1
|
Yu Q, Mao H, Vijayalakshmi A, Zhou M. Acacetin Prevents Renal Damage Induced by Streptozotocin via Altering the NF-κB/ASC/NLRP3 and AMPK/SIRT1 Pathways in Mice. Biotechnol Appl Biochem 2025:e2753. [PMID: 40150865 DOI: 10.1002/bab.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease. Its pathogenesis includes inflammation, an excess of reactive oxygen species, and kidney damage. The present study intended to explore the nephroprotective effects of acacetin (ACN) in streptozotocin-induced diabetic animals. The following are the experimental groups: One millilitre of 0.9% saline was given to Group I (control), Streptozotocin (STZ) (diabetic animals) + 0.9% saline to Group II (DN group) (negative control), DN + ACN (15 mg/kg body weight [bw]) to Group III, and DN + Valsartan (150 mg/kg bw) to Group IV. According to the findings, ACN decreased the levels of glucose, serum creatinine (Scr), blood urea nitrogen (BUN), malondialdehyde (MDA), and proinflammatory cytokines while increasing the bw, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in comparison to the DN animals. The histopathological analysis revealed that the animals treated with ACN showed recovery of renal damage in the tissues caused by STZ. In the STZ-induced DN mice, ACN reduced renal damage by upregulating the proteins of 5' adenosine monophosphate-activated protein kinase (AMPK), p-AMPK, and SIRT1 and downregulating the proteins of TGF-β, COL-1, COL-IV, NF-κB, ASC, NLRP3, and GSDMD, according to western blot analysis. Hence, the current study demonstrated that the regulation of the AMPK/SIRT1 and NF-κB/ASC/NLRP3 inflammasome pathways in DN mice was responsible for the protective effects of ACN. ACN may therefore be a viable treatment option for DN.
Collapse
Affiliation(s)
- Qingfei Yu
- Department of Nephrology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Hongyan Mao
- Department of Nephrology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Lee Y, Hwang CY, Cho ES, Seo MJ. Water-soluble carotenoid: focused on natural carotenoid crocin. Food Sci Biotechnol 2025; 34:1119-1138. [PMID: 40093551 PMCID: PMC11904046 DOI: 10.1007/s10068-025-01832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Carotenoids are natural isoprenoid compounds with diverse health benefits, widely used in food, cosmetics, and pharmaceuticals. However, low bioavailability and chemical instability limit their effect according to their fat-soluble property. Some strategies such as nanoencapsulation, emulsions, complexation, and glycosylation have been explored to enhance carotenoid bioavailability. In addition, there is growing interest in water-soluble carotenoids in nature. This review focuses on recent advancements in improving the water solubility of carotenoids, with special attention to naturally occurring water-soluble carotenoids like crocin. Research progress on the biosynthetic pathways of crocin derived from natural plants is summarized. In addition, heterologous production using genetic and metabolic engineering in plants and microorganisms is discussed, along with its potential applications in bio-industries. Finally, the promising pharmacological properties of crocin, including antioxidant, anti-inflammatory and anticancer effects, are presented. The sustainable production of water-soluble carotenoids through biological synthesis offers a potential for improved absorption and functionality.
Collapse
Affiliation(s)
- Yosub Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
3
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Zarei H, Vafaee F, Boskabady MH. The brain and systemic oxidative stress and memory changes induced by inhaled paraquat in rat improved by Crocus sativus. Leg Med (Tokyo) 2024; 71:102525. [PMID: 39243568 DOI: 10.1016/j.legalmed.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The present study aimed to investigate the effect of Crocus sativus (Cs) on paraquat (PQ)-induced learning and memory deficits as well as brain and lung oxidative stress and systemic inflammation, and oxidative stress in rats. Rats were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ groups were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day Cs-L and Cs-H, 5 mg/kg/day pioglitazone (Pio), and Cs-L+Pio for 16 days during PQ exposure period. Learning and memory abilities were assessed by Morris water maze (MWM) and passive avoidance tests. PQ group showed increased numbers of total and differential WBCs in blood, and increased malondialdehyde (MDA), in the serum, brain, and lung but reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the MWM test and the latency to enter the dark room were reduced after receiving an electrical shock (p < 0.05 to P<0.001). In all treated groups, measured values were improved compared to PQ group (p < 0.05 to p < 0.001). The combination of Cs-L+Pio showed more pronounced effects compared to either treatment alone (p < 0.05 to p < 0.001). These findings suggest that Cs has neuroprotective properties and may be beneficial in the treatment of neurodegenerative diseases induced by noxious agents such as PQ.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossin Zarei
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Houshyar M, Karimi H, Ghofrani-Jahromi Z, Nouri S, Vaseghi S. Crocin (bioactive compound of Crocus sativus L.) potently restores REM sleep deprivation-induced manic- and obsessive-compulsive-like behaviors in female rats. Behav Pharmacol 2024; 35:239-252. [PMID: 38567447 DOI: 10.1097/fbp.0000000000000757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors including hyperlocomotion. On the other hand, crocin (one of the main compounds of Crocus sativus L. or Saffron) may be beneficial in the improvement of mental and cognitive dysfunctions. Also, crocin can restore the deleterious effects of SD on mental and cognitive processes. In this study, we investigated the effect of REM SD on female rats' behaviors including depression- and anxiety-like behaviors, locomotion, pain perception, and obsessive-compulsive-like behavior, and also, the potential effect of crocin on REM SD effects. We used female rats because evidence on the role of REM SD in modulating psychological and behavioral functions of female (but not male) rats is limited. REM SD was induced for 14 days (6h/day), and crocin (25, 50, and 75 mg/kg) was injected intraperitoneally. Open field test, forced swim test, hot plate test, and marble burying test were used to assess rats' behaviors. The results showed REM SD-induced manic-like behavior (hyperlocomotion). Also, REM SD rats showed decreased anxiety- and depression-like behavior, pain subthreshold (the duration it takes for the rat to feel pain), and showed obsessive compulsive-like behavior. However, crocin at all doses partially or fully reversed REM SD-induced behavioral changes. In conclusion, our results suggested the possible comorbidity of OCD and REM SD-induced manic-like behavior in female rats or the potential role of REM SD in the etiology of OCD, although more studies are needed. In contrast, crocin can be a possible therapeutic choice for decreasing manic-like behaviors.
Collapse
Affiliation(s)
- Mohammad Houshyar
- Department of Psychology, Faculty of Humanities, Persian Gulf University, Bushehr
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran
| | - Zahra Ghofrani-Jahromi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR
| | - Sarah Nouri
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
5
|
Golestani A, Rahimi A, Najafzadeh M, Sayadi M, Sajjadi SM. "Combination treatments of imatinib with astaxanthin and crocin efficiently ameliorate antioxidant status, inflammation and cell death progression in imatinib-resistant chronic myeloid leukemia cells". Mol Biol Rep 2024; 51:108. [PMID: 38227060 DOI: 10.1007/s11033-023-09135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Imatinib resistance remains a major obstacle in the treatment of chronic myelogenous leukemia (CML). Crocin (CRC) and astaxanthin (ATX) are phytochemicals with anti-cancer properties. AIMS This study aimed to explore the effects of combination treatment of Imatinib with CRC and ATX on Imatinib-resistant K562 (IR-K562) cells. METHODS AND RESULTS After the establishment of IR-K562 cells, growth inhibitory activity was determined by the MTT assay. To test the regeneration potential, a colony formation assay was performed. Cell cycle analyses were examined by flow cytometry. Cell injury was evaluated by lactate dehydrogenase (LDH) leakage. Real-time PCR was applied to assess the expression of IL6, TNF-α, STAT3, BAD, CASP3, TP53, and Bcl-2 genes. Caspase-3 activity was determined by a colorimetric assay. Antioxidant activity was measured using a diphenylpicrylhydrazyl (DPPH) assay. After 48 h of treatment, ATX (IC50 = 30µM) and CRC (IC50 = 190µM) significantly inhibited cell proliferation and colony formation ability, induced G1 cell cycle arrest and cell injury, upregulated the expression of apoptosis-associated genes, and downregulated the expression of anti-apoptotic and inflammatory genes. The combination of IM with ATX and/or CRC synergistically reduced cell viability (combination index [CI] < 1). CONCLUSION Our data suggest that IM shows better therapeutic efficacy at lower doses when combined with ATX and/or CRC.
Collapse
Affiliation(s)
- Amin Golestani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefeh Rahimi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Najafzadeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahtab Sayadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
6
|
Xiaodong X, Tao L, Jianmin L, Jing Z, Bing Z, Jintao D, Bachert C, Luo B. Crocin Inhibits the Type 2 Inflammatory Response Produced by ILC2s in Eosinophilic Nasal Polyps. Am J Rhinol Allergy 2023; 37:656-669. [PMID: 37424236 DOI: 10.1177/19458924231185296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is subdivided into type 1 and type 2 inflammatory responses according to the mucosal inflammatory patterns. Crocin can reduce the level of T-helper type 2 cell (Th2) cytokines, such as interleukin-4 (IL-4), and inhibit the nuclear factor kappa-B (NF-κB) signaling pathway. OBJECTIVE This study aimed to investigate the role of group 2 innate lymphoid cells (ILC2s) in type 2 inflammation in eosinophilic nasal polyps and the inhibitory effect of crocin on this inflammation. METHODS Immunohistochemistry and immunofluorescence were used to detect the expression of transcription factors and the infiltration of ILC2s in tissues. An ILC2 stimulation model in vitro was constructed based on IL-33 stimulation and treated with crocin. The explant models were constructed and treated with crocin to detect the expression of type 2 inflammation-related factors. RESULTS Significantly more GATA-binding protein-3 (GATA3)-positive cells and chemoattractant receptor-homologous molecule expressed on T-helper type 2 cell (CRTH2)-positive cells, but fewer T-box expressed in T cell (T-bet)-positive cells, were found in eosinophilic nasal polyps (NPwEos). The expression levels of GATA3 and CRTH2 were significantly higher in NPwEos. Recombinant IL-33 stimulation increased the expression of GATA3, CRTH2, and type 2 cytokines (IL-4, IL-5, and IL-13) in ILC2s. In an IL-33-stimulated in vitro ILC2 culture model, crocin inhibited the type 2 inflammatory response, especially at lower concentrations (10 µM). The explant organoids of NPwEos were constructed in vitro, and Staphylococcus aureus enterotoxin B (SEB) was used to construct the type 2 inflammation model. Crocin at 10 µM concentration inhibited type 2 inflammation induced by SEB-stimulated explants. CONCLUSION Crocin inhibited type 2 inflammation induced by ILC2 activation at low concentrations via inhibiting the activation of NF-κB.
Collapse
Affiliation(s)
- Xu Xiaodong
- The Department of Otorhinolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
- Tibet University, Lhasa, Tibet, China
- The Department of Otorhinolaryngology, People's Hospital of Shannan City in Tibet Autonomous Region, Shannan, Tibet, China
| | - Li Tao
- The Department of Otorhinolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
- The Department of Otorhinolaryngology, Peking University Third Hospital, Peking University, Beijing, China
| | - Liu Jianmin
- The Department of Otorhinolaryngology, Head and Neck Surgery of West China Hospital, Chengdu, Sichuan, China
- The Department of Otorhinolaryngology, People's Hospital of Deyang City in Sichuan province, Deyang, Sichuan, China
| | - Zhou Jing
- The Department of Otorhinolaryngology, Head and Neck Surgery of West China Hospital, Chengdu, Sichuan, China
| | - Zhong Bing
- The Department of Otorhinolaryngology, Head and Neck Surgery of West China Hospital, Chengdu, Sichuan, China
| | - Du Jintao
- The Department of Otorhinolaryngology, Head and Neck Surgery of West China Hospital, Chengdu, Sichuan, China
| | - Claus Bachert
- The Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Ba Luo
- The Department of Otorhinolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
- Tibet University, Lhasa, Tibet, China
| |
Collapse
|
7
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
8
|
Peng C, Tu G, Wang J, Wang Y, Wu P, Yu L, Li Z, Yu X. MLKL signaling regulates macrophage polarization in acute pancreatitis through CXCL10. Cell Death Dis 2023; 14:155. [PMID: 36828808 PMCID: PMC9958014 DOI: 10.1038/s41419-023-05655-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023]
Abstract
Acute pancreatitis (AP) is a disease characterized by local and systemic inflammation with an increasing incidence worldwide. Receptor-interacting serine/threonine protein kinase 3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), and innate immune cell macrophages have been reported to be involved in the pathogenesis of AP. However, the mechanisms by which RIPK3 and MLKL regulate pancreatic injury, as well as the interactions between injured pancreatic acinar cells and infiltrating macrophages in AP, remain poorly defined. In the present study, experimental pancreatitis was induced in C57BL/6J, Ripk3-/- and Mlkl-/- mice by cerulein plus lipopolysaccharide in vivo, and primary pancreatic acinar cells were also isolated to uncover cellular mechanisms during cerulein stimulation in vitro. The results showed that MLKL and its phosphorylated protein p-MLKL were upregulated in the pancreas of the mouse AP model and cerulein-treated pancreatic acinar cells, independent of its canonical upstream molecule Ripk3, and appeared to function in a cell death-independent manner. Knockout of Mlkl attenuated AP in mice by reducing the polarization of pancreatic macrophages toward the M1 phenotype, and this protective effect was partly achieved by reducing the secretion of CXCL10 from pancreatic acinar cells, whereas knockout of Ripk3 did not. In vitro neutralization of CXCL10 impaired the pro-M1 ability of the conditioned medium of cerulein-treated pancreatic acinar cells, whereas in vivo neutralization of CXCL10 reduced the polarization of pancreatic macrophages toward M1 and the severity of AP in mice. These findings suggested that targeting the MLKL-CXCL10-macrophage axis might be a promising strategy for the treatment of AP.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiale Wang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yilin Wang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
El-Ashmawy NE, Khedr EG, Doghish AS, Elballal MS. Carnosine and crocin ameliorate oxidative stress in rats with rhabdomyolysis-induced acute kidney injury through upregulating HO-1 gene expression. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
El-Ashmawy NE, Khedr EG, Doghish AS, Elballal MS. Carnosine and crocin ameliorate oxidative stress in rats with rhabdomyolysis-induced acute kidney injury through upregulating HO-1 gene expression. FOOD BIOSCI 2022; 49:101972. [DOI: https:/doi.org/10.1016/j.fbio.2022.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
11
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Chelpuri Y, Pabbathi S, Alla GR, Yadala RK, Kamishetti M, Banothu AK, Boinepally R, Bharani KK, Khurana A. Tropolone derivative hinokitiol ameliorates cerulein-induced acute pancreatitis in mice. Int Immunopharmacol 2022; 109:108915. [PMID: 35679663 DOI: 10.1016/j.intimp.2022.108915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
Hinokitiol is a natural bio-active tropolone derivative with promising antioxidant and anti-inflammatory properties. This study was conducted to evaluate the ameliorative effects of hinokitiol against acute pancreatitis induced by cerulein. Mice were pre-treated with hinokitiol intraperitoneally for 7 days (50 and 100 mg/kg), and on the final day of study, cerulein (6 × 50 μg/kg) was injected every hour for six times. Six hours after the last dose of cerulein, blood was collected from the mice through retro-orbital plexus for biochemical analysis. After blood collection, mice were euthanized and the pancreas was harvested for studying effects on oxidative stress, pro-inflammatory cytokines, immunohistochemistry and histopathology of tissue sections. Hinokitiol treatment significantly reduced edema of the pancreas and reduced the plasma levels of lipase and amylase in mice with cerulein-induced acute pancreatitis. It also attenuated the oxidative and nitrosative stress related damage as evident from the reduced malondialdehyde (MDA) and nitrite levels, which were significantly increased in the mice with acute pancreatitis. Furthermore, hinokitiol administration significantly reduced the pancreatitis-evoked decrease in the activity of catalase, glutathione (GSH) and superoxide dismutase (SOD) in the pancreatic tissue. Pre-treatment with hinokitiol significantly reduced the elevated levels of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) as well as increased the levels of anti-inflammatory cytokine interleukin-10 (IL-10) in the pancreatic tissue of mice with acute pancreatitis. The immunohistochemical expression of nuclear factor kappa light chain enhancer of activated B cells (NF-κB), cyclooxygenase (COX-2) and TNF-α were significantly decreased by hinokitiol in mice with cerulein-induced acute pancreatitis. In conclusion, the results of the present study demonstrate that hinokitiol has significant potential to prevent cerulein-induced acute pancreatitis.
Collapse
Affiliation(s)
- Yamini Chelpuri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Shivakumar Pabbathi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Gopala Reddy Alla
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ravi Kumar Yadala
- Department of Veterinary Pathology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Mounika Kamishetti
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India.
| | - Ramya Boinepally
- Department of Veterinary Pathology, Veterinary Clinical Complex, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
13
|
Ming L, Xianchu L, Sha L, Huan P. ANTI-FATIGUE EFFICACY OF CROCIN IN MICE VIA REGULATION OF NRF-2/HO-1 PATHWAY-MEDIATED OXIDATIVE STRESS. REV BRAS MED ESPORTE 2022. [DOI: 10.1590/1517-8692202228042020_0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Fatigue is a manifestation of sub-health status, which causes serious negative effects in daily life. The antioxidant properties of crocin have been widely investigated in many diseases. However, no correlation between crocin and fatigue was reported. Objective: To verify the anti-fatigue efficacy of crocin in swimming-induced exhaustive time. Materials and Methods: In this study, mice were treated with crocin for 28 days to assess its anti-fatigue efficacy. Exhaustive time, fatigue-relevant biochemical indices, inflammatory cytokines, energy metabolism indicators, oxidation parameters, and the NRF-2/HO-1 pathway were analyzed to explore evidence of crocin in high-intensity exercise. Results: Our research indicated that crocin dramatically extended swimming-induced exhaustive time. In strenuous swimming, crocin clearly eliminated BLA and SUN to maintain internal environment homeostasis, while it markedly improved glycogen concentrations in the muscles and liver to promote energy reserves. Moreover, crocin visibly improved the inflammatory reaction, as represented by reductions in TNF-a and IL-6, promoting endurance capacity. In the muscles, crocin noticeably enhanced SDH and Na+K+-ATP activities to improve energy metabolism in strenuous swimming. Lastly, crocin markedly improved SOD and CAT activities via the NRF-2/HO-1 pathway to defend against oxidative stress-induced fatigue. Conclusions: Crocin provides oxidation resistance and can be developed into anti-fatigue nutriments. Evidence level II; Comparative prospective study.
Collapse
Affiliation(s)
- Liu Ming
- Hunan University of Arts and Science, China
| | - Liu Xianchu
- Hunan University of Arts and Science, China; Hunan Normal University, China
| | - Li Sha
- Hunan University of Arts and Science, China
| | | |
Collapse
|
14
|
Chetla VS, Khurana A, Bommu S, Laxmi NA, Putty K, Banothu AK, Reddy KK, Bharani KK. Comparative evaluation of the effect of L-Arginine and L-Homoarginine supplementation on reproductive physiology in ewes. Res Vet Sci 2022; 149:159-171. [DOI: 10.1016/j.rvsc.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
|
15
|
Han MX, Jiang WY, Jiang Y, Wang LH, Xue R, Zhang GX, Chen JW. Gao-Zi-Yao improves learning and memory function in old spontaneous hypertensive rats. BMC Complement Med Ther 2022; 22:147. [PMID: 35643519 PMCID: PMC9148521 DOI: 10.1186/s12906-022-03630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aims Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. Method Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1β, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. Results Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1β, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. Conclusion Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03630-0.
Collapse
|
16
|
Scuto M, Modafferi S, Rampulla F, Zimbone V, Tomasello M, Spano’ S, Ontario M, Palmeri A, Trovato Salinaro A, Siracusa R, Di Paola R, Cuzzocrea S, Calabrese E, Wenzel U, Calabrese V. Redox modulation of stress resilience by Crocus Sativus L. for potential neuroprotective and anti-neuroinflammatory applications in brain disorders: From molecular basis to therapy. Mech Ageing Dev 2022; 205:111686. [DOI: 10.1016/j.mad.2022.111686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|
17
|
Qi F, Liu Y, Zhang K, Zhang Y, Xu K, Zhou M, Zhao H, Zhu S, Chen J, Li P, Du J. Artificial Intelligence Uncovers Natural MMP Inhibitor Crocin as a Potential Treatment of Thoracic Aortic Aneurysm and Dissection. Front Cardiovasc Med 2022; 9:871486. [PMID: 35463768 PMCID: PMC9019136 DOI: 10.3389/fcvm.2022.871486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a lethal cardiovascular condition without effective pharmaceutical therapy. Identifying novel drugs that target the key pathogenetic components is an urgent need. Bioinformatics analysis of pathological studies indicated “extracellular matrix organization” as the most significant functional pathway related to TAAD, in which matrix metallopeptidase (MMP) 2 and MMP9 ranked above other proteases. MMP1-14 were designated as the prototype molecules for docking against PubChem Compound Database using Surflex-Dock, and nine natural compounds were identified. Using a generic MMP activity assay and an aminopropionitrile (BAPN)-induced TAAD mouse model, we identified crocin as an effective MMP inhibitor, suppressing the occurrence and rupture of TAAD. Biolayer interferometry and AI/bioinformatics analyses indicated that crocin may inhibit MMP2 activity by direct binding. Possible binding sites were investigated. Overall, the integration of artificial intelligence and functional experiments identified crocin as an MMP inhibitor with strong therapeutic potential.
Collapse
Affiliation(s)
- Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Kunlin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhenzi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ke Xu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Mei Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huinan Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jianxin Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jianxin Chen
| | - Ping Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Ping Li
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Jie Du
| |
Collapse
|
18
|
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. Anti-Depressant Properties of Crocin Molecules in Saffron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072076. [PMID: 35408474 PMCID: PMC9000812 DOI: 10.3390/molecules27072076] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany;
- German Institute of Food Technologies (DIL e.V.), 49610 D-Quakenbrück, Germany
| | - Ali Ali Redha
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Remmet Snoeck
- Food Technology Study Programme, HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, The Netherlands;
| | - Shubhra Singh
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung City 912, Taiwan;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC 24711, USA;
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189, Iran
- Correspondence:
| |
Collapse
|
19
|
Zhang F, Liu P, He Z, Zhang L, He X, Liu F, Qi J. Crocin ameliorates atherosclerosis by promoting the reverse cholesterol transport and inhibiting the foam cell formation via regulating PPARγ/LXR-α. Cell Cycle 2022; 21:202-218. [PMID: 34978526 PMCID: PMC8837240 DOI: 10.1080/15384101.2021.2015669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crocin (CRO) is feasible in alleviating atherosclerosis (AS), the mechanism of which was therefore explored in the study. High-fat diet (HFD)-induced apolipoprotein E-deficient (ApoE−/−) mice and lysophosphatidic acid (LPA)-treated macrophages received CRO treatment. Treated macrophage viability was determined via MTT assay. In both murine and macrophage, the lipid level and total Cholesterol/Cholesteryl l Ester (TC/CE) levels were quantified by oil-red-O staining and ELISA, respectively. Lipid droplet, aortic plaque formation and collagen deposition were detected via Oil-red-O staining, hematoxylin–eosin staining and Masson staining, respectively. Liver X Receptor-α (LXR-α), Peroxisome Proliferator-Activated Receptor γ (PPARγ), CD68, PCSK9, CD36, ATP Binding Cassette Subfamily A Member 1 (ABCA1), phosphorylated (p)-AKT, and AKT expressions were detected via Western blot, the former three also being detected using Immunohistochemistry and the first being measured by qRT-PCR. CRO decreased HFD-induced weight gain, ameliorated the abnormal serum lipid levels of HFD-treated mice, and inhibited aortic plaque formation and lipid deposition, and increased collagen fibers, with upregulated high-density lipoprotein-cholesterol (HDL-C) and downregulated TC and low-density lipoprotein-cholesterol (LDL-C). CRO alleviated the HFD-induced upregulations of CD68, PCSK9 and CD36 as well as downregulations of PPARγ/LXR-α, ABCA1 and AKT phosphorylation. In LPA-treated macrophages, CRO alone exerted no effect on the viability yet inhibited the lipid droplets formation and downregulated TC/CE levels. Silent LXR-α reversed the effect of CRO on the lipid droplets formation and levels of lipid metabolism-related factors. CRO ameliorated AS by inhibiting foam cells formation and promoting reverse cholesterol transport via PPARγ/LXR-α.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Peng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Zhaopeng He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Like Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Feng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Jinsheng Qi
- School of Basic Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
20
|
Crocin induces ROS-mediated papillary thyroid cancer cell apoptosis by modulating the miR-34a-5p/PTPN4 axis in vitro. Toxicol Appl Pharmacol 2022; 437:115892. [DOI: 10.1016/j.taap.2022.115892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
|
21
|
Zhang L, Jing M, Liu Q. Crocin alleviates the inflammation and oxidative stress responses associated with diabetic nephropathy in rats via NLRP3 inflammasomes. Life Sci 2021; 278:119542. [PMID: 33915128 DOI: 10.1016/j.lfs.2021.119542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
AIM Currently, drugs for the treatment of diabetic nephropathy (DN) are lacking. This study aimed to explore the protective effect of crocin on DN. MAIN METHODS Diabetes was induced in rats by streptozotocin (STZ), and changes in metabolism and renal parameters after crocin treatment were measured. Dihydroethidium (DHE) fluorescence and superoxide generation were used to detect the levels of reactive oxygen species (ROS) in rat renal tissues. Enzyme-linked immunosorbent assay was used to measure changes inflammation-related factors with crocin treatment. In addition, the expression of Nod-like receptor family pyrin domain-containing 3 (NLRP3) signaling pathway components was detected by western blot analysis, qRT-PCR, and immunohistochemistry. KEY FINDINGS Crocin lowered blood sugar, increased serum insulin levels, and improved diabetes-related symptoms, including kidney dysfunction. Masson trichrome staining revealed that crocin could improve renal tissue fibrosis caused by hyperglycemia. Moreover, crocin inhibited ROS production in renal tissues and generally inhibited the production of the proinflammatory factors TNF-α, IL-1β, and IL-18. Crocin exerted these functions by inhibiting the expression of the NLRP3 inflammasome in DN rats. SIGNIFICANCE Crocin alleviates DN related oxidative stress and inflammation by inhibiting NLRP3 inflammasomes. Our results provide a new target for the treatment of DN.
Collapse
Affiliation(s)
- Linjuan Zhang
- Department of Nephropathy and Rheumatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, China.
| | - Mengmeng Jing
- Department of Nephropathy and Rheumatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, China
| | - Quan Liu
- Department of Nephropathy and Rheumatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, China
| |
Collapse
|
22
|
Bansod S, Chilvery S, Saifi MA, Das TJ, Tag H, Godugu C. Borneol protects against cerulein-induced oxidative stress and inflammation in acute pancreatitis mice model. ENVIRONMENTAL TOXICOLOGY 2021; 36:530-539. [PMID: 33166053 DOI: 10.1002/tox.23058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/09/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Borneol is a commonly used flavouring substance in traditional Chinese medicine, which possesses several pharmacological activities including analgesic, antiinflammatory, and antioxidant properties. The aim of this study was to investigate the effects of borneol on cerulein-induced acute pancreatitis (AP) model. Swiss albino mice were pretreated with borneol (100 and 300 mg/kg) daily for 7 days, before six consecutive injections of cerulein (50 μg/kg/hr, intraperitoneally). The protective effect of borneol was studied by biochemical, enzyme linked immunosorbent assay, histological, immunoblotting, and immunohistochemical analysis. Oral administration of borneol significantly attenuated pancreatic damage by reducing amylase, lipase levels and histological changes. Borneol attenuated cerulein-induced oxidative-nitrosative stress by decreasing malondialdehyde, nitrite levels, and elevating reduced glutathione levels. Pancreatic inflammation was ameliorated by inhibiting myeloperoxidase activity and pro-inflammatory cytokine (Interleukins and TNF-α) levels. Furthermore, borneol administration significantly increased nuclear factor E2-related factor 2 (Nrf2), superoxide dismutase (SOD1) expression and reduced phospho-NF-κB p65 expression. Treatment with borneol significantly inhibited TNF-α, IL-1β, IL-6, and inducible nitric oxide synthase expression in cerulein-induced AP mouse model. Together, these results indicate that borneol which is currently used as US-FDA approved food adjuvant has the potential to attenuate cerulein-induced AP possibly by reducing the oxidative damage and pancreatic inflammation by modulating Nrf2/NF-κB pathway.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Tridip Jyoti Das
- Department of Botany, Rajiv Gandhi University, Ron Hills, Doimukh, Arunachal Pradesh, India
| | - Hui Tag
- Department of Botany, Rajiv Gandhi University, Ron Hills, Doimukh, Arunachal Pradesh, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
23
|
Chen X, Huang J, Lv Y, Chen Y, Rao J. Crocin exhibits an antihypertensive effect in a rat model of gestational hypertension and activates the Nrf-2/HO-1 signaling pathway. Hypertens Res 2021; 44:642-650. [PMID: 33442028 DOI: 10.1038/s41440-020-00609-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 11/09/2022]
Abstract
Gestational hypertension is a leading cause of both prenatal and maternal mortality and morbidity; however, there have been rather limited advances in the management of gestational hypertension in recent years. There has been evidence supporting the antihypertensive properties of crocin, but the specific mechanism is still unclear. N-Nitro-L-arginine methyl ester (L-NAME) was employed to establish a rat model with a preeclampsia-like phenotype, particularly gestational hypertension. Enzyme-linked immunosorbent assays were conducted to determine the levels of placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1); the levels of the circulating cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α; and oxidative stress factors. Quantitative RT-PCR assays were performed to assess the transcript levels of various cytokines in the placenta, and western blot assays were carried out to evaluate the protein levels of heme oxygenase-1 (HO-1) and nuclear factor-erythroid 2-like 2 (Nrf-2). Treatment with crocin reduced the blood pressure of rats with gestational hypertension, which was accompanied by suppressed circulating levels of PlGF and sFlt-1. Crocin further alleviated the inflammatory signals and oxidative stress in the serum, as well as in placental tissues, in rats with L-NAME-induced hypertension. Crocin treatment also improved pregnancy outcomes in terms of fetal survival, fetal weight, and the fetal/placental weight ratio. Finally, in hypertension elicited by L-NAME, crocin stimulated the placental Nrf-2/HO-1 pathway. Crocin alleviated inflammatory and oxidative stress in placental tissues, thereby protecting against gestational hypertension, one of the major phenotypes of preeclampsia, and activated the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000, Fujian, China
| | - Jingying Huang
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000, Fujian, China
| | - Yuchun Lv
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000, Fujian, China
| | - Youfang Chen
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
| | - Jinghong Rao
- Department of Obstetrics and Gynecology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250 East Street, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
24
|
Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr 2020; 62:3232-3249. [PMID: 33356506 DOI: 10.1080/10408398.2020.1864279] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saffron (Crocus sativus L.) is used as a spice for its organoleptic characteristics related to its coloring and flavoring properties, and it has been also used in traditional medicine to treat various diseases. The main chemical components responsible for these properties are crocin, crocetin and safranal. These compounds have been shown to have a wide spectrum of biological activities, including several properties as antigenotoxic, antioxidant, anticancer, anti-inflammatory, antiatherosclerotic, antidiabetic, hypotensive, hypoglycemic, antihyperlipidemic, antidegenerative and antidepressant, among others. This review article highlights the antioxidant effects of these bioactive compounds to reduce reactive oxygen species (ROS) and the mechanisms of action involved, since there are a multitude of diseases related to oxidative stress and the generation of free radicals (FRs). Recent studies have shown that the effects of crocin, crocetin and safranal against oxidative stress include the reduction in lipid peroxidation (malondialdehyde [MDA] levels) and nitric oxide (NO) levels, and the increase in the levels of glutathione, antioxidant enzymes (superoxide dismutase [SOD], catalase (CAT) and glutathione peroxidase [GPx]) and thiol content. Therefore, due to the great antioxidant effects of these saffron compounds, it makes saffron a potential source of bioactive extracts for the development of bioactive ingredients, which can be used to produce functional foods.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| | | | - María José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, Orihuela, Spain
| |
Collapse
|
25
|
Dai B, Wang ZZ, Zhang H, Han MX, Zhang GX, Chen JW. Antihypertensive properties of a traditional Chinese medicine GAO-ZI-YAO in elderly spontaneous hypertensive rats. Biomed Pharmacother 2020; 131:110739. [PMID: 32932045 DOI: 10.1016/j.biopha.2020.110739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
AIM The present study aims to investigate the antihypertensive effect and the underlying mechanism of GAO-ZI-YAO, one of the traditional Chinese medicines, in elderly spontaneous hypertensive rats (SHR). METHODS 12-month-old male SHRs were randomly divided into five groups on the basis of treatment with different doses of GAO-ZI-YAO or angiotensin II receptor-1 blocker (ARB, Irbesartan) for four weeks. Systolic blood pressure (SBP), and serum levels of nitric oxide (NO), endothelin-1 (ET-1), angiotensin II (Ang II), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-2, IL-6, and tumor necrotic factor (TNF)-α were measured. The pathological changes of ventricular muscle and thoracic aorta were observed by hematoxylin-eosin staining (H&E). RESULTS GAO-ZI-YAO treatment reduced SBP in a dose-dependent manner accompanied by the inhibition of the development of cardiovascular remodeling. Although GAO-ZI-YAO treatment markedly increased serum levels of NO and suppressed serum levels of Ang II, this medicine did not affect the serum levels of ET-1 and VEGF. In addition, GAO-ZI-YAO also inhibited inflammatory response parameters (inflammatory cell infiltration in cardiac tissues and serum levels of IL-1β, IL-2, IL-6, and TNF-α) in a dose-dependent manner. CONCLUSION GAO-ZI-YAO exerts antihypertensive and anti-cardiovascular-remodeling effects in elderly SHR, which may be through regulation of NO, Ang II production, and inflammation.
Collapse
Affiliation(s)
- Bin Dai
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China
| | - Zi-Zhang Wang
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hui Zhang
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China
| | - Meng-Xiao Han
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China
| | - Guo-Xing Zhang
- Department of Physiology and Neuroscience, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Jing-Wei Chen
- Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, 18 Yang-Su Road, Suzhou, 215003, China.
| |
Collapse
|
26
|
Crocin Improves Insulin Sensitivity and Ameliorates Adiposity by Regulating AMPK-CDK5-PPAR γ Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9136282. [PMID: 32596392 PMCID: PMC7294346 DOI: 10.1155/2020/9136282] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Crocin is a carotenoid compound which possesses multiple biological activities. Our and other laboratory's previous findings show that crocin alleviates obesity and type 2 diabetes-related complications. We have found that crocin activates AMP-activated protein kinase (AMPK) signaling and inhibition of AMPK suppresses crocin-induced protective effects. However, the causal role of AMPK activation in the biological role of crocin is still not verified. In the present study, we showed that crocin markedly inhibits the changes of glucose metabolic parameters and serum lipid profiles in wild type diabetic mice. In AMPKα KO diabetic mice, those protective effects of crocin against glucose and lipid metabolic dysfunction were abolished. These results demonstrated AMPK activation was responsible for the beneficial effects of crocin on metabolic dysfunction. Moreover, we have shown that the antiobese effect of crocin has been abolished by the deficiency of AMPKα. We also showed that crocin induced a significant decrease of CDK5 protein level in wild type diabetic mice, while this effect was abolished in AMPKα KO diabetic mice. The regulation of downstream targets of CDK5/PPARγ by crocin was abolished by the deficiency of AMPK. In conclusion, our study verified that activation of AMPK is involved in crocin-induced protective effects against glucose and lipid metabolic dysfunction. Activation of AMPK downregulates the protein level of CDK5, followed by the decrease of PPARγ phosphorylation, leading to the inhibition of adipose formation and metabolic dysfunction. Our study provides new insights into the mechanism of protective effects of crocin and interaction of AMPK and CDK5/PPARγ signaling.
Collapse
|