a systemic disorder associated with significant morbidity and mortality. AKI manifests with extensive cellular damage, necrosis, and an intense inflammatory response, often leading to late-stage interstitial fibrosis. Although the mechanisms underlying renal injury and repair remain poorly understood, macrophages (pivotal inflammatory cells) play central roles in AKI. They undergo polarization into pro-inflammatory and anti-inflammatory phenotypes, contributing dynamically to both the injury and repair processes while maintaining homeostasis. Macrophages modulate microenvironmental inflammation by releasing extracellular vesicles (EVs) containing pro- or anti-inflammatory signaling molecules, thereby influencing the regulation of tissue injury. The injured tissue cells release EVs and activate local macrophages to initiate these responses. Our bibliometric analysis indicated that a shift has occurred in AKI macrophage research towards therapeutic strategies and clinical translation, focusing on macrophage-targeted therapies, including exosomes and nanoparticles. This review highlights the roles and mechanisms of macrophage activation, phenotypic polarization, and trans-differentiation in AKI and discusses macrophage-based approaches for AKI prevention and treatment. Understanding the involvement of macrophages in AKI contributes to the comprehension of related immune mechanisms and lays the groundwork for novel diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Ya-Fan Mu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
3
|
Zou YX, Kantapan J, Wang HL, Li JC, Su HW, Dai J, Dechsupa N, Wang L. Iron-Quercetin complex enhances mesenchymal stem cell-mediated HGF secretion and c-Met activation to ameliorate acute kidney injury through the prevention of tubular cell apoptosis. Regen Ther 2025; 28:169-182. [PMID: 39802634 PMCID: PMC11720445 DOI: 10.1016/j.reth.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms. Methods A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSCIronQ). Renal function, histology, and tubular cell apoptosis were analyzed three days post-treatment. In vitro, apoptosis was induced in mouse tubular epithelial cells (mTECs) using cisplatin, followed by treatment with MSCs or MSCIronQ conditioned medium (CM). Apoptosis was evaluated using TUNEL assay, RT-PCR, and western blotting. Furthermore, RNA sequencing (RNA-seq) was performed on MSCIronQ to explore the underlying mechanisms. Results Compared to MSC-treated AKI mice, those treated with MSCIronQ showed significantly improved renal function and histological outcomes, with reduced tubular cell apoptosis. A similar effect was observed in cisplatin-treated mTECs exposed to MSCIronQ-CM. Mechanistically, RNA-seq and subsequent validation revealed that IronQ treatment markedly upregulated the expression and secretion of hepatocyte growth factor (HGF) in MSCs. Furthermore, RNA interference or antibody-mediated neutralization of HGF effectively abolished the anti-apoptotic effects of MSCIronQ on mTECs. This mechanistic insight was reinforced by pharmacological inhibition of c-Met, the specific receptor of HGF, in both in vitro and in vivo models. Conclusions IronQ pretreatment enhances MSCs efficacy in AKI by promoting HGF expression and secretion, activating the HGF/c-Met pathway to suppress tubular cell apoptosis. These findings indicate that IronQ improves MSC-based therapies and offers insights into molecular mechanisms, supporting the development of better AKI treatments.
Collapse
Affiliation(s)
- Yuan-Xia Zou
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Children's Diagnosis and Treatment Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hong-Lian Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian-Chun Li
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Hong-Wei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian Dai
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Neurology, The Third People's Hospital, Luzhou, 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Li Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Chen Z, Ruan F, Wu D, Yu X, Jiang Y, Bao W, Wen H, Hu J, Bi H, Chen L, Le K. Quercetin alleviates neonatal hypoxic-ischaemic brain injury by rebalancing microglial M1/M2 polarization through silent information regulator 1/ high mobility group box-1 signalling. Inflammopharmacology 2025; 33:865-883. [PMID: 39565473 DOI: 10.1007/s10787-024-01599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Neonatal hypoxic-ischaemic encephalopathy (HIE) remains one of the major causes of neonatal death and long-term neurological disability. Due to its complex pathogenesis, there are still many challenges in its treatment. In our previous studies, we found that quercetin can alleviate neurological dysfunction after hypoxic-ischaemic brain injury (HIBI) in neonatal mice. As demonstrated through in vitro experiments, quercetin can inhibit the activation of the TLR4/MyD88/NF-κB signalling pathway and the inflammatory response in the microglial cell line BV2 after oxygen-glucose deprivation. However, the in-depth mechanism still needs to be further elucidated. In the present study, 7 day-old neonatal ICR mice or BV2 cells were treated with quercetin with or without the SIRT1 inhibitor EX527 via neurobehavioural, histopathological and molecular methods. In vivo experiments have shown that quercetin can significantly improve the performance of HI mice in behavioural tests, such as the Morris water maze, rotarod test and pole climbing test, and reduce HI insult-induced structural brain damage, cell apoptosis and hippocampal neuron loss. Quercetin also inhibited the immunofluorescence intensity of the microglial M1 marker CD16 + 32 and significantly downregulated the expression of the M1-related proteins iNOS, IL-1β and TNF-α. Moreover, quercetin increased the immunofluorescence intensity of the microglial M2 marker CD206 and significantly increased the expression of the M2-related proteins Arg-1 and IL-10. In addition, quercetin limits the nucleocytoplasmic translocation and release of microglial HMGB1 and further suppresses the activation of the downstream TLR4/MyD88/NF-κB signalling pathway. The above effects of quercetin are partially weakened by pretreatment with EX527. Similar results were found in in vitro experiments, and the mechanism further revealed that the rebalancing effect of quercetin on microglial polarization is achieved through the SIRT1-mediated reduction in HMGB1 acetylation levels. This study provides new and complementary insights into the neuroprotective effects of quercetin and a new direction for the treatment of neonatal HIE.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Fei Ruan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Di Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Haicheng Wen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Jing Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Haidi Bi
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Liping Chen
- Department of Neonatology, Jiangxi Children's Hospital, No.122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong S.A.R., Hong Kong, China.
| |
Collapse
|
5
|
Tekes E, Ickin Gulen M, Silan C, Guven Bagla A. Humic acid attenuates cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2025:1-9. [PMID: 39871462 DOI: 10.1080/01480545.2025.2453590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Cisplatin-induced nephrotoxicity, a major limitation of this chemotherapeutic agent, involves oxidative stress, inflammation, and apoptosis. This study investigated the potential renoprotective effects of humic acid in a rat model of cisplatin-induced nephrotoxicity. Forty-two male Wistar rats were assigned to six groups: control, humic acid, cisplatin, cisplatin + humic acid 10 mg/kg, cisplatin + humic acid 20 mg/kg, and cisplatin + humic acid 40 mg/kg. On day 7, the rats were sacrificed, and cardiac blood and kidneys were collected for biochemical and histopathological examinations. Humic acid administration significantly attenuated the cisplatin-induced increases in renal TNF-α and NF-κB levels, indicating a reduction in inflammation. Humic acid also ameliorated histopathological damage, including Bowman's capsule dilatation, tubular cell degeneration, and hemorrhage. However, humic acid did not significantly alter oxidative stress parameters or caspase-3 levels. Humic acid demonstrates a protective effect against cisplatin-induced nephrotoxicity in rats, primarily by mitigating the inflammatory response. While HA's beneficial effects on oxidative stress and apoptosis were limited in this study, its ability to reduce inflammation highlights its potential as a therapeutic strategy to mitigate cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Ender Tekes
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Meltem Ickin Gulen
- Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Coskun Silan
- Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Aysel Guven Bagla
- Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
6
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Yang N, Wu T, Li M, Hu X, Ma R, Jiang W, Su Z, Yang R, Zhu C. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming. Bioact Mater 2025; 43:48-66. [PMID: 39318638 PMCID: PMC11421951 DOI: 10.1016/j.bioactmat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Excessive inflammation caused by bacterial infection is the primary cause of implant failure. Antibiotic treatment often fails to prevent peri-implant infection and may induce unexpected drug resistance. Herein, a non-antibiotic strategy based on the synergy of silver ion release and macrophage reprogramming is proposed for preventing infection and bacteria-induced inflammation suppression by the organic-inorganic hybridization of silver nanoparticle (AgNP) and quercetin (Que) into a polydopamine (PDA)-based coating on the 3D framework of porous titanium (SQPdFT). Once the planktonic bacteria (e.g., Escherichia coli, Staphylococcus aureus) reach the surface of SQPdFT, released Que disrupts the bacterial membrane. Then, AgNP can penetrate the invading bacterium and kill them, which further inhibits the biofilm formation. Simultaneously, released Que can regulate macrophage polarization homeostasis via the peroxisome proliferators-activated receptors gamma (PPARγ)-mediated nuclear factor kappa-B (NF-κB) pathway, thereby terminating excessive inflammatory responses. These advantages facilitate the adhesion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), concomitantly suppressing osteoclast maturation, and eventually conferring superior mechanical stability to SQPdFT within the medullary cavity. In summary, owing to its excellent antibacterial effect, immune remodeling function, and pro-osteointegration ability, SQPdFT is a promising protective coating for titanium-based implants used in orthopedic replacement surgery.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ruixiang Ma
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Zheng Su
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Zhu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| |
Collapse
|
8
|
Shi J, Li S, Yi L, Gao M, Cai J, Yang C, Ma Y, Mo Y, Wang Q. Levistolide a Attenuates Acute Kidney Injury in Mice by Inhibiting the TLR-4/NF-κB Pathway. Drug Des Devel Ther 2024; 18:5583-5597. [PMID: 39654604 PMCID: PMC11625643 DOI: 10.2147/dddt.s476548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is characterized by a significant reduction in kidney function and the accumulation of metabolites such as Creatinine (CRE) and Blood Urea Nitrogen (BUN). Levistolide A (LA), an active component of Ligusticum chuanxiong, offers multiple therapeutic benefits, including cardiovascular and neuroprotection, antitumor and analgesic effects, as well as anti-inflammatory, antioxidant, antifibrotic, and proapoptotic actions. However, the underlying mechanism of LA in treating AKI has not been fully elucidated. Methods In this study, we established a glycerol-induced AKI model in mice to evaluate the protective effects of LA. Renal function was assessed by measuring levels of CRE and BUN. Histological analyses were performed to evaluate kidney tissue damage. Additionally, oxidative stress markers, apoptosis indicators, inflammatory cell infiltration, and inflammatory mediator levels were assessed. The involvement of the TLR-4/NF-κB signaling pathway was investigated through molecular assays. Results LA treatment significantly ameliorated glycerol-induced AKI in mice, evidenced by reduced levels of CRE and BUN. Histological examination revealed decreased renal tissue damage in LA-treated groups. LA exerted antioxidant effects by increasing the levels of Glutathione (GSH) and Superoxide Dismutase (SOD), while reducing Reactive Oxygen Species (ROS) accumulation. Apoptosis in renal tissues was attenuated, as indicated by decreased caspase-3 activation. Furthermore, LA reduced the infiltration of inflammatory cells and the release of inflammatory mediators such as TNF-α and IL-6. Mechanistically, LA suppressed the inflammatory response by inhibiting the TLR-4/NF-κB signaling pathway, as demonstrated by reduced NF-κB activation and decreased expression of TLR-4. Conclusion Levistolide A mitigates acute kidney injury through its antioxidative properties and modulation of the TLR-4/NF-κB signaling pathway. These findings provide valuable insights into the therapeutic potential of LA for AKI treatment and lay the groundwork for further mechanistic studies.
Collapse
Affiliation(s)
- Jiahui Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Shuangwei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Langping Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jiaying Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Cong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yousheng Mo
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Zheng P, Liu X, Jiao Y, Mao X, Zong Z, Jia Q, Jiang HB, Lee ES, Chen Q. Preparation and Evaluation of Poloxamer/Carbopol In-Situ Gel Loaded with Quercetin: In-Vitro Drug Release and Cell Viability Study. Tissue Eng Regen Med 2024; 21:1153-1171. [PMID: 39488811 PMCID: PMC11589051 DOI: 10.1007/s13770-024-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Periodontitis is a severe chronic inflammatory disease, whose traditional systemic antimicrobial therapy faces great limitations. In-situ gels provide an effective solution as an emerging local drug delivery system. METHODS In this study, the novel thermosensitive poloxamer/carbopol in-situ gels loaded with 20 μmol/L quercetin for the treatment of periodontitis were prepared by cold method. Thirteen batches of in-situ gels based on two independent factors (X1: poloxamer 407 and X2: carbopol 934P) were designed and optimized by the statistical method of central composite design (CCD). The transparency, pH, injectability, viscosity, gelation temperature, gelation time, elasticity modulus, degradation rate and in-vitro drug release studies of the batches were evaluated, and the percentage of drug release in the first hour, the time required for 90% drug release, gelation temperature, and gelation time were selected as dependent variables. RESULTS These two independent factors significantly affected the four dependent variables (p < 0.05). The optimization result displayed that the optimized concentration of poloxamer 407 was 20.84% (w/v), and carbopol 934P was 0.5% (w/v). The optimized formulation showed a clear appearance (++), acceptable injectability (Pass), viscosity(151,798 mPa s), gelation temperature (36 °C), gelation time (213 s), preferable cell viability and cell proliferation, conformed to first-order release kinetics, and had a significant antibacterial effect. CONCLUSIONS The article demonstrates the great potential of the quercetin in-situ gel as an effective treatment for periodontitis.
Collapse
Affiliation(s)
- Pinxuan Zheng
- Department of Stomatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325006, Zhejiang, China
| | - Xueying Liu
- Department of Stomatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325006, Zhejiang, China
| | - Yanqing Jiao
- Department of Stomatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325006, Zhejiang, China
| | - Xuran Mao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Zhaorong Zong
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Qi Jia
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| | - Qi Chen
- Department of Stomatology, Yuhuan People's Hospital, Taizhou, 317600, Zhejiang, China.
| |
Collapse
|
10
|
Wu Z, Hu J, Li Y, Yao X, Ouyang S, Ren K. Assessment of renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury in type 1 diabetic mice using diffusion tensor imaging. Redox Rep 2024; 29:2398380. [PMID: 39284588 PMCID: PMC11407404 DOI: 10.1080/13510002.2024.2398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose: To investigate the renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury (CI-AKI) in mice with type 1 diabetic mellitus(DM) using diffusion tensor imaging(DTI).Methods: Mice with DM were divided into two groups. In the diabetic + contrast medium(DCA) group, the changes of the mice kidneys were monitored at 1, 24, 48, and 72 h after the injection of iodixanol(4gI/kg). The mice in the diabetic + contrast medium + quercetin(DCA + QE) group were orally given different concentrations of quercetin for seven days before injection of iodixanol. In vitro experiments, renal tubular epithelial (HK-2) cells exposed to high glucose conditions were treated with various quercetin concentrations before treatment with iodixanol(250 mgI/mL).Results: DTI-derived mean diffusivity(MD) and fractional anisotropy(FA) values can be used to evaluate CI-AKI effectively. Quercetin significantly increased the expression of Sirt 1 and reduced oxidative stress by increasing Nrf 2/HO-1/SOD1. The antiapoptotic effect of quercetin on CI-AKI was revealed by decreasing proteins level and by reducing the number of apoptosis-positive cells. In addition, flow cytometry indicated quercetin-mediated inhibition of M1 macrophage polarization in the CI-AKI.Conclusions: DTI will be an effective noninvasive tool in diagnosing CI-AKI. Quercetin attenuates CI-AKI on the basis of DM through anti-oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Jingyi Hu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Yanfei Li
- Cell Therapy Research Center, Xiamen Humanity Hospital, Xiamen, People's Republic of China
| | - Xiang Yao
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Siyu Ouyang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| |
Collapse
|
11
|
Duraisamy P, Ravi S, Martin LC, Kumaresan M, Manikandan B, Ramar M. Differential phagocytic expression of IC-21 macrophages and their scavenging receptors during inflammatory induction by oxysterol: A microscopic approach. Microsc Res Tech 2024; 87:2745-2756. [PMID: 38984373 DOI: 10.1002/jemt.24647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Phagocytosis by macrophages dates back to a long history in science, this present study deals with new approaches that have been analyzed and standardized towards the interesting aspects of primary and secondary macrophages. The distinct morphological differences in primary and secondary phagocytic cells were observed and the phagocytic response of secondary macrophages under the influence of 7-ketocholesterol and lipopolysaccharide was analyzed. The primary peritoneal and secondary IC-21 cells unveiled explicit differences in nuclear numbers shapes and sizes of the granules present within the cytoplasmic region. Further, potent inducers 7KCh and LPS influenced an effective activation of IC-21 macrophages and resulted in ROS generation, irregulated protein expressions of CD86, CD68, and CD206 with enhanced phagocytic responses towards goat, cow, and human RBC targets with significant phagocytic rate and index were observed. Moreover, a remarkable observation of target specificity and aggregations with IC-21 phagocytic macrophages revealed the notion that specific membrane receptors and secretory molecules (lysosomes) are primarily involved in their phagocytic mechanism. RESEARCH HIGHLIGHTS: IC-21 macrophages are peritoneal origin from mice but the primary peritoneal macrophages and cell line show distinct differences. IC-21 macrophages express target-specific phagocytosis. Phagocytosis in IC-21 macrophages is regulated by CD markers (68, 86, and 206).
Collapse
Affiliation(s)
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Chennai, India
| | | | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai, India
| | | |
Collapse
|
12
|
Liu X, Guo Y, Pan J, Wu T, Zhao B, Wei S, Jiang W, Liu Y. Nanoparticles constructed from natural polyphenols are used in acute kidney injury. J Mater Chem B 2024; 12:8883-8896. [PMID: 39177039 DOI: 10.1039/d4tb00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Acute kidney injury (AKI) is a severe clinical syndrome characterized by rapid deterioration of renal function caused by a variety of pathogeneses. Natural polyphenols have been considered to have potential in the treatment of AKI due to their powerful antioxidant and anti-inflammatory activities, but their low bioavailability in vivo limits their efficacy. Polyphenol nanoparticles based on a nano-delivery system show good effects in reducing kidney injury, improving renal function and promoting renal tissue repair, and brings new hope and possibility for the treatment of AKI. This review provides an overview of the common characteristics, treatments, and associated adverse effects of AKI. The classification and bioavailability of polyphenols as well as their therapeutic role in AKI and potential possible effects are outlined. The potential therapeutic effects of polyphenol-based nanoparticles on AKI and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Xiaohua Liu
- Henan Science and Technology Innovation Promotion Center, Zhengzhou 450046, China
| | - Yike Guo
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangpeng Pan
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Tingting Wu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Bing Zhao
- Henan Finance University, Zhengzhou 450046, China
| | - Shuyi Wei
- Plastic Surgery Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.
| | - Wei Jiang
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Miao J, Wei C, Wang HL, Li YQ, Yu XM, Yang X, Su HW, Li P, Wang L. Mechanism of Chaihuang-Yishen formula to attenuate renal fibrosis in the treatment of chronic kidney disease: Insights from network pharmacology and experimental validation. Heliyon 2024; 10:e35728. [PMID: 39220918 PMCID: PMC11365344 DOI: 10.1016/j.heliyon.2024.e35728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Renal fibrosis represents a pivotal characteristic of chronic kidney disease (CKD), for which effective interventions are currently lacking. The Src kinase activates the phosphatidylinositol-3 kinases (PI3K)/Akt1 pathway to promote renal fibrosis, casting a promising target for anti-fibrosis treatment. Chaihuang-Yishen formula (CHYS), a traditional Chinese medicinal prescription, has a validated efficacy in the treatment of CKD, however, with the underlying mechanism unresolved. This study aimed to uncover the pharmacological mechanisms mediating the effect of CHYS in treating renal fibrosis using network pharmacology followed by experimental validation. The chemical compounds of CHYS were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database or published literature, followed by the prediction of their targets using SwissTargetPrediction software. Disease (CKD/renal fibrosis)-related targets were retrieved from the Genecards database. Protein-protein interaction (PPI) network was generated using the drug-disease common targets and visualized in Cytoscape software. The drug-disease targets were further subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses by Metascape software. Additionally, the compound-target-pathway network was established in Cytosape to identify key compounds, targets, and pathways. Network pharmacology analysis screened out 96 active compounds and 837 potential targets within the 7 herbal/animal medicines of CHYS, among which 237 drug-disease common targets were identified. GO and KEGG analysis revealed the enrichment of fibrosis-related biological processes and pathways among the 237 common targets. Compound-target-pathway network analysis highlighted protein kinases Src and Akt1 as the top two targets associated with the anti-renal fibrosis effects of CHYS. In UUO mice, treatment with CHYS attenuates renal fibrosis, accompanied by suppressed expression and phosphorylation activation of Src. Unlike Src, CHYS reduced Akt1 phosphorylation without affecting its expression. In summary, network pharmacology and in vivo evidence suggest that CHYS exerts its anti-renal fibrosis effects, at least in part, by inhibiting the Src/Akt1 signaling axis.
Collapse
Affiliation(s)
- Jie Miao
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Cong Wei
- The Clinical Laboratory of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Qing Li
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin-Ming Yu
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiu Yang
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Lyrio RMDC, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia RDH, Segundo LB, de Almeida PAA, Moreira CMO, Sassi RH. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. FRONTIERS IN NEPHROLOGY 2024; 4:1436896. [PMID: 39185276 PMCID: PMC11341478 DOI: 10.3389/fneph.2024.1436896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Despite significant advancements in oncology, conventional chemotherapy remains the primary treatment for diverse malignancies. Acute kidney injury (AKI) stands out as one of the most prevalent and severe adverse effects associated with these cytotoxic agents. While platinum compounds are well-known for their nephrotoxic potential, other drugs including antimetabolites, alkylating agents, and antitumor antibiotics are also associated. The onset of AKI poses substantial risks, including heightened morbidity and mortality rates, prolonged hospital stays, treatment interruptions, and the need for renal replacement therapy, all of which impede optimal patient care. Various proactive measures, such as aggressive hydration and diuresis, have been identified as potential strategies to mitigate AKI; however, preventing its occurrence during chemotherapy remains challenging. Additionally, several factors, including intravascular volume depletion, sepsis, exposure to other nephrotoxic agents, tumor lysis syndrome, and direct damage from cancer's pathophysiology, frequently contribute to or exacerbate kidney injury. This article aims to comprehensively review the epidemiology, mechanisms of injury, diagnosis, treatment options, and prevention strategies for AKI induced by conventional chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Luz Santos
- Department of Medicine, Universidade Salvador (UNIFACS), Salvador, Brazil
| | | | | | | | | | - Rafael Hennemann Sassi
- Hematology Department, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
15
|
Zhao X, Meng Y, Dang C, Xue L, Zhang J, Ma S, Li H. VALD-2 mitigates cisplatin-induced acute kidney injury: Mechanistic insights into oxidative stress modulation and inflammation suppression. J Biochem Mol Toxicol 2024; 38:e23786. [PMID: 39072927 DOI: 10.1002/jbt.23786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
This study explores the compelling antitumor properties of VALD-2, a synthetic Schiff base ligand known for its low toxicity. The focus is on investigating VALD-2's protective role against cisplatin-induced acute kidney injury (AKI) in mice, with a specific emphasis on mitigating oxidative stress and inflammation. The study involves daily intraperitoneal injections of amifostine or VALD-2 over 7 days to establish an AKI model. Subsequently, mice were assigned to normal control, cisplatin group, cisplatin + amifostine group, and cisplatin + VALD-2 10 mg/kg group, cisplatin + VALD-2 20 mg/kg, and cisplatin + VALD-2 40 mg/kg. Kidney injury is assessed through serum blood urea nitrogen (BUN) and creatinine (Cr) activity assays. Levels of inflammatory factors, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), in kidney tissue of mice were assessed through enzyme-linked immunosorbent assay (ELISA). The protective effect of VALD-2 is further examined through HE staining to observe pathological changes in kidney injury. The ultrastructural changes of renal cells and tubular epithelial cells were observed by electron microscopy under experimental conditions, indicating the effect of VALD-2 on reversing cisplatin-induced renal injury. The study delves into VALD-2's protective mechanisms against cisplatin-induced kidney injury by using western blot analysis to assess the expression levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in kidney tissues. VALD-2 demonstrates significant improvement in cisplatin-induced AKI, as evidenced by increased BUN and Cr levels. It effectively protects kidney tissue from oxidative damage, enhancing SOD and GSH-Px activities while reducing MDA levels. The study also reveals a decrease in TNF-α and IL-6 levels, supported by ELISA results, and histological findings confirm anti-nephrotoxic effects. Western blot analysis shows an upregulation of antioxidant enzymes (SOD, GSH-Px) and a reduction in MDA production. VALD-2 emerges as a promising mitigator of cisplatin-induced AKI, showcasing its ability to enhance oxidative stress-related protein expression. The findings suggest VALD-2 as a potential therapeutic agent for protecting against cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Xuhui Zhao
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yuna Meng
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chunyan Dang
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Li Xue
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Jing Zhang
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Shuping Ma
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hongling Li
- Department of Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Wang HL, Peng Z, Li YQ, Wang YX, Li JC, Tan RZ, Su HW, Shen HP, Zhao CY, Liu J, Wang L. Calycosin inhibited MIF-mediated inflammatory chemotaxis of macrophages to ameliorate ischemia reperfusion-induced acute kidney injury. Inflamm Res 2024; 73:1267-1282. [PMID: 38844677 DOI: 10.1007/s00011-024-01899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1β and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.
Collapse
Affiliation(s)
- Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Ze Peng
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yu-Qing Li
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yi-Xuan Wang
- College of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian-Chun Li
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
| | - Rui-Zhi Tan
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China
| | - Hong-Wei Su
- The Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Hong-Ping Shen
- The Clinical Trial Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Chang-Ying Zhao
- The Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jian Liu
- The Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China.
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182, Chunhui Road, District of Longmatan, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
17
|
Hirano SI, Takefuji Y. Molecular Hydrogen Protects against Various Tissue Injuries from Side Effects of Anticancer Drugs by Reducing Oxidative Stress and Inflammation. Biomedicines 2024; 12:1591. [PMID: 39062164 PMCID: PMC11274581 DOI: 10.3390/biomedicines12071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
While drug therapy plays a crucial role in cancer treatment, many anticancer drugs, particularly cytotoxic and molecular-targeted drugs, cause severe side effects, which often limit the dosage of these drugs. Efforts have been made to alleviate these side effects by developing derivatives, analogues, and liposome formulations of existing anticancer drugs and by combining anticancer drugs with substances that reduce side effects. However, these approaches have not been sufficiently effective in reducing side effects. Molecular hydrogen (H2) has shown promise in this regard. It directly reduces reactive oxygen species, which have very strong oxidative capacity, and indirectly exerts antioxidant, anti-inflammatory, and anti-apoptotic effects by regulating gene expression. Its clinical application in various diseases has been expanded worldwide. Although H2 has been reported to reduce the side effects of anticancer drugs in animal studies and clinical trials, the underlying molecular mechanisms remain unclear. Our comprehensive literature review revealed that H2 protects against tissue injuries induced by cisplatin, oxaliplatin, doxorubicin, bleomycin, and gefitinib. The underlying mechanisms involve reductions in oxidative stress and inflammation. H2 itself exhibits anticancer activity. Therefore, the combination of H2 and anticancer drugs has the potential to reduce the side effects of anticancer drugs and enhance their anticancer activities. This is an exciting prospect for future cancer treatments.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Independent Researcher, 5-8-1-207 Honson, Chigasaki 253-0042, Japan
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 135-8181, Japan
| |
Collapse
|
18
|
Jian J, Yu-Qing L, Rang-Yue H, Xia Z, Ke-Huan X, Ying Y, Li W, Rui-Zhi T. Isorhamnetin ameliorates cisplatin-induced acute kidney injury in mice by activating SLPI-mediated anti-inflammatory effect in macrophage. Immunopharmacol Immunotoxicol 2024; 46:319-329. [PMID: 38466121 DOI: 10.1080/08923973.2024.2329621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Isorhamnetin (IH) has been reported to have significant anti-inflammatory effects in various diseases, but its role and mechanism in AKI remain unclear. This study aimed to explore the potential role and mechanism of isorhamnetin in inhibiting macrophage related inflammation and improving AKI injury. METHODS We established an AKI mouse model by intraperitoneal injection of cisplatin in vivo, and constructed an inflammatory cell model by stimulating RAW264.7 cells with LPS. Creatinine and urea nitrogen were measured to evaluate the changes of renal function in AKI mice. The changes of renal pathological structure were observed by H&E staining. The inflammatory factor-related proteins and RNA expression levels were detected by Western blot and real time PCR. RESULTS Isorhamnetin protected the kidney from cisplatin induced AKI and significantly inhibited the mRNA and protein levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) both in AKI kidney and LPS-stimulated RAW264.7 cells. Interestingly, the data also demonstrated that isorhamnetin significantly upregulated the expression of secretory leukocyte peptidase inhibitor (SLPI), an anti-inflammatory factor, in AKI kidney and LPS-stimulated macrophages, as well as inhibited the M1 macrophage and activated M2 macrophage in vitro. Blocking of SLPI by siRNA activated Mincle-associated inflammatory signaling in macrophages, and the inhibitory effect of isorhamnetin on inflammation was significantly attenuated. CONCLUSION Isorhamnetin inhibits macrophage inflammation and protects kidney in AKI may be related to downregulating Mincle/Syk/NF-κB-maintained macrophage phenotype by activating SLPI.
Collapse
Affiliation(s)
- Jia Jian
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Yu-Qing
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Han Rang-Yue
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhong Xia
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xie Ke-Huan
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yan Ying
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wang Li
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Tan Rui-Zhi
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Xiao Y, Chen H, Song J, Pan Y, Wang W. Berberine ameliorates contrast-induced acute kidney injury by regulating HDAC4-FoxO3a axis-induced autophagy: In vivo and in vitro. Phytother Res 2024; 38:1761-1780. [PMID: 37922559 DOI: 10.1002/ptr.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.
Collapse
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Qingju Li
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Suqin Zhou
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Ran Yu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Caixia Wu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiajia Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yao Xiao
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- Jiangsu College of Nursing, Huai'an, China
| | - Haoyu Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jian Song
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yan Pan
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Wanpeng Wang
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
21
|
Yang G, Kantapan J, Mazhar M, Hu Q, Bai X, Zou Y, Wang H, Yang S, Wang L, Dechsupa N. Pretreated MSCs with IronQ Transplantation Attenuate Microglia Neuroinflammation via the cGAS-STING Signaling Pathway. J Inflamm Res 2024; 17:1643-1658. [PMID: 38504697 PMCID: PMC10949311 DOI: 10.2147/jir.s449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH), a devastating form of stroke, is characterized by elevated morbidity and mortality rates. Neuroinflammation is a common occurrence following ICH. Mesenchymal stem cells (MSCs) have exhibited potential in treating brain diseases due to their anti-inflammatory properties. However, the therapeutic efficacy of MSCs is limited by the intense inflammatory response at the transplantation site in ICH. Hence, enhancing the function of transplanted MSCs holds considerable promise as a therapeutic strategy for ICH. Notably, the iron-quercetin complex (IronQ), a metal-quercetin complex synthesized through coordination chemistry, has garnered significant attention for its biomedical applications. In our previous studies, we have observed that IronQ exerts stimulatory effects on cell growth, notably enhancing the survival and viability of peripheral blood mononuclear cells (PBMCs) and MSCs. This study aimed to evaluate the effects of pretreated MSCs with IronQ on neuroinflammation and elucidate its underlying mechanisms. METHODS The ICH mice were induced by injecting the collagenase I solution into the right brain caudate nucleus. After 24 hours, the ICH mice were randomly divided into four subgroups, the model group (Model), quercetin group (Quercetin), MSCs group (MSCs), and pretreated MSCs with IronQ group (MSCs+IronQ). Neurological deficits were re-evaluated on day 3, and brain samples were collected for further analysis. TUNEL staining was performed to assess cell DNA damage, and the protein expression levels of inflammatory factors and the cGAS-STING signaling pathway were investigated and analyzed. RESULTS Pretreated MSCs with IronQ effectively mitigate neurological deficits and reduce neuronal inflammation by modulating the microglial polarization. Moreover, the pretreated MSCs with IronQ suppress the protein expression levels of the cGAS-STING signaling pathway. CONCLUSION These findings suggest that pretreated MSCs with IronQ demonstrate a synergistic effect in alleviating neuroinflammation, thereby improving neurological function, which is achieved through the inhibition of the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Acupuncture and Rehabilitation Department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiongdan Hu
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xue Bai
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Honglian Wang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Zhang J, Jiang J, Wang B, Wang Y, Qian Y, Suo J, Li Y, Peng Z. SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury. Int Immunopharmacol 2024; 129:111564. [PMID: 38320352 DOI: 10.1016/j.intimp.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Bingqing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yue Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
23
|
Pan J, Wu T, Chen L, Chen X, Zhang C, Wang Y, Li H, Guo J, Jiang W. A bimetallic nanozyme coordinated with quercetin for efficient radical scavenging and treatment of acute kidney injury. NANOSCALE 2024; 16:2955-2965. [PMID: 38247885 DOI: 10.1039/d3nr05255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Acute kidney injury (AKI), characterized by tissue inflammation and oxidative damage, is a common and potentially life-threatening complication in patients. Quercetin, a natural antioxidant, possesses diverse pharmacological properties. However, limited stability and bioavailability hinder its clinical utilization. Moreover, the application of nanotechnology in antioxidant strategies for AKI treatment faces significant knowledge gaps. These gaps stem from limited understanding of the therapeutic mechanisms and renal clearance pathways. To tackle these issues, this study aims to develop an anti-oxidation nanozyme through the coordination of quercetin (Que) with a ruthenium (Ru) doped platinum (Pt) nanozyme (RuPt nanozyme). Compared to using Que or the RuPt nanozyme alone, the combined use of Que and the nanozyme led to enhanced antioxidant activities, especially in ABTS and DPPH free radical scavenging activities. Moreover, the modified nanozyme showed remarkable efficacy in scavenging reactive oxygen species and inhibiting apoptosis in a H2O2-induced cellular model. Additionally, the in vivo study showed that the coordination-modified nanozyme effectively alleviated glycerol- and cisplatin-induced AKI by inhibiting oxidative stress. Furthermore, this nanozyme exhibited superior therapeutic efficacy when compared to free quercetin and the RuPt nanozyme. In conclusion, the findings of our study suggest that the quercetin modified RuPt nanozyme (QCN) exhibits remarkable biocompatibility and holds significant promise for the therapeutic management of AKI.
Collapse
Affiliation(s)
- Jiangpeng Pan
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Academy of Medical Sciences. Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tingting Wu
- Academy of Medical Sciences. Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lu Chen
- Department of Cardiovascular Diseases the First Clinical Medical College. Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaoxi Chen
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Chao Zhang
- Academy of Medical Sciences. Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yanyan Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Academy of Medical Sciences. Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hao Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, P.R. China.
| | - Wei Jiang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Academy of Medical Sciences. Zhengzhou University, Zhengzhou, Henan, P.R. China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China.
| |
Collapse
|
24
|
Chen X, Hu K, Shi HZ, Zhang YJ, Chen L, He SM, Wang DD. Syk/BLNK/NF-κB signaling promotes pancreatic injury induced by tacrolimus and potential protective effect from rapamycin. Biomed Pharmacother 2024; 171:116125. [PMID: 38183743 DOI: 10.1016/j.biopha.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The treatment of tacrolimus-induced post-transplantation diabetes mellitus (PTDM) has become a hot topic to improve the long-term survival of organ transplant patients, however whose pathogenesis has not been fully elucidated. In pancreas, the up-regulation of NF-κB has been reported to stimulate cytokine IL-1β/TNF-α secretion, inducing pancreatic injury, meanwhile other studies have reported the inhibitory effect of rapamycin on NF-κB. PURPOSE The aim of this study was to clarify the mechanism of tacrolimus-induced pancreatic injury and to explore the potential effect from small dose of sirolimus. METHODS Wistar rats were randomly divided normal control (NC) group, PTDM group, sirolimus intervention (SIR) group. Transcriptomic analysis was used to screen potential mechanism of PTDM. Biochemical index detections were used to test the indicators of pancreatic injury. Pathological staining, immumohistochemical staining, immunofluorescent staining, western blot were used to verify the underlying mechanism. RESULTS Compared with NC group, the level of insulin was significant reduction (P < 0.01), inversely the level of glucagon was significantly increase (P < 0.01) in PTDM group. Transcriptomic analysis indicated Syk/BLNK/NF-κB signaling was significantly up-regulated in PTDM group. Pathological staining, immumohistochemical staining, immunofluorescent staining, western blot verified Syk/BLNK/NF-κB and TNF-α/IL-1β were all significantly increased (P < 0.05 or P < 0.01), demonstrating the mechanism of tacrolimus-induced pancreatic injury via Syk/BLNK/NF-κB signaling. In addition, compared with PTDM group, the levels of weight, FPG, AMY, and GSP in SIR group were significant ameliorative (P < 0.05 or P < 0.01), and the expressions of p-NF-κB, TNF-α/IL-1β in SIR group were significantly reduction (P < 0.05 or P < 0.01), showing Syk/BLNK/NF-κB signaling promoted pancreatic injury induced by tacrolimus and potential protective effect from rapamycin reducing NF-κB. CONCLUSION Syk/BLNK/NF-κB signaling promotes pancreatic injury induced by tacrolimus and rapamycin has a potentially protective effect by down-regulating NF-κB. Further validation and clinical studies are needed in the future.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hao-Zhe Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-Jia Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China.
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
25
|
Tourabi M, El Ghouizi A, Nouioura G, Faiz K, Elfatemi H, El-Yagoubi K, Lyoussi B, Derwich E. Phenolic profile, acute and subacute oral toxicity of the aqueous extract from Moroccan Mentha longifolia L. aerial part in Swiss Albino mice model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117293. [PMID: 37844742 DOI: 10.1016/j.jep.2023.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mentha longifolia (L.) (Lamiaceae) is a native plant in Morocco, traditionally used in different countries to treat several disorders notably gastrointestinal illnesses, respiratory disorders, infectious diseases, inflammatory diseases, and menstrual problems. Robust scientific evidence has confirmed multiple pharmacological properties of M. longifolia including antihemolytic, anti-inflammatory, antibacterial, hepatoprotective, anti-cancer, antidiabetic, gastroprotective effect, and antispasmodic activity. AIM OF THE STUDY The current study aimed to determine the phytochemical profile and assess the toxic effect of an aqueous extract of the arial parts of M. longifolia in male and female Swiss albino mice during acute and subacute oral toxicity. MATERIALS AND METHODS High-performance Liquid Chromatography Diode Array Detector (HPLC-DAD) was used to provide qualitative and quantitative analyses of phenolic compounds of M. longifolia aqueous extract. In acute toxicity experiments, four distinct groups of mice (n = 5/group/sex) were administered Mentha longifolia aqueous extract at single oral dosages of 0.5; 1; 2; 4, and 8 g/kg BW given by gavage and intraperitoneal for up to 14 days. Regarding the subacute toxicity investigation, Swiss albino mice were given M. longifolia aqueous extract orally at dosages of 100; 500; and 1000 mg/kg BW daily for 28 days. Body weight is measured every 7 days and suggested biochemical and hematological parameters were quantified, at the finish of 28 days of daily administration, sections of the liver, kidney, and spleen were histologically evaluated for showing damage to organs. RESULTS The data of High-performance Liquid chromatography analysis revealed that M. longifolia aqueous extract was rich in interesting phytochemical compounds, mainly quercetin, and rutin, followed by a hydroxybenzoic acid-like syringic acid. Regarding the acute test in mice, no mortality or symptoms of toxicity were detected following oral administration with a single dose of M. longifolia aqueous extract at any dosage limit up to 4 g/kg, which was the no-observed side effect threshold (NOAEL). The mortality rate as well as acute toxicity of the M. longifolia aqueous extract delivered intraperitoneally, are increased progressively with increasing dosage. The non-observed adverse effect level (NOAEL) for the intraperitoneal dosage was 1 g/kg BW, and the lowest observed adverse effect level (LOAEL) was 2 g/kg BW, the estimated acute toxicity (LD50) of intraperitoneally given M. longifolia aqueous extract in mice was 4.800 g/kg BW. Concerning subacute examinations in mice, the M. longifolia aqueous extract did not induce substantial modifications in biochemical or hematological indicators, preserving a slight increase in creatinine and urea levels. At the end of the experiment, a histopathological examination of the kidneys, liver, and spleen revealed normal architecture, suggesting no morphological damage. CONCLUSION The data we obtained indicate that acute or subacute administration of Mentha longifolia aqueous extract is relatively non-toxic in male and female Swiss albino mice.
Collapse
Affiliation(s)
- Meryem Tourabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco; The Higher Institute of Nursing Professions and Health Techniques (ISPITS), Fez, Morocco.
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Khaoula Faiz
- Laboratory of Biotechnology, Environment, Food and Health Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Hind Elfatemi
- Department of Pathology, University Hospital Hassan II, 30050, Fez, Morocco.
| | - Karima El-Yagoubi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco; Unity of GC/MS and GC-FID, City of Innovation, Sidi Mohamed Ben Abdellah University, Morocco.
| |
Collapse
|
26
|
Ren N, Wang WF, Zou L, Zhao YL, Miao H, Zhao YY. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front Pharmacol 2024; 14:1335094. [PMID: 38293668 PMCID: PMC10824958 DOI: 10.3389/fphar.2023.1335094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.
Collapse
Affiliation(s)
- Na Ren
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan-Long Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
28
|
Zeng YF, Li JY, Wei XY, Ma SQ, Wang QG, Qi Z, Duan ZC, Tan L, Tang H. Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies. Front Pharmacol 2023; 14:1310023. [PMID: 38186644 PMCID: PMC10770850 DOI: 10.3389/fphar.2023.1310023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Objective: This study evaluated the reno-protective effects of quercetin in animal models of acute kidney injury (AKI). Methods: We conducted a systematic search of literature published before April 2023 in PubMed, Web of Science, and EMBASE databases. Methodological quality was assessed by SYRCLE's RoB tool. Funnel plot, Egger's test, and Begg's test were used to determine publication bias. Results: A total of 19 studies with 288 animals were included in this meta-analysis. The methodology quality scores of the included studies ranged from 4 to 7. The results indicated that quercetin reduced blood urea nitrogen (SMD = -4.78; 95% CI: 6.45, -3.12; p < 0.01; I2 = 84%) and serum creatinine (SMD: 2.73, 95% CI: 3.66, -1.80; p < 0.01; I2 = 80%) in AKI models. The result of sensitivity analysis was stable, while the results of funnel plot indicated asymmetric. In addition, we further analyzed inflammatory cytokines, oxidative stress levels, and kidney injury scores, and found that quercetin treatment had antioxidant and anti-inflammatory effects and improved kidney injury scores in animal models of AKI. Conclusion: Quercetin exhibited a promising reno-protective effect in AKI animal models. Systematic Review Registration: PROSPERO (CRD42023433333).
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Yu Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Qing Ma
- Department of Pharmacy, Hunan Chest Hospital, Changsha Medical University, Changsha, China
| | - Qiu-Guo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Cheng Duan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Dong XQ, Chu LK, Cao X, Xiong QW, Mao YM, Chen CH, Bi YL, Liu J, Yan XM. Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis. Redox Rep 2023; 28:2152607. [PMID: 36692085 PMCID: PMC9879199 DOI: 10.1080/13510002.2022.2152607] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Renal proximal tubular cells are highly vulnerable to different types of assaults during filtration and reabsorption, leading to acute renal dysfunction and eventual chronic kidney diseases (CKD). The chemotherapeutic drug cisplatin elicits cytotoxicity causing renal tubular cell death, but its executing mechanisms of action are versatile and elusive. Here, we show that cisplatin induces renal tubular cell apoptosis and ferroptosis by disrupting glutathione (GSH) metabolism. Upon cisplatin treatment, GSH metabolism is impaired leading to GSH depletion as well as the execution of mitochondria-mediated apoptosis and lipid oxidation-related ferroptosis through activating IL6/JAK/STAT3 signaling. Inhibition of JAK/STAT3 signaling reversed cell apoptosis and ferroptosis in response to cisplatin induction. Using a cisplatin-induced acute kidney injury (CAKI) mouse model, we found that inhibition of JAK/STAT3 significantly mitigates cisplatin nephrotoxicity with a reduced level of serum BUN and creatinine as well as proximal tubular distortion. In addition, the GSH booster baicalein also reclaims cisplatin-induced renal tubular cell apoptosis and ferroptosis as well as the in vivo nephrotoxicity. In conclusion, cisplatin disrupts glutathione metabolism, leading to renal tubular cell apoptosis and ferroptosis. Rewiring glutathione metabolism represents a promising strategy for combating cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Xing-Qiang Dong
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Li-Kai Chu
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xu Cao
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qian-Wei Xiong
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi-Ming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, People’s Republic of China
| | - Ching-Hsien Chen
- Department of Internal Medicine, Division of Nephrology, University of California Davis, Davis, CA, USA,Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of California Davis, Davis, CA, USA
| | - Yun-Li Bi
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jun Liu
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China,Pediatric Institute of Soochow University, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China, Jun Liu Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China and Pediatric Institute of Soochow University, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China; Xiang-Ming Yan Department of Urology, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiang-Ming Yan
- Department of Urology, Children’s Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
30
|
Han JM, Song HY, Kim KI, Byun EB. Protective Effects of Bombyx batryticatus Protein-Rich Extract Against Cisplatin-Induced Nephrotoxicity in HEK293 Cells and a Mouse Model. J Med Food 2023; 26:927-938. [PMID: 38064431 DOI: 10.1089/jmf.2023.k.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Cisplatin, a potent and prominent chemotherapeutic drug, has considerable side effects, including nephrotoxicity, which limits its therapeutic application and efficacy. Therefore, the development of agents that protect normal cells while preserving cisplatin's chemotherapeutic properties is of utmost importance. This study aimed to explore the protective effects of Bombyx batryticatus protein-rich extract (BBPE) against cisplatin-induced nephrotoxicity in a cisplatin-treated mouse model and human embryonic kidney (HEK293) cells. Apoptosis was assessed in HEK293 cells to determine the cytoprotective effects of BBPE and its effects on the generation of cisplatin-induced reactive oxygen species (ROS) and mitochondrial transmembrane potential (MTP) collapse. Although cisplatin induced nephrotoxicity in HEK293 cells, pretreatment with BBPE showed significant protective effects against cisplatin-induced nephrotoxicity by regulating the expression levels of pro- and antiapoptotic proteins. The cytoprotective effects of BBPE were mediated by decreased ROS production and MTP loss in cisplatin-treated HEK293 cells. The in vitro results were confirmed in the cisplatin-treated mouse model. Pretreatment with BBPE protected against cisplatin-induced nephrotoxicity by restoring malondialdehyde, superoxide dismutase, and catalase levels in kidney tissue and blood urea nitrogen and creatinine serum levels. Furthermore, histopathological assessment and terminal dUTP nick end-labeling staining showed that BBPE mitigated cisplatin-induced nephrotoxicity in kidney tissues. Overall, BBPE may act as a potent agent for alleviating cisplatin-induced nephrotoxicity, thereby increasing the safety of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Kwang-Il Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
31
|
Yuan W, Kou S, Ma Y, Qian Y, Li X, Chai Y, Jiang Z, Zhang L, Sun L, Huang X. Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1. Xenobiotica 2023; 53:559-571. [PMID: 37885225 DOI: 10.1080/00498254.2023.2270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Shanshan Kou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yusi Qian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xinyu Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Yuanyuan Chai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
32
|
Zhang Z, Liang B, Jike W, Li R, Su X, Yu J, Liu T. The Protective Effect of Marsdenia tenacissima against Cisplatin-Induced Nephrotoxicity Mediated by Inhibiting Oxidative Stress, Inflammation, and Apoptosis. Molecules 2023; 28:7582. [PMID: 38005304 PMCID: PMC10674371 DOI: 10.3390/molecules28227582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis's multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese medicine (TCM) employed extensively in China, not only enhances the antitumor effect in combination with Cis, but is also used for its detoxifying effect, as it reduces the toxic side effects of chemotherapy drugs. The aim of this study was to explore the therapeutic effect of MT on Cis-induced nephrotoxicity, along with its underlying mechanisms. In this study, liquid-mass spectrometry was performed to identify the complex composition of the extracts of MT. In addition, we measured the renal function, antioxidant enzymes, and inflammatory cytokines in mice with Cis-induced nephrotoxicity and conducted renal histology evaluations to assess renal injury. The expressions of the proteins related to antioxidant, anti-inflammatory, and apoptotic markers in renal tissues was detected by Western blotting (WB). MT treatment improved the renal function, decreased the mRNA expression of the inflammatory factors, and increased the antioxidant enzyme activity in mice. A better renal histology was observed after MT treatment. Further, MT inhibited the expression of the phospho-NFκB p65 protein/NFκB p65 protein (p-p65)/p65, phospho-inhibitor of nuclear factor kappa B kinase beta subunit/inhibitor of nuclear factor kappa B kinase beta subunit (p-IKKβ/IKKβ), Bcl-2-associated X (Bax), and Cleaved Caspase 3/Caspase 3 proteins, while the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Recombinant NADH Dehydrogenase, Quinone 1 (NQO1), and B-cell lymphoma-2 (Bcl-2) was increased. The present study showed that MT ameliorated renal injury, which mainly occurs through the regulation of the Nrf2 pathway, the NF-κB pathway, and the suppression of renal tissue apoptosis. It also suggests that MT can be used as an adjuvant to mitigate the nephrotoxicity of Cis chemotherapy.
Collapse
Affiliation(s)
- Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Boya Liang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Wugemo Jike
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Runtian Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China
| |
Collapse
|
33
|
Wu W, Wang W, Liang L, Chen J, Sun S, Wei B, Zhong Y, Huang XR, Liu J, Wang X, Yu X, Lan HY. SARS-CoV-2 N protein induced acute kidney injury in diabetic db/db mice is associated with a Mincle-dependent M1 macrophage activation. Front Immunol 2023; 14:1264447. [PMID: 38022581 PMCID: PMC10655021 DOI: 10.3389/fimmu.2023.1264447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
"Cytokine storm" is common in critically ill COVID-19 patients, however, mechanisms remain largely unknown. Here, we reported that overexpression of SARS-CoV-2 N protein in diabetic db/db mice significantly increased tubular death and the release of HMGB1, one of the damage-associated molecular patterns (DAMPs), to trigger M1 proinflammatory macrophage activation and production of IL-6, TNF-α, and MCP-1 via a Mincle-Syk/NF-κB-dependent mechanism. This was further confirmed in vitro that overexpression of SARS-CoV-2 N protein caused the release of HMGB1 from injured tubular cells under high AGE conditions, which resulted in M1 macrophage activation and production of proinflammatory cytokines via a Mincle-Syk/NF-κB-dependent mechanism. This was further evidenced by specifically silencing macrophage Mincle to block HMGB1-induced M1 macrophage activation and production of IL-6, TNF-α, and MCP-1 in vitro. Importantly, we also uncovered that treatment with quercetin largely improved SARS-CoV-2 N protein-induced AKI in db/db mice. Mechanistically, we found that quercetin treatment significantly inhibited the release of a DAMP molecule HMGB1 and inactivated M1 pro-inflammatory macrophage while promoting reparative M2 macrophage responses by suppressing Mincle-Syk/NF-κB signaling in vivo and in vitro. In conclusion, SARS-CoV-2 N protein-induced AKI in db/db mice is associated with Mincle-dependent M1 macrophage activation. Inhibition of this pathway may be a mechanism through which quercetin inhibits COVID-19-associated AKI.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Wenbiao Wang
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liying Liang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Clinical Pharmacy, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junzhe Chen
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Sifan Sun
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Guangdong Cardiovascular Institute, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqin Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Departments of Nephrology and Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Zhang D, Luo G, Jin K, Bao X, Huang L, Ke J. The underlying mechanisms of cisplatin-induced nephrotoxicity and its therapeutic intervention using natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2925-2941. [PMID: 37289283 DOI: 10.1007/s00210-023-02559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug widely used for the treatment of various solid tumors; however, its clinical use and efficacy are limited by its inherent nephrotoxicity. The pathogenesis of cisplatin-induced nephrotoxicity is complex and has not been fully elucidated. Cellular uptake and transport, DNA damage, apoptosis, oxidative stress, inflammatory response, and autophagy are involved in the development of cisplatin-induced nephrotoxicity. Currently, despite some deficiencies, hydration regimens remain the major protective measures against cisplatin-induced nephrotoxicity. Therefore, effective drugs must be explored and developed to prevent and treat cisplatin-induced kidney injury. In recent years, many natural compounds with high efficiency and low toxicity have been identified for the treatment of cisplatin-induced nephrotoxicity, including quercetin, saikosaponin D, berberine, resveratrol, and curcumin. These natural agents have multiple targets, multiple effects, and low drug resistance; therefore, they can be safely used as a supplementary regimen or combination therapy for cisplatin-induced nephrotoxicity. This review aimed to comprehensively describe the molecular mechanisms underlying cisplatin-induced nephrotoxicity and summarize natural kidney-protecting compounds to provide new ideas for the development of better therapeutic agents.
Collapse
Affiliation(s)
- Doudou Zhang
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| | - Kaixiang Jin
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Xiaodong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Jianghuan Ke
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| |
Collapse
|
35
|
Wei C, Wang C, Li R, Bai Y, Wang X, Fang Q, Chen X, Li P. The pharmacological mechanism of Abelmoschus manihot in the treatment of chronic kidney disease. Heliyon 2023; 9:e22017. [PMID: 38058638 PMCID: PMC10695975 DOI: 10.1016/j.heliyon.2023.e22017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Abelmoschus manihot (A.manihot) is a herbaceous flowering medicinal plant and flavonoids are its main pharmacological active ingredients. A.manihot is listed in the 2020 edition of the Chinese Pharmacopoeia for the treatment of chronic kidney disease (CKD). A.manihot significantly reduces proteinuria in CKD, and the effectiveness and safety of A.manihot in the treatment including primary glomerulonephropathy and diabetic kidney disease (DKD) have been proved by several randomized controlled trials (RCT). Emerging pharmacological studies have explored the potential active small molecules and the underlying mechanisms in A.manihot. The active constituents of A.manihot are mainly seven flavonoids, including hibifolin, hyperoside, isoquercetin, rutin, quercetin, myricetin, and quercetin-3-O-robinobioside. The mechanisms of action mainly include alleviating renal fibrosis, reducing the inflammatory response and decreasing the apoptosis of podocytes. In this review, we summarize the updated information of active components and molecular mechanisms of A.manihot on chronic kidney disease.
Collapse
Affiliation(s)
- Cuiting Wei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Run Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qingyun Fang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
36
|
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Int J Mol Sci 2023; 24:14019. [PMID: 37762322 PMCID: PMC10531003 DOI: 10.3390/ijms241814019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is one of the main conditions responsible for chronic kidney disease (CKD), including end-stage renal disease (ESRD) as a long-term complication. Besides short-term complications, such as electrolyte and acid-base disorders, fluid overload, bleeding complications or immune dysfunctions, AKI can develop chronic injuries and subsequent CKD through renal fibrosis pathways. Kidney fibrosis is a pathological process defined by excessive extracellular matrix (ECM) deposition, evidenced in chronic kidney injuries with maladaptive architecture restoration. So far, cited maladaptive kidney processes responsible for AKI to CKD transition were epithelial, endothelial, pericyte, macrophage and fibroblast transition to myofibroblasts. These are responsible for smooth muscle actin (SMA) synthesis and abnormal renal architecture. Recently, AKI progress to CKD or ESRD gained a lot of interest, with impressive progression in discovering the mechanisms involved in renal fibrosis, including cellular and molecular pathways. Risk factors mentioned in AKI progression to CKD are frequency and severity of kidney injury, chronic diseases such as uncontrolled hypertension, diabetes mellitus, obesity and unmodifiable risk factors (i.e., genetics, older age or gender). To provide a better understanding of AKI transition to CKD, we have selected relevant and updated information regarding the risk factors responsible for AKIs unfavorable long-term evolution and mechanisms incriminated in the progression to a chronic state, along with possible therapeutic approaches in preventing or delaying CKD from AKI.
Collapse
Affiliation(s)
- Andrei Niculae
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai-Emil Gherghina
- Department of Nephrology, Ilfov County Emergency Clinical Hospital, 022104 Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | | |
Collapse
|
37
|
Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, Noguchi I, Iwakiri R, Taguchi K, Sakai H, Saruwatari J, Watanabe H, Otagiri M, Maruyama T. Carbon Monoxide-Loaded Red Blood Cell Prevents the Onset of Cisplatin-Induced Acute Kidney Injury. Antioxidants (Basel) 2023; 12:1705. [PMID: 37760008 PMCID: PMC10526101 DOI: 10.3390/antiox12091705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| |
Collapse
|
38
|
Wu W, Zhang Y, Liu G, Chi Z, Zhang A, Miao S, Lin C, Xu Q, Zhang Y. Potential protective effects of Huanglian Jiedu Decoction against COVID-19-associated acute kidney injury: A network-based pharmacological and molecular docking study. Open Med (Wars) 2023; 18:20230746. [PMID: 37533739 PMCID: PMC10390755 DOI: 10.1515/med-2023-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Corona virus disease 2019 (COVID-19) is prone to induce multiple organ damage. The kidney is one of the target organs of SARS-CoV-2, which is susceptible to inducing acute kidney injury (AKI). Huanglian Jiedu Decoction (HLJDD) is one of the recommended prescriptions for COVID-19 with severe complications. We used network pharmacology and molecular docking to explore the therapeutic and protective effects of HLJDD on COVID-19-associated AKI. Potential targets related to "HLJDD," "COVID-19," and "Acute Kidney Injury/Acute Renal Failure" were identified from several databases. A protein-protein interaction (PPI) network was constructed and screened the core targets according to the degree value. The target genes were then enriched using gene ontology and Kyoto Encyclopedia of Genes and Genomes. The bioactive components were docked with the core targets. A total of 65 active compounds, 85 common targets for diseases and drugs were obtained; PPI network analysis showed that the core protein mainly involved JUN, RELA, and AKT1; functional analysis showed that these target genes were mainly involved in lipid and atherosclerosis signaling pathway and IL-17 signal pathway. The results of molecular docking showed that JUN, RELA, and AKT1 had good binding activity with the effective chemical components of HLJDD. In conclusion, HLJDD can be used as a potential therapeutic drug for COVID-19-associated AKI.
Collapse
Affiliation(s)
- Weichu Wu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Guoyuan Liu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Zepai Chi
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Aiping Zhang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, PR China
| | - Shuying Miao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengchuang Lin
- Department of Traditional Chinese Medicine, Shantou Central Hospital, Shantou, 515031, PR China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| |
Collapse
|
39
|
Zhou Y, Zhang Y, Yu W, Qin Y, He H, Dai F, Wang Y, Zhu F, Zhou G. Immunomodulatory role of spleen tyrosine kinase in chronic inflammatory and autoimmune diseases. Immun Inflamm Dis 2023; 11:e934. [PMID: 37506139 PMCID: PMC10373573 DOI: 10.1002/iid3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The high prevalence of chronic inflammatory diseases or autoimmune reactions is a major source of concern and affects the quality of life of patients. Chronic inflammatory or autoimmune diseases are associated with many diseases in humans, including asthma, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and cancer. Splenic tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an important role in immune receptor signalling in immune and inflammatory responses. METHODS This is a review article in which we searched for keywords "splenic tyrosine kinase", "inflammation" and "autoimmune diseases" in published literature such as Pubmed and Web of Science to collect relevant information and then conducted a study focusing on the latest findings on the involvement of SYK in chronic inflammatory or autoimmune diseases. RESULTS This paper reviews the regulation of Fcγ, NF-κB, B cell and T cell-related signalling pathways by SYK, which contributes to disease progression in chronic inflammatory and autoimmune diseases such as airway fibrosis, inflammatory skin disease and inflammatory bowel disease. CONCLUSION This paper shows that SYK plays an important role in chronic inflammatory and autoimmune diseases. syk targets hematological, autoimmune and other inflammatory diseases and therefore, inhibition of SYK expression or blocking its related pathways may provide new ideas for clinical prevention and treatment of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengxian Dai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
40
|
Chen Y, Dai X, Chen W, Qiao Y, Bai R, Duan X, Zhang K, Chen X, Li X, Mo S, Cao W, Li X, Liu K, Dong Z, Lu J. Diosmetin suppresses the progression of ESCC by CDK2/Rb/E2F2/RRM2 pathway and synergies with cisplatin. Oncogene 2023:10.1038/s41388-023-02750-2. [PMID: 37349644 DOI: 10.1038/s41388-023-02750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Cisplatin (CDDP) is the first-line drug in the clinical treatment of esophageal squamous cell carcinoma (ESCC), which has severe nephrotoxicity. Diosmetin (DIOS) can protect kidney from oxidative damage, however, its function in ESCC is unknown. This study aims to explore the effect and mechanism of DIOS on ESCC and its combined effect with CDDP. Herein, we found that DIOS significantly inhibited the progression of ESCC in vitro and in vivo. Furthermore, the anti-tumor effect of DIOS was not statistically different from that of CDDP. Mechanically, transcriptomics revealed that DIOS inhibited the E2F2/RRM2 signaling pathway. The transcriptional regulation of RRM2 by E2F2 was verified by luciferase assay. Moreover, docking model, CETSA, pull-down assay and CDK2 inhibitor assay confirmed that DIOS directly targeted CDK2, leading to significant suppression of ESCC. Additionally, the patient-derived xenografts (PDX) model showed that the combination of DIOS and CDDP significantly inhibited the growth of ESCC. Importantly, the combined treatment with DIOS and CDDP significantly reduced the mRNA expression levels of kidney injury biomarkers KIM-1 and NGAL in renal tissue, as well as the levels of blood urea nitrogen, serum creatinine and blood uric acid compared to the single treatment with CDDP. In conclusion, DIOS could be an effective drug and a potential chemotherapeutic adjuvant for ESCC treatment. Furthermore, DIOS could reduce the nephrotoxicity of CDDP to some extent.
Collapse
Affiliation(s)
- Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
41
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
42
|
Chou YN, Lee MM, Deng JS, Jiang WP, Lin JG, Huang GJ. Water Extract from Brown Strain of Flammulina velutipes Alleviates Cisplatin-Induced Acute Kidney Injury by Attenuating Oxidative Stress, Inflammation, and Autophagy via PI3K/AKT Pathway Regulation. Int J Mol Sci 2023; 24:ijms24119448. [PMID: 37298398 DOI: 10.3390/ijms24119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
One of the most popular edible mushrooms in the world, Flammulina velutipes, has been shown to possess pharmacological properties such as anti-inflammatory and antioxidant properties. However, the potential activity of the brown strain of F. velutipes, a hybrid between the white and yellow strains, has not been thoroughly investigated. Numerous studies have been conducted in recent years to determine whether natural products can aid in improving or treating kidney diseases. In this study, we focused on the renoprotective effects of the brown strain of F. velutipes on cisplatin-induced acute kidney injury (AKI) in mice. Mice were pretreated with water extract from the brown strain of F. velutipes (WFV) from day 1 to day 10, with a single-dose intraperitoneal injection of cisplatin on day 7 to induce AKI. Our results demonstrated that WFV administration resulted in a reduction in weight loss and the amelioration of renal function and renal histological changes in mice with cisplatin-induced AKI. WFV improved antioxidative stress and anti-inflammatory capacity by increasing antioxidant enzymes and decreasing inflammatory factors. The expression of related proteins was determined via Western blot analysis, which showed that WFV could improve the expression of apoptosis and autophagy. We used the PI3K inhibitor Wortmannin and found that WFV achieved a protective effect by modulating the PI3K/AKT pathway and the expression of autophagy. Overall, WFV as a natural substance could be used as a new therapeutic agent for AKI.
Collapse
Affiliation(s)
- Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Min-Min Lee
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
43
|
Yang XL, Wang CX, Wang JX, Wu SM, Yong Q, Li K, Yang JR. In silico evidence implicating novel mechanisms of Prunella vulgaris L . as a potential botanical drug against COVID-19-associated acute kidney injury. Front Pharmacol 2023; 14:1188086. [PMID: 37274117 PMCID: PMC10232756 DOI: 10.3389/fphar.2023.1188086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor for in-hospital mortality and has the potential to progress to chronic kidney disease. Prunella vulgaris L., a traditional Chinese herb that has been used for the treatment of a variety of kidney diseases for centuries, could have the potential to treat this complication. In this study, we studied the potential protective role of Prunella vulgaris in COVID-19 AKI and explored its specific mechanisms applied by network pharmacology and bioinformatics methods. The combination of the protein-protein interaction network and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that all these eight gene-encoded proteins could be effectively bound to three major active compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. Molecular dynamics simulation also supports the binding stability of RELA-encoded protein with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be the potential drug targets by inhibiting the NF-κB signaling pathway. Our in silico studies shed new insights into P. vulgaris and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and warrant further studies on efficacy and mechanisms.
Collapse
Affiliation(s)
- Xue-Ling Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chun-Xuan Wang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shi-Min Wu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ju-Rong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Yang G, Kantapan J, Mazhar M, Bai X, Zou Y, Wang H, Huang B, Yang S, Dechsupa N, Wang L. Mesenchymal stem cells transplantation combined with IronQ attenuates ICH-induced inflammation response via Mincle/syk signaling pathway. Stem Cell Res Ther 2023; 14:131. [PMID: 37189208 DOI: 10.1186/s13287-023-03369-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe brain-injured disease accompanied by cerebral edema, inflammation, and subsequent neurological deficits. Mesenchymal stem cells (MSCs) transplantation has been used as a neuroprotective therapy in nervous system diseases because of its anti-inflammatory effect. Nevertheless, the biological characteristics of transplanted MSCs, including the survival rate, viability, and effectiveness, are restricted because of the severe inflammatory response after ICH. Therefore, improving the survival and viability of MSCs will provide a hopeful therapeutic efficacy for ICH. Notably, the biomedical applications of coordination chemistry-mediated metal-quercetin complex have been verified positively and studied extensively, including growth-promoting and imaging probes. Previous studies have shown that the iron-quercetin complex (IronQ) possesses extraordinary dual capabilities with a stimulating agent for cell growth and an imaging probe by magnetic resonance imaging (MRI). Therefore, we hypothesized that IronQ could improve the survival and viability of MSCs, displaying the anti-inflammation function in the treatment of ICH while also labeling MSCs for their tracking by MRI. This study aimed to explore the effects of MSCs with IronQ in regulating inflammation and further clarify their potential mechanisms. METHODS C57BL/6 male mice were utilized in this research. A collagenase I-induced ICH mice model was established and randomly separated into the model group (Model), quercetin gavage group (Quercetin), MSCs transplantation group (MSCs), and MSCs transplantation combined with IronQ group (MSCs + IronQ) after 24 h. Then, the neurological deficits score, brain water content (BWC), and protein expression, such as TNF-α, IL-6, NeuN, MBP, as well as GFAP, were investigated. We further measured the protein expression of Mincle and its downstream targets. Furthermore, the lipopolysaccharide (LPS)-induced BV2 cells were utilized to investigate the neuroprotection of conditioned medium of MSCs co-cultured with IronQ in vitro. RESULTS We found that the combined treatment of MSCs with IronQ improved the inflammation-induced neurological deficits and BWC in vivo by inhibiting the Mincle/syk signaling pathway. Conditioned medium derived from MSCs co-cultured with IronQ decreased inflammation, Mincle, and its downstream targets in the LPS-induced BV2 cell line. CONCLUSIONS These data suggested that the combined treatment exerts a collaborative effect in alleviating ICH-induced inflammatory response through the downregulation of the Mincle/syk signaling pathway following ICH, further improving the neurologic deficits and brain edema.
Collapse
Affiliation(s)
- Guoqiang Yang
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional, Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xue Bai
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanxia Zou
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Honglian Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bingfeng Huang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sijing Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional, Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
45
|
Tong D, Xu E, Ge R, Hu M, Jin S, Mu J, Liu Y. Aspirin alleviates cisplatin-induced acute kidney injury through the AMPK-PGC-1α signaling pathway. Chem Biol Interact 2023; 380:110536. [PMID: 37179038 DOI: 10.1016/j.cbi.2023.110536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Cisplatin (CIS) is a widely used clinical chemotherapeutic agent for solid malignancies such as lung, testicular and ovarian cancers, but the development of nephrotoxicity has limited the use of this class of drugs. Some studies have shown that aspirin can reduce cisplatin-induced nephrotoxicity, but the mechanism of protection is not yet clear. By establishing a mouse model of cisplatin-induced acute kidney injury and a mouse model of aspirin combination, we observed a reduction in creatinine, blood urea nitrogen, and tissue damage, thus verifying that aspirin can alleviate cisplatin-induced acute kidney injury in mice. Aspirin was found to have a significant protective effect against cisplatin-induced acute kidney injury, as evidenced by the reduction in levels of ROS, NO, and MDA and the increase in T-AOC, CAT, SOD, and GSH. Furthermore, aspirin was observed to down-regulate the expression of pro-inflammatory factors TNF-α, NF-κB, IL-1β, and IL-6 mRNA and proteins, increase the expression of BAX and Caspase3 as indicators of apoptosis, decrease the expression of Bcl-2, and improve the reduced expression of mtDNA, ATP content, ATPase activity and mitochondrial respiratory chain complex enzyme-related genes ND1, Atp5b, and SDHD. These findings suggest that the protective effects of aspirin are associated with its anti-inflammatory, antioxidant, anti-apoptotic properties, and its ability to maintain mitochondrial function, as demonstrated by the detection of AMPK-PGC-1α pathway-related genes.The results showed that the reduced expression of p-AMPK and mitochondrial production-related mRNA PGC-1α, NRF1, and TFAM in the kidney tissue of mice in the cisplatin group was alleviated by the effect of aspirin, indicating that aspirin could activate the p-AMPK, regulate mitochondrial production and alleviate cisplatin acute kidney injury through the AMPK-PGC-1α pathway. In summary, certain doses of aspirin protect the body from acute kidney injury by alleviating the cisplatin-induced inflammatory response oxidative stress, mitochondrial dysfunction, and apoptosis. Further studies have shown that the protective effect of aspirin is associated with AMPK-PGC-1α pathway activation.
Collapse
Affiliation(s)
- Danning Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Enshuang Xu
- Collage of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Ruidong Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengxin Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Mu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
46
|
Liu S, Fu S, Jin Y, Geng R, Li Y, Zhang Y, Liu J, Guo W. Tartary buckwheat flavonoids alleviates high-fat diet induced kidney fibrosis in mice by inhibiting MAPK and TGF-β1/Smad signaling pathway. Chem Biol Interact 2023; 379:110533. [PMID: 37150497 DOI: 10.1016/j.cbi.2023.110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Tartary buckwheat flavonoids (TBF) are active components extracted from Tartary buckwheat, which have abundant biological effects. According to this study, we investigated the effect of TBF on high-fat diet (HFD)-induced kidney fibrosis and its related mechanisms. In vivo, we established an HFD-induced kidney fibrosis model in mice and administered TBF. The results showed that TBF was able to alleviate kidney injury and inflammatory response. Subsequently, the mRNA levels between the HFD group and the TBF + HFD group were detected using RNA-seq assay. According to the gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results, the differential genes were enriched in lipid metabolism and mitogen-activated protein kinases(MAPK) signaling pathways. We examined the protein expression of lipid metabolism-related pathways and the level of lipid metabolism. The results showed that TBF significantly activated the adenosine monophosphate activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway and effectively reduced kidney total cholesterol (TC), triglyceride (TG) and low-density lipoproteinc cholesterol (LDL-C) levels and increased high-density lipoprotein cholesterol (HDL-C) levels in mice. TBF also inhibited transforming growth factor-β1/Smad (TGF-β1/Smad) and MAPK signaling pathways, thus slowing down the kidney fibrosis process. In vitro, using palmitic acid (PA) to stimulate TCMK-1 cells, the in vivo results similarly demonstrated that TBF could alleviate kidney fibrosis in HFD mice by inhibiting TGF1/Smad signaling pathway and MAPK signaling pathway.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuhang Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruiqi Geng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuhang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Chongqing Research Institute, Jilin University, 401120, Chongqing, China.
| |
Collapse
|
47
|
Jin X, He R, Liu J, Wang Y, Li Z, Jiang B, Lu J, Yang S. An herbal formulation "Shenshuaifu Granule" alleviates cisplatin-induced nephrotoxicity by suppressing inflammation and apoptosis through inhibition of the TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116168. [PMID: 36646160 DOI: 10.1016/j.jep.2023.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenshuaifu Granule (SSF) is an in-hospital preparation approved by the Guangdong Food and Drug Administration of China. It has been clinically used against kidney diseases for more than 20 years with a definite curative effect. AIM OF THE STUDY Cisplatin (CDDP) is a first-line chemotherapeutic drug in clinical practice, primarily excreted by the kidney with nephrotoxicity as a common side effect. Approximately 5-20% of cancer patients develop acute kidney injury (AKI) after chemotherapy; however, prevention and control strategies are currently unavailable. Therefore, it is important to identify safe and effective drugs that can prevent the nephrotoxicity of CDDP. SSF is an herbal formulation with 8 herbs, and has been used to protect the kidney in China. Nonetheless, its mechanism in relieving CDDP nephrotoxicity remains unclear. Therefore, this work attempt to prove that SSF can alleviate CDDP nephrotoxicity. We also explore its mechanism. MATERIALS AND METHODS First, Thin Layer Chromatography (TLC) of a few herbs in SSF were performed for quality control. Several open-access databases were used to identify the active ingredients of SSF, their corresponding targets, and CDDP-induced nephrotoxicity targets. We performed Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Next, the results of network pharmacology were validated using CDDP-induced nephrotoxicity mouse models. Renal function in the mice was assessed by analyzing the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). On the other hand, renal damage was assessed by determining the level of tubular injury and apoptotic cells using Periodic acid-Schiff (PAS) staining and Terminal Dutp Nick End-Labeling (TUNEL) staining, respectively. The expression of inflammatory and apoptotic-related targets including IL-1β, IL-6, TNF-α, Cox-2, Bax, Bcl-2, Cleaved-caspase 3, and Cleaved-caspase 9 was determined using Western Blot (WB) and Immunohistochemistry (IHC). Furthermore, WB was used to analyze the expression of proteins associated with the TLR4/MyD88/NF-κB pathway in the kidneys of mice with CDDP-induced nephrotoxicity. Finally, molecular docking simulations were performed to evaluate the binding abilities between major active ingredients of SSF and core targets. RESULT Through network pharmacology, we identified 127 active ingredients of SSF and their corresponding 134 targets. Additional screening identified 14 active ingredients and 17 targets for further analysis. In biological process (BP), the targets were enriched in inflammation and apoptosis, among others. In KEGG terms, they were enriched in apoptosis and NF-κB pathways. Animal experiments revealed that SSF significantly reduced the levels of Scr and BUN and prevented renal tubular damage in mice treated with CDDP. In addition, SSF inhibited inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Molecular docking revealed good binding capacities of active ingredients and core targets. CONCLUSION In summary, the experimental findings were consistent with the network pharmacological predictions. SSF can inhibit inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Taken together, our data suggest that SSF is an alternative agent for the treatment of CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiahui Liu
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Beibei Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, 518033, China.
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
48
|
Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage. Int J Mol Sci 2023; 24:ijms24065542. [PMID: 36982615 PMCID: PMC10059595 DOI: 10.3390/ijms24065542] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The redox system is closely related to changes in cellular metabolism. Regulating immune cell metabolism and preventing abnormal activation by adding antioxidants may become an effective treatment for oxidative stress and inflammation-related diseases. Quercetin is a naturally sourced flavonoid with anti-inflammatory and antioxidant activities. However, whether quercetin can inhibit LPS-induced oxidative stress in inflammatory macrophages by affecting immunometabolism has been rarely reported. Therefore, the present study combined cell biology and molecular biology methods to investigate the antioxidant effect and mechanism of quercetin in LPS-induced inflammatory macrophages at the RNA and protein levels. Firstly, quercetin was found to attenuate the effect of LPS on macrophage proliferation and reduce LPS-induced cell proliferation and pseudopodia formation by inhibiting cell differentiation, as measured by cell activity and proliferation. Subsequently, through the detection of intracellular reactive oxygen species (ROS) levels, mRNA expression of pro-inflammatory factors and antioxidant enzyme activity, it was found that quercetin can improve the antioxidant enzyme activity of inflammatory macrophages and inhibit their ROS production and overexpression of inflammatory factors. In addition, the results of mitochondrial morphology and mitochondrial function assays showed that quercetin could upregulate the mitochondrial membrane potential, ATP production and ATP synthase content decrease induced by LPS, and reverse the mitochondrial morphology damage to a certain extent. Finally, Western blotting analysis demonstrated that quercetin significantly upregulated the protein expressions of SIRT1 and PGC-1α, that were inhibited by LPS. And the inhibitory effects of quercetin on LPS-induced ROS production in macrophages and the protective effects on mitochondrial morphology and membrane potential were significantly decreased by the addition of SIRT1 inhibitors. These results suggested that quercetin reprograms the mitochondria metabolism of macrophages through the SIRT1/PGC-1α signaling pathway, thereby exerting its effect of alleviating LPS-induced oxidative stress damage.
Collapse
|
49
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
50
|
Lokman MS, Althagafi HA, Alharthi F, Habotta OA, Hassan AA, Elhefny MA, Al Sberi H, Theyab A, Mufti AH, Alhazmi A, Hawsawi YM, Khafaga AF, Gewaily MS, Alsharif KF, Albrakati A, Kassab RB. Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17657-17669. [PMID: 36197616 DOI: 10.1007/s11356-022-23314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
5-Fluorouracil (5-FU) is a chemotherapy used to treat many types of cancer. Cardiotoxicity is one of the common drawbacks of 5-FU therapy. Quercetin (Qu) is a bioflavonoid with striking biological activities. This research aimed to assess the ameliorative effect of Qu against 5-FU-mediated cardiotoxicity. Thirty-five rats were allocated into five groups: control group (normal saline), 5-FU group (30 mg/kg, intraperitoneally), Qu group (50 mg/kg, oral), 25 mg/kg Qu+5-FU group, and 50 mg/kg Qu+5-FU. The experimental animals were received the above-mentioned drugs for 21 days. Results showed that 5-FU significantly elevated creatine kinase, lactate dehydrogenase, serum cholesterol and triglyceride, and upregulated troponin and renin mRNA expression. Additionally, cardiac oxidant/antioxidant imbalance was evident in elevated oxidants (malondialdehyde and nitric oxide) and depleted antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). 5-FU also downregulated the gene expression of nuclear factor erythroid 2-related factor 2. Furthermore, 5-FU significantly increased cardiac pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and upregulated gene expression of nuclear factor kappa-B. 5-FU significantly enhanced cardiac apoptosis through upregulating caspase-3 expression and downregulating B-cell lymphoma 2. Immunohistochemical and histopathological examinations verified the above-mentioned findings. However, all these changes were significantly ameliorated in Qu pre-administered rats. Conclusively, Qu counteracted 5-FU-mediated cardiotoxicity through potent antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Arwa A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El Arish, Egypt
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, PO Box 40047, Jeddah, 21499, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| |
Collapse
|