1
|
Li X, Li S, Li N. Research Progress on Natural Products Alleviating Liver Inflammation and Fibrosis via NF-κB Pathway. Chem Biodivers 2025; 22:e202402248. [PMID: 39576739 DOI: 10.1002/cbdv.202402248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Liver fibrosis is a key pathological process in chronic liver diseases, regulated by various cytokines and signaling pathways. Among these, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway plays a significant role in the initiation and progression of liver fibrosis. Recently, natural products have garnered attention as potential anti-fibrotic agents. This review highlights recent studies on how natural products, including flavonoids, terpenoids, polysaccharides, phenols, alkaloids, quinones, phenylpropanoids, steroids, and nitrogen compounds, mitigate liver fibrosis by modulating the NF-κB signaling pathway. Specifically, it examines how these natural products influence NF-κB activation, nuclear translocation, and downstream signaling, thereby inhibiting inflammatory responses, reducing apoptosis, and regulating hepatic stellate cell (HSC) activity, ultimately achieving therapeutic effects against liver fibrosis. A deeper understanding of the mechanisms by which natural products regulate the NF-κB signaling pathway can provide crucial theoretical foundations and valuable insights for the development of novel anti-fibrotic drugs.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Saifei Li
- Department of Pharmacy, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Li X, Zhang Y, Chen L, Xu X, Ma X, Lou S, Zou Z, Wang C, Jiang B, Cai Y, Qi Y, Xi Y, Zhao M, Yan P. Actichinone, a new ursane triterpenoid from Actinidia chinensis roots, ameliorates NAFLD via the AMPK and NF-κB pathways. Eur J Pharmacol 2025; 990:177276. [PMID: 39828019 DOI: 10.1016/j.ejphar.2025.177276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2-19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed. Chemical semi-synthesis of actichinone (1) was achieved by selective oxidation of the major compound 2. Actichinone (1) exhibited significant alleviation of non-alcoholic fatty liver disease (NAFLD) in a high-fat with methionine and choline deficiency diet (HFMCD)-fed mice model, by regulating lipid accumulation and inflammatory response probably via the AMPK/SREBP-1c/PPAR-α and IKK/IκB/NF-κB signaling pathways. This study provides a promising lead compound and a new insight into the development of novel anti-NAFLD agents based on the pentacyclic triterpenoid family, and is expected to promote the high value-added comprehensive application of the A. chinensis plants.
Collapse
Affiliation(s)
- Xinhua Li
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuanlong Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Leiqing Chen
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao Xu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohong Ma
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuying Lou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziqiang Zou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenjing Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bing Jiang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunrui Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiyuan Xi
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Yuan Y, Zhang J, Li H, Yuan F, Cui Q, Wu D, Yuan H, Piao G. Scopoletin alleviates acetaminophen-induced hepatotoxicity through modulation of NLRP3 inflammasome activation and Nrf2/HMGB1/TLR4/NF-κB signaling pathway. Int Immunopharmacol 2025; 148:114132. [PMID: 39870009 DOI: 10.1016/j.intimp.2025.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis. In addition, SP attenuated the accumulation of malondialdehyde (MDA) and exhaustion of glutathione (GSH) levels and increased the superoxide dismutase (SOD) levels induced by APAP. Consistently, SP significantly reduced the gene transcription of cytochrome P450 (CYP)2E1, CYP1A2, and CYP3A11 in the livers of mice induced by APAP. Moreover, SP pretreatment effectively promoted the expression of Nrf2, Keap1, and its signal downstream HO-1, NQO1, GCLc, and GCLm, suggesting the activation of the Nrf2 signaling pathway. SP inhibited APAP-induced hepatocyte apoptosis by regulating the protein levels of apoptosis-related proteins (cytochrome C, Bax, Caspase-3, Bcl2, and PARP). SP suppressed APAP-induced expression of NLRP3 and reduced the levels of proinflammatory factors, including tumor necrosis factor-alpha (TNF-α), F4/80, Caspase-1, and interleukin (IL)-1 beta (IL-1β). Moreover, SP downregulated APAP-induced high-mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) expression, inhibited nuclear factor kappa-B (NF-κB) and MAPK activation. Taken together, our study reveals the protective roles of SP against AILI through the downregulation of NLRP3 expression, and the inhibition of the Nrf2/HMGB1/TLR4/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yilin Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Jianxiu Zhang
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Hui Li
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Fengxia Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Qinglong Cui
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Di Wu
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Haidan Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China.
| | - Guangchun Piao
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
4
|
Huang G, Lin Y, Zhao J, Zhang J, Du Y, Xiao M, Li H, Chen Z, Kang N, Khan IA, Liu Y, Huang B, Xu Q. Corosolic acid and its derivatives targeting MCCC1 against insulin resistance and their hypoglycemic effect on type 2 diabetic mice. Eur J Med Chem 2025; 284:117184. [PMID: 39731787 DOI: 10.1016/j.ejmech.2024.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA. To identify the target protein of CA and investigate its therapeutic potential, a chemical probe derived from natural products, called CA-biotin, was designed and synthesized. By employing an avidin-biotin affinity binding system, we distinguished the differential protein bands between CA-biotin and biotin. This quantitative proteomic analysis revealed, for the first time, that the biotin-containing enzyme methylcrotonoyl-CoA carboxylase 1 (MCCC1) directly binds to CA. The interaction between H26 and MCCC1 was examined in vitro. The research on the mechanisms by which CA and H26 address Type 2 diabetes mellitus (T2DM) focused on the insulin resistance signaling pathway, specifically targeting MCCC1. The results indicated that H26 shows significant promise as a potential hypoglycemic agent, while MCCC1 may serve as a valuable target for addressing insulin resistance. This presents a promising opportunity for developing new medications aimed at improving the health of patients with type 2 diabetes mellitus (T2DM) or hyperglycemia.
Collapse
Affiliation(s)
- Guiyan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yexin Du
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mingyue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Naixin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bin Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
5
|
Liang C, Liu J, Jiang M, Zhu Y, Dong P. The advancement of targeted regulation of hepatic stellate cells using traditional Chinese medicine for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119298. [PMID: 39798676 DOI: 10.1016/j.jep.2024.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis, which is a precursor to cirrhosis in chronic liver diseases, is driven by various factors. The activation and proliferation of hepatic stellate cells (HSCs) are recognized as a crucial phase in the progression of liver fibrosis. Compared with western drug therapy, Traditional Chinese medicine (TCM) and herbal medicine not only have the advantages of multi-target and multi-pathways in the treatment of liver fibrosis, but also have high safety without toxic side effects. AIM OF THE REVIEW This paper aims to compile and analyze the active ingredients in TCM and their corresponding signaling pathways that target and modulate the phenotype of hepatic stellate cells, offering a potential treatment for hepatic fibrosis. METHODS The Literature information was obtained from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020 with the aim of elucidating the intrinsic mechanisms and roles of TCM and natural medicine in the treatment of LF. The search terms included "liver fibrosis" or "hepatic fibrosis", "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb". RESULTS We described the antifibrosis activity of TCM and natural medicine in LF based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as TGF-β/Smad, PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the proliferation, apoptosis, autophagy and activation of HSCs. CONCLUSION By reviewing both domestic and international literature on TCM interventions in liver fibrosis, this study presents a thorough evaluation of recent research progress and the challenges faced in the clinical application of TCM for this condition. The goal is to lay a solid foundation for further in-depth studies and to strengthen the theoretical framework in this field. The inhibitory effect of TCM and natural medicine on fibrosis was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. It also seeks to provide a theoretical foundation for future research on targeted therapies for liver fibrosis and related diseases.
Collapse
Affiliation(s)
- Chen Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jingjing Liu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Yan Zhu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Pengzhi Dong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
6
|
Feng X, Hu H, Zhong F, Hou Y, Li X, Qin Q, Yang Y, Luo X. Lactiplantibacillus plantarum TCCC11824 exerts hypolipidemic and anti-obesity effects through regulation of NF-κB-HMGCR pathway and gut microbiota in mice and clinical patients. Nutrition 2025; 130:112598. [PMID: 39612553 DOI: 10.1016/j.nut.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 12/01/2024]
Abstract
A strong association exists between the high-fat diet (HFD) and the incidence of obesity, hyperlipidemia and cardiovascular disease, affecting an increasing number of individuals. More and more research has shown that probiotics and gut microbiota play important roles in dietary absorption, metabolism, and general health of the host. This aim of this study was to evaluate the therapeutic effects and the underlying mechanisms of Lactiplantibacillus plantarum TCCC11824 (CGMCC 8198) on hyperlipidemia and obesity in mice and humans. First, there was a dose-dependent improvement in HFD-induced hyperlipidemia and obesity in mice that had been treated with L. plantarum TCCC11824 for 5 wk, thus restoring the balance of the gut microbiota. Furthermore, it showed that cell lysate of L. plantarum TCCC11824 could directly exhibit protective effects on the hepatocyte steatosis induced by oleic acid, and regulate the expression of HMGCR by inhibiting the NF-κB pathway. Importantly, L.plantarum TCCC11824 ameliorated the expression of indicators of hyperlipidemia and inhibited the synthesis of SCFAs (short-chain fatty acids), as shown by blood and fecal tests in hyperlipidemic patients. In summary, L. plantarum TCCC11824 exerts anti-hyperlipidemic and anti-obesity effects through the regulation of HMGCR via NF-κB and modulating gut microbiota, indicating its potential as a dietary supplement for the treatment of hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Xiaomin Feng
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haijie Hu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ying Hou
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Harbin Meihua Biotechnolgy Co., Ltd. Haerbin, Heilongjiang, Province, China
| | - Xiujuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Harbin Meihua Biotechnolgy Co., Ltd. Haerbin, Heilongjiang, Province, China
| | - Qi Qin
- Harbin Meihua Biotechnolgy Co., Ltd. Haerbin, Heilongjiang, Province, China
| | - Yang Yang
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan Hubei, Province, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
7
|
Zhang J, Yuan Y, Gao X, Li H, Yuan F, Wu D, Cui Q, Piao G, Yuan H. Scopoletin ameliorates hyperlipidemia and hepatic steatosis via AMPK, Nrf2/HO-1 and NF-κB signaling pathways. Biochem Pharmacol 2025; 231:116639. [PMID: 39571916 DOI: 10.1016/j.bcp.2024.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Scopoletin (SC) is one of the important phenolic coumarin constituents derived from many edible plants and fruits, and exerts a wide range of biological activities. In the present study, we investigated the effects of SC on tyloxapol (TY)-induced hyperlipidemia and hepatic steatosis in C57BL/6j mice and free fatty acid (FFA) 0.5 mM-stimulated lipid accumulation in human L02 cells. Our results showed that TY injection significantly increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL-C) as well as malondialdehyde (MDA) in the livers of the mice (p < 0.001, respectively), and decreased serum levels of high density lipoprotein (HDL-C), IL-10 levels as well as superoxide dismutase (SOD) in the livers (p < 0.001, respectively). On the other hand, SC pretreatment reversed these changes. SC obviously alleviated TY-induced liver steatosis by upregulating the AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) phosphorylation, and significantly downregulated sterol regulatory element binding protein (SREBP)1c and fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), Lipin 1, phospho-hormone-sensitive triglyceride lipase (p-HSL) proteins and SREBP-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) mRNA expressions. In the meantime, SC upregulated the expressions of the lipolysis-associated genes LDL receptor (LDLR), adipose triglyceride lipase (ATGL), and HSL. In addition, SC significantly inhibited TNF-α, F4/80, caspase-1 (cas-1), cas-1p10, IL-1β, Kelch-like ECH-associated protein 1 (Keap1) expressions, nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and increased heme oxygenase 1 (HO-1) expressions in TY-induced hyperlipidemia and hepatic steatosis mice. The in vivo results were similar to that those in the in vitro experiment, for example, SC markedly lowered TG and TC levels and protected lipid accumulation via AMPK, NF-κB, and Nrf2/HO-1 signaling pathway in FFA-induced L02 cells. These results indicate that SC has protective potential against hyperlipidemia and hepatic steatosis, and the underlying mechanism may be closely associated with AMPK activation and Nrf2/HO-1 and NF-κB inhibition.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Yilin Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Xiaoyan Gao
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Hui Li
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Fengxia Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Di Wu
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Qinglong Cui
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Guangchun Piao
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Haidan Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
8
|
Cai Y, Fang L, Chen F, Zhong P, Zheng X, Xing H, Fan R, Yuan L, Peng W, Li X. Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101052. [PMID: 40034684 PMCID: PMC11873010 DOI: 10.1016/j.jpha.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 03/05/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lu Fang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Fei Chen
- Department of Pharmacy, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Peiling Zhong
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Xiangru Zheng
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| |
Collapse
|
9
|
Chen YS, Lee CH, Hsieh YH, Chiou HL, Hung MC, Lee HL. Sorafenib, a Tyrosine Kinase Inhibitor, Synergistically Enhances the Ferroptosis Effects of Asiatic Acid in Hepatocellular Carcinoma Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:79-87. [PMID: 39264136 DOI: 10.1002/tox.24415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common cancers worldwide. Asiatic acid (AA) is a natural triterpene, which is recognized as effect of antioxidant and antitumor. Sorafenib (Sor), an orally target drug, has been applicate for the HCC therapy. However, the synergistic effect of AA and Sor on human HCC is still unclear. Here, we explore the effect of combined treatment with AA and Sor in the HCC cell line SK-HEP-1 and HepG2. Compared with treating alone, our results demonstrated that AA combined with Sor synergistically inhibited proliferative rates in MTT assay and colony formation assay. We also found that AA combined with Sor in HCC cells strongly caused cell cycle arrest in G0/G1 phase and affected the protein level of cyclin D1 and SKP2. Furthermore, combination treatment strongly enhanced ferroptosis through cellular accumulation of iron ions, lipid peroxidation, and ferroptosis-related proteins (GPX4 and FTH1) in HCC cells. In addition, the combined treatment resulted in higher phosphorylation of JNK1/2 in the promotion of ferroptosis than drug treatment alone. These results indicate that AA combined with Sor synergistically improved ferroptosis in HCC cells through the regulation of JNK1/2 signaling. Taken together, the combinatorial strategy may serve as the potential treatment in HCC.
Collapse
Affiliation(s)
- Yong-Syuan Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Zhang C, Gao L, Zhang Y, Jin X, Wang M, Wang Q, Zhao W, Wu N, Zhang Y, Liu Y, Zhang Y, Ma L, Chen Y. Corosolic acid inhibits EMT in lung cancer cells by promoting YAP-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156110. [PMID: 39369568 DOI: 10.1016/j.phymed.2024.156110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Corosolic acid (CA), a naturally occurring pentacyclic triterpenoid is renowned for its anticancer attributes. Previous studies have predominantly centered on the anticancer properties of CA in lung cancer, specifically its role in inducing apoptosis, however, investigations regarding its involvement in ferroptosis have been scarce. METHODS The apoptotic and proliferative effects were evaluated by CCK8 and colony formation assay. Cell death and ROS generation were measured to assess the response of CA to iron death induction. Scratch and invasion assays were performed to verify the effect of CA on the invasive ability of lung cancer cells. Protein and mRNA expression were analyzed using Western blotting and qPCR. The CHX assay was carried out to detect protein half-life. Metabolite levels were measured with appropriate kits. Protein expression was detected through IF and IHC. A xenograft tumor model was established to investigate the inhibitory effect of CA on lung cancer in vivo. RESULTS The current findings revealed that CA exerts its anticancer effect by inducing cell death, accompanied by the accumulation of lipid reactive oxygen species (ROS), hinting at the possible involvement of ferroptosis. Our experimental results further substantiated the significance of ferroptosis in the CA anticancer mechanism, as ferroptosis inhibitors were found to effectively rescue CA-induced cell death. Significantly, we demonstrated for the first time that CA could induce ferroptosis further by suppressing EMT in lung cancer cells. Additionally, CA could regulate GPX4 to induce ferroptosis, interestingly, CA downregulated GSH synthetase by inhibiting YAP rather than GPX4, thereby reducing GSH, inducing ferroptosis, and further suppressing EMT in lung cancer cells.We also discovered that GSS is a crucial downstream target of YAP in regulating GSH. Moreover, a xenograft mouse model indicated that CA could trigger ferroptosis in lung cancer cells by regulating YAP expression and GSH levels. CONCLUSION CA inhibited lung cancer cell metastasis by inducing ferroptosis. Our data offer the first evidence that CA induces ferroptosis in lung cancer cells by regulating YAP/GSS to modulate GSH, thereby further suppressing EMT. These results imply the potential of CA as an inducer of ferroptosis to inhibit lung cancer metastasis.
Collapse
Affiliation(s)
- Congcong Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Lingli Gao
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yinghui Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Xiaoqin Jin
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Mengyu Wang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| | - Qianna Wang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Wenyu Zhao
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Nan Wu
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yasu Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yaru Liu
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Yanyu Zhang
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450014, PR China.
| | - Yulong Chen
- Rehabilition Medicine College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
11
|
Li H, Tan X, Qin L, Gatasheh MK, Zhang L, Lin W, Hu F, Yan R, Alshammri MK, Shen Y, Abbasi AM, Qi J. Preparation, process optimisation, stability and bacteriostatic assessment of composite nanoemulsion containing corosolic acid. Heliyon 2024; 10:e38283. [PMID: 39386795 PMCID: PMC11462487 DOI: 10.1016/j.heliyon.2024.e38283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Corosolic acid (CA), a pentacyclic triterpenoid, exhibits remarkably low hydrophilicity, restricting its application in aqueous systems. To enhance its hydrophilicity, we optimised nanoemulsion preparation conditions, resulting in a stable corosolic acid nanoemulsion system. By screening the oil phase, surfactant, and cosurfactant, along with investigating the mass ratio of surfactant and cosurfactant and the preparation temperature, we achieved an optimal corosolic acid nanoemulsion. We measured the particle size, polydispersity coefficient, and Zeta potential of the optimised formulation. The nanoemulsion's sustained-release effect, stability, and antibacterial activity were subsequently examined. The optimised formulation comprised ethyl oleate, cremophor EL, and Tween 80 (1.5:1), combined with ethanol in a ratio of 1:9:2.25 (w/w/w), and was prepared at 30 °C. This optimised corosolic acid nanoemulsion exhibited uniform particle size distribution, favourable dispersion, and notable slow-release capabilities. Importantly, the nanoemulsion demonstrated exceptional stability. In comparison to the positive control's bacteriostatic zone diameter, it was evident that the CA nanoemulsion (1.06 ± 0.11 mm) and blank nanoemulsion (1.03 ± 0.05 mm) both displayed notable inhibitory activity against S. aureus. Our findings established a solid foundation for the potential application of CA nanoemulsion in the food, cosmetics, and pharmaceutical industries. However, the application of CA nanoemulsion in real food or drug systems has not been explored yet.
Collapse
Affiliation(s)
- Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, China
| | - Liyan Qin
- School of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, 530200, China
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh, 11451, Saudi Arabia
| | - Lei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Wenmin Lin
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Feng Hu
- Guangdong Chubang Food Co., Ltd, Yangjiang, 529500, China
| | - Rian Yan
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Mariam K. Alshammri
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh, 11451, Saudi Arabia
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- University of Gastronomic Sciences of Pollenzo, Piazza V. Emanuele II, I-12042, Bra/Pollenzo, Italy
| | - Jing Qi
- School of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, 530200, China
| |
Collapse
|
12
|
Zhang J, Zhao Y, Yan L, Tan M, Jin Y, Yin Y, Han L, Ma X, Li Y, Yang T, Jiang T, Li H. Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway. iScience 2024; 27:110448. [PMID: 39091464 PMCID: PMC11293524 DOI: 10.1016/j.isci.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Despite advances in treatment, myocardial infarction remains the leading cause of heart failure and death worldwide, and the restoration of coronary blood flow can also cause heart damage. In this study, we found that corosolic acid (CA), also known as plant insulin, significantly protects the heart from ischemia-reperfusion (I/R) injury. In addition, CA can inhibit oxidative stress and improve mitochondrial structure and function in cardiomyocytes. Subsequently, our study demonstrated that CA improved the expression of the mitophagy-related proteins Prohibitin 2 (PHB2), PTEN-induced putative kinase protein-1 (PINK1), and Parkin. Meanwhile, through molecular docking, we found an excellent binding between CA and PHB2 protein. Finally, the knockdown of PHB2 eliminated the protective effect of CA on hypoxia-reoxygenation in cardiomyocytes. Taken together, our study reveals that CA increases mitophagy in cardiomyocytes via the PHB2/PINK1/Parkin signaling pathway, inhibits oxidative stress response, and maintains mitochondrial function, thereby improving cardiac function after I/R.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Lianhua Han
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Yimin Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P.R. China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
13
|
Yamamura A, Fujiwara M, Kawade A, Amano T, Hossain A, Nayeem MJ, Kondo R, Suzuki Y, Inoue Y, Hayashi H, Suzuki S, Sato M, Yamamura H. Corosolic acid attenuates platelet-derived growth factor signaling in macrophages and smooth muscle cells of pulmonary arterial hypertension. Eur J Pharmacol 2024; 973:176564. [PMID: 38614383 DOI: 10.1016/j.ejphar.2024.176564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor β and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor β and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor β after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor β-STAT3 and PDGF-PDGF receptor β-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Akiko Kawade
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Taiki Amano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Alamgir Hossain
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Junayed Nayeem
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| |
Collapse
|
14
|
Yuan J, Hu Y, Yang D, Zhou A, Luo S, Xu N, Dong J, He Q, Zhang C, Zhang X, Ji Z, Li Q, Chu J. The Effects of Crataegus pinnatifida and Wolfiporia extensa Combination on Diet-Induced Obesity and Gut Microbiota. Foods 2024; 13:1633. [PMID: 38890862 PMCID: PMC11171702 DOI: 10.3390/foods13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Obesity is a multifactorial chronic metabolic disease with multiple complications. Crataegus pinnatifida (CP) and Wolfiporia extensa (WE) are traditional functional foods with improving metabolic health properties. This study demonstrated the effect of CP and WE combination on ameliorating obesity induced by a high-fat diet (HFD). Moreover, the CP-WE food pair ameliorated HFD-induced metabolic disorders, including glucose intolerance, insulin resistance, hyperlipidemia, and hepatic steatosis. 16S rRNA gene amplicon sequencing and analysis revealed that CP combined with WE reshaped the composition of gut microbiota in HFD-fed mice. Furthermore, correlation analysis revealed a substantial association between the obesity-related parameters and the shifts in predominant bacterial genera influenced by the food pair intervention. In conclusion, this study demonstrated that the CP-WE food pair ameliorated HFD-induced obesity and reshaped gut microbiota composition, providing a promising approach to combat obesity through specific food combinations.
Collapse
Affiliation(s)
- Jingjing Yuan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yueyun Hu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Affiliated Hospital of Yangzhou University, Yangzhou 225012, China
| | - Dongmei Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - An Zhou
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shengyong Luo
- Anhui Academy of Medical Sciences, Hefei 230061, China;
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China;
| | - Jiaxing Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qing He
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Chenxu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Xinyu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Zhangxin Ji
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qinglin Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Jun Chu
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
15
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
16
|
Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117229. [PMID: 37788786 DOI: 10.1016/j.jep.2023.117229] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Crataegus (hawthorn), a member of the Rosaceae family, encompasses several species with broad geographical distribution across the Northern Hemisphere, including Asia, Europe, and the Americas. Hawthorn is recognized as an edible medicinal plant with applications related to strengthening the digestive system, promoting blood circulation, and resolving blood stasis. AIM OF THE REVIEW This study critically summarized the traditional uses, phytochemistry, and pharmacological properties to provide a theoretical basis for further studies on hawthorn and its applications in medicine and food. MATERIALS AND METHODS The available information on hawthorn was gathered from scientific databases (including Google Scholar, Web of Science, PubMed, ScienceDirect, Baidu Scholar, CNKI, online ethnobotanical databases, and ethnobotanical monographs, and considered data from 1952 to 2023). Information about traditional uses, phytochemistry, pharmacology, and safety concerns of the collected data is comprehensively summarized in this paper. RESULTS The literature review revealed that hawthorn includes more than 1000 species primarily distributed in the northern temperate zone. Traditional uses of hawthorn have lasted for millennia in Asia, Europe, and the Americas. Within the past decade, 337 chemical compounds, including flavonoids, lignans, fatty acids and organic acids, monoterpenoids and sesquiterpenoids, terpenoids and steroids, have been identified from hawthorn. Modern pharmacological studies have confirmed numerous bioactivities, such as cardiovascular system influence, antitumor activity, hepatoprotective activity, antimicrobial properties, immunomodulatory functions, and anti-inflammatory activities. Additionally, evaluations have indicated that hawthorn lacks toxicity. CONCLUSIONS Based on its traditional uses, chemical composition, and pharmacological studies, hawthorn has significant potential as a medicinal and edible plant with a diverse range of pharmacological activities. Traditional uses of the hawthorn include the treatment of indigestion, dysmenorrhea, and osteoporosis. However, modern pharmacological research primarily focuses on its cardiovascular and cerebrovascular system effects, antitumor effects, and liver protection properties. Currently, there is a lack of correlative research involving its traditional uses and pharmacological activities. Moreover, phytochemical and pharmacological research has yet to focus on many types of hawthorn with traditional applications. Therefore, it is imperative to research the genus Crataegus extensively.
Collapse
Affiliation(s)
- Meng Cui
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Min Fan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| |
Collapse
|
17
|
Luo X, Ye Z, Xu C, Chen H, Dai S, Chen W, Bao G. Corosolic acid enhances oxidative stress-induced apoptosis and senescence in pancreatic cancer cells by inhibiting the JAK2/STAT3 pathway. Mol Biol Rep 2024; 51:176. [PMID: 38252208 DOI: 10.1007/s11033-023-09105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is a fatal human malignancy with a poor prognosis. Corosolic acid (CRA) is a triterpenoid, has been reported to have inhibitory effects on tumor growth. However, the role of CRA on PC has not been explored. Here, we aimed to uncover the molecular mechanisms of CRA in PC progression. METHODS Cell viability, lactate dehydrogenase (LDH) release, cell apoptosis and senescence were detected by cell counting kit-8 (CCK-8), LDH, flow cytometry and senescence associated-β-galactosidase (SA-β-gal) assay. Levels of relevant proteins and oxidative stress (OS) markers were evaluated by Western blot and enzyme-linked immunosorbent assay (ELISA). A xenograft tumor model was established to explore the in vivo effects of CRA on PC. RESULTS We found that CRA inhibited PC cell viability and promoted LDH release in a dose-dependent manner, but had no significant effect on human normal pancreatic ductal epithelial cells HPDE6C7. CRA increased OS-induced cell apoptosis and senescence in HAPC and SW1990 cells. And CRA decreased the levels of anti-apoptotic protein Bcl-2, and elevated the expression of pro-apoptotic protein Bax and senescence-associated proteins P21 and P53. Besides, CRA decreased tumor growth in xenograft models. Furthermore, CRA inactivated the Janus kinase-2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway in HAPC and SW1990 cells. Functional experiments demonstrated that activation of the JAK2/STAT3 pathway by the JAK2 activator coumermycin A1 (C-A1) or the STAT3 activator colivelin (col) reduced the contribution effect of OS, apoptosis and senescence by CRA. CONCLUSION Taken together, our findings indicated that CRA exerted anti-cancer effects in PC by inhibiting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Xu Luo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Zhengchen Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Chenglei Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Huan Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Shupeng Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
18
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
19
|
Zhang S, Liu B, Huang L, Zhang R, An L, Liu Z. Metabolomics reveals that chronic restraint stress alleviates carbon tetrachloride-induced hepatic fibrosis through the INSR/PI3K/AKT/AMPK pathway. J Mol Med (Berl) 2024; 102:113-128. [PMID: 37993562 DOI: 10.1007/s00109-023-02395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Abstract
Hepatic fibrosis (HF) could be developed into liver cirrhosis or even hepatocellular carcinoma. Stress has an important role in the occurrence and development of various considerable diseases. However, the effect of a certain degree stress on HF is still controversial. In our study, stress was simulated with regular chronic restraint stress (CRS) and HF model was induced with CCl4 in mice. We found that CRS was able to attenuate CCl4-induced liver injury and fibrosis in mice. Surprisingly, behavioral analysis showed that the mice in the HF group exhibited depression-like behavior. Further, the metabolomic analysis revealed that 119 metabolites and 20 metabolic pathways were altered in mice liver, especially the betaine metabolism pathway. Combined with the results of Ingenuity Pathway Analysis (IPA), the key proteins INSR, PI3K, AKT, and p-AMPK were identified and verified, and the results showed that CRS could upregulate the protein levels and mRNA expression of INSR, PI3K, AKT, and p-AMPK in liver tissues of HF mice. It suggested that CRS alleviated CCl4-induced liver fibrosis in mice through upregulation of the INSR/PI3K/AKT/AMPK pathway. Proper stress might be a potential therapeutic strategy for the treatment of chronic liver disease, which provided new insights into the treatment of HF. KEY MESSAGES: Chronic restraint stress mitigated CCl4-induced liver injury and hepatic fibrosis. CCl4-induced liver fibrosis could cause depression-like behavior. Chronic restraint stress altered metabolomic profiles in hepatic fibrosis mice, especially the betaine metabolism pathway. Chronic restraint stress increased betaine levels in liver tissue. Chronic restraint stress regulated the INSR/PI3K/AKT/AMPK signaling pathway in hepatic fibrosis mice.
Collapse
Affiliation(s)
- Shanshan Zhang
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Binjie Liu
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Lan Huang
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Lin An
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Outer Ring East Road, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
20
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
21
|
Ji X, Ma Q, Wang X, Ming H, Bao G, Fu M, Wei C. Digeda-4 decoction and its disassembled prescriptions improve dyslipidemia and apoptosis by regulating AMPK/SIRT1 pathway on tyloxapol-induced nonalcoholic fatty liver disease in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116827. [PMID: 37348794 DOI: 10.1016/j.jep.2023.116827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in the liver and the leading cause of chronic liver disease worldwide. Digeda-4 decoction (DGD-4) is a commonly prescribed Mongolian herbal drug for treating acute and chronic liver injury and fatty liver. However, the mechanisms underlying the improvement of dislipidemia and liver injury via treatment with DGD-4 remain unclear. Disassembling a prescription is an effective approach to studying the effects and mechanisms underlying Mongolian medicine prescriptions. By disassembling a prescription, it is feasible to discover effective combinations of individual herbs to optimize a given prescription. Accordingly, we disassembled DGD-4 into two groups: the single Lomatogonium rotatum (L.) Fries ex Nym (LR) (DGD-1) and non-LR (DGD-3). AIM OF THIS STUDY To study whether DGD-4 and its disassembled prescriptions have protective effects against tyloxapol (TY)-induced NAFLD and to explore the underlying mechanisms of action and compatibility of prescriptions. MATERIAL AND METHODS NAFLD mice were developed by TY induction. Biochemical horizontal analyses, enzyme-linked immunosorbent assay, and liver histological staining were performed to explore the protective effects of DGD-4 and its disassembled prescriptions DGD-3 and DGD-1. Furthermore, we performed immunohistochemical analyses and Western blotting to further explore the expression of target proteins. RESULTS DGD-4 and its disassembled prescriptions could inhibit TY-induced dislipidemia and liver injury. In addition, DGD-4 and its disassembled prescriptions increased the levels of p-AMPKα and p-ACC, but decreased the levels of SREBP1c, SCD-1, SREBP-2, and HMGCS1 proteins. The activation of lipid metabolic pathways SIRT1, PGC-1α, and PPARα improved lipid accumulation in the liver. Moreover, DGD-4 could inhibit hepatocyte apoptosis and treat TY-induced liver injury by upregulating the Bcl-2 expression, downregulating the expression of Bax, caspase-3, caspase-8, and the ratio of Bax/Bcl-2, and positively regulating the imbalance of oxidative stress (OxS) markers (such as superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and myeloperoxidase [MPO]). DGD-1 was superior to DGD-3 in regulating lipid synthesis-related proteins such as SREBP1c, SCD-1, SREBP-2, and HMGCS1. DGD-3 significantly affected the expression of lipid metabolic proteins SIRT1, PGC-1α, PPARα, apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, and the regulation of Bax/Bcl-2 ratio. However, DGD-1 showed no regulatory effects on Bax and Bcl-2 proteins. CONCLUSION This study demonstrates the protective effects of DGD-4 in the TY-induced NAFLD mice through a mechanism involving improvement of dyslipidemia and apoptosis by regulating the AMPK/SIRT1 pathway. Although the Monarch drug DGD-1 reduces lipid accumulation and DGD-3 inhibits apoptosis and protects the liver from injury, DGD-4 can be more effective overall as a therapy when compared to DGD-1 and DGD-3.
Collapse
Affiliation(s)
- Xiaoping Ji
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Xuan Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Hui Ming
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Guihua Bao
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Chengxi Wei
- School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao, 028000, China.
| |
Collapse
|
22
|
Li JZ, Chen N, Ma N, Li MR. Mechanism and Progress of Natural Products in the Treatment of NAFLD-Related Fibrosis. Molecules 2023; 28:7936. [PMID: 38067665 PMCID: PMC10707854 DOI: 10.3390/molecules28237936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disorder worldwide, with liver fibrosis (LF) serving as a pivotal juncture in NAFLD progression. Natural products have demonstrated substantial antifibrotic properties, ushering in novel avenues for NAFLD treatment. This study provides a comprehensive review of the potential of natural products as antifibrotic agents, including flavonoids, polyphenol compounds, and terpenoids, with specific emphasis on the role of Baicalin in NAFLD-associated fibrosis. Mechanistically, these natural products have exhibited the capacity to target a multitude of signaling pathways, including Hedgehog, Wnt/β-catenin, TGF-β1, and NF-κB. Moreover, they can augment the activities of antioxidant enzymes, inhibit pro-fibrotic factors, and diminish fibrosis markers. In conclusion, this review underscores the considerable potential of natural products in addressing NAFLD-related liver fibrosis through multifaceted mechanisms. Nonetheless, it underscores the imperative need for further clinical investigation to authenticate their effectiveness, offering invaluable insights for future therapeutic advancements in this domain.
Collapse
Affiliation(s)
- Jin-Zhong Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ning Chen
- General Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min-Ran Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
23
|
Yang S, Yang H, Zhang Y. Yao-Shan of traditional Chinese medicine: an old story for metabolic health. Front Pharmacol 2023; 14:1194026. [PMID: 37663255 PMCID: PMC10468577 DOI: 10.3389/fphar.2023.1194026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), cardio-cerebrovascular diseases (CCVDs), hyperuricemia and gout, and metabolic-related sexual dysfunction are metabolic diseases that affect human health in modern society. Scientists have made great efforts to investigate metabolic diseases using cell models in vitro or animal models in the past. However, the findings from cells or animals are difficult to translate into clinical applications due to factors such as the in vitro and in vivo differences; the differences in anatomy, physiology, and genetics between humans and animals; and the differences in microbiome-host interaction. The Chinese have extensively used the medicated diet of traditional Chinese medicine (TCM) (also named as Yao-Shan of TCM, Chinese Yao-Shan et al.) to maintain or improve cardiometabolic health for more than 2,200 years. These ancient classic diets of TCM are essential summaries of long-term life and clinical practices. Over the past 5 years, our group has made every effort to collect and sort out the classic Yao-Shan of TCM from the ancient TCM literature since Spring and Autumn and Warring States Period, especially these are involved in the prevention and treatment of metabolic diseases, such as diabetes, NAFLD, CCVDs, hyperuricemia and gout, and sexual dysfunction. Here, we summarized and discussed the classic Yao-Shan of TCM for metabolic diseases according to the time recorded in the ancient literature, and revised the Latin names of the raw materials in these Yao-Shan of TCM. Moreover, the modern medicine evidences of some Yao-Shan of TCM on metabolic diseases have also been summarized and emphasized in here. However, the exact composition (in terms of ratios), preparation process, and dosage of many Yao-Shan are not standardized, and their main active ingredients are vague. Uncovering the mystery of Yao-Shan of TCM through modern biological and chemical strategies will help us open a door, which is ancient but now looks new, to modulate metabolic homeostasis and diseases.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Vasarri M, Degl’Innocenti D, Albonetti L, Bilia AR, Bergonzi MC. Pentacyclic Triterpenes from Olive Leaves Formulated in Microemulsion: Characterization and Role in De Novo Lipogenesis in HepG2 Cells. Int J Mol Sci 2023; 24:12113. [PMID: 37569488 PMCID: PMC10419275 DOI: 10.3390/ijms241512113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Olea europaea L. leaves contain a wide variety of pentacyclic triterpenes (TTPs). TTPs exhibit many pharmacological activities, including antihyperlipidemic effects. Metabolic alterations, such as dyslipidemia, are an established risk factor for hepatocellular carcinoma (HCC). Therefore, the use of TTPs in the adjunctive treatment of HCC has been proposed as a possible method for the management of HCC. However, TTPs are characterized by poor water solubility, permeability, and bioavailability. In this work, a microemulsion (ME) loading a TTP-enriched extract (EXT) was developed, to overcome these limits and obtain a formulation for oral administration. The extract-loaded microemulsion (ME-EXT) was fully characterized, assessing its chemical and physical parameters and release characteristics, and the stability was evaluated for two months of storage at 4 °C and 25 °C. PAMPA (parallel artificial membrane permeability assay) was used to evaluate the influence of the formulation on the intestinal passive permeability of the TTPs across an artificial membrane. Furthermore, human hepatocarcinoma (HepG2) cells were used as a cellular model to evaluate the effect of EXT and ME-EXT on de novo lipogenesis induced by elevated glucose levels. The effect was evaluated by detecting fatty acid synthase expression levels and intracellular lipid accumulation. ME-EXT resulted as homogeneous dispersed-phase droplets, with significantly increased EXT aqueous solubility. Physical and chemical analyses showed the high stability of the formulation over 2 months. The formulation realized a prolonged release of TTPs, and permeation studies demonstrated that the formulation improved their passive permeability. Furthermore, the EXT reduced the lipid accumulation in HepG2 cells by inhibiting de novo lipogenesis, and the ME-EXT formulation enhanced the inhibitory activity of EXT on intracellular lipid accumulation.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
| | - Laura Albonetti
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| |
Collapse
|
25
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
26
|
Chen J, Xu L, Zhang XQ, Liu X, Zhang ZX, Zhu QM, Liu JY, Iqbal MO, Ding N, Shao CL, Wei MY, Gu YC. Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:196-210. [PMID: 37275542 PMCID: PMC10232707 DOI: 10.1007/s42995-023-00168-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/08/2023] [Indexed: 06/07/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Unfortunately, there is no approved drug treatment for NASH. AMP-activated kinase (AMPK) is an important metabolic sensor and whole-body regulator. It has been proposed that AMPK activators could be used for treating metabolic diseases such as obesity, type 2 diabetes and NASH. In this study, we screened a marine natural compound library by monitoring AMPK activity and found a potent AMPK activator, candidusin A (CHNQD-0803). Further studies showed that CHNQD-0803 directly binds recombinant AMPK with a KD value of 4.728 × 10-8 M and activates AMPK at both molecular and intracellular levels. We then investigated the roles and mechanisms of CHNQD-0803 in PA-induced fat deposition, LPS-stimulated inflammation, TGF-β-induced fibrosis cell models and the MCD-induced mouse model of NASH. The results showed that CHNQD-0803 inhibited the expression of adipogenesis genes and reduced fat deposition, negatively regulated the NF-κB-TNFα inflammatory axis to suppress inflammation, and ameliorated liver injury and fibrosis. These data indicate that CHNQD-0803 as an AMPK activator is a novel potential therapeutic candidate for NASH treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00168-z.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, Qingdao, 266003 China
| | - Li Xu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
| | - Xue-Qing Zhang
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
| | - Xue Liu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, Qingdao, 266003 China
| | - Zi-Xuan Zhang
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
| | - Qiu-Mei Zhu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, Qingdao, 266003 China
| | - Jian-Yu Liu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
| | - Muhammad Omer Iqbal
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, Qingdao, 266003 China
| | - Ning Ding
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114 USA
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Yu-Chao Gu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, Qingdao, 266003 China
| |
Collapse
|
27
|
Li R, Luan F, Zhao Y, Wu M, Lu Y, Tao C, Zhu L, Zhang C, Wan L. Crataegus pinnatifida: A botanical, ethnopharmacological, phytochemical, and pharmacological overview. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115819. [PMID: 36228891 DOI: 10.1016/j.jep.2022.115819] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus pinnatifida belongs to the Rosaceae family and extensively distribute in North China, Europe, and North America. Its usage was first described in "Xinxiu Ben Cao." The dried fruits of Crataegus pinnatifida Bunge or Crataegus pinnatifida var. major N. E. Br., also known as "Shanzha," is a famous medicine and food homology herb with a long history of medicinal usage in China. C. pinnatifida has the functions for digestive promotion, cardiovascular protection, and lipid reduction. It was traditionally used to treat indigestion, cardiodynia, thoracalgia, hernia, postpartum blood stagnation, and hemafecia. In recent years, C. pinnatifida has attracted worldwide attention as an important medicinal and economical crop due to its multiple and excellent health-promoting effects on cardiovascular, nervous, digestive, endocrine systems, and morbigenous microorganisms of the human body due to its medicinal and nutritional values. AIM OF THE REVIEW The current review aims to provide a comprehensive analysis of the geographical distribution, traditional usage, phytochemical components, pharmacological actions, clinical settings, and toxicities of C. pinnatifida. Moreover, the connection between the claimed biological activities and the traditional usage, along with the future perspectives for ongoing research on this plant, were also critically summarized. MATERIALS AND METHODS We collected the published literature on C. pinnatifida using a variety of scientific databases, including Web of Science, ScienceDirect, PubMed, Wiley, Springer, Taylor & Francis, ACS Publications, Google Scholar, Baidu Scholar, CNKI, The Plant List Database, and other literature sources (Ph.D. and MSc dissertations) from 2012 to 2022. RESULTS In the last decade, over 250 phytochemical compounds containing lignans, phenylpropanoids, flavonoids, triterpenoids, and their glycosides, as well as other compounds, have been isolated and characterized from different parts, including the fruit, leaves, and seeds of C. pinnatifida. Among these compounds, flavonoids and triterpenoids were major bioactive components of C. pinnatifida. They exhibited a broad spectrum of pharmacological actions with low toxicity in vitro and in vivo, such as cardiovascular protection, neuroprotection, anti-inflammatory, antioxidant, antibacterial, antiviral, anti-diabetes, anti-cancer, anti-mutagenic, anti-osteoporosis, anti-aging, anti-obesity, and hepatoprotection and other actions. CONCLUSION A long history of traditional uses and abundant pharmacochemical and pharmacological investigations have demonstrated that C. pinnatifida is an important medicine and food homology herb, which displays outstanding therapeutic potential, especially in the digestive system and cardiovascular disease. Nevertheless, the current studies on the active ingredients or crude extracts of C. pinnatifida and the possible mechanism of action are unclear. More evidence-based scientific studies are required to verify the traditional uses of C. pinnatifida. Furthermore, more efforts must be paid to selecting index components for quality control research and toxicity and safety studies of C. pinnatifida.
Collapse
Affiliation(s)
- Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Mengyao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yang Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chengtian Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lv Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chi Zhang
- Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China.
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
28
|
Blockage of Autophagy Increases Timosaponin AIII-Induced Apoptosis of Glioma Cells In Vitro and In Vivo. Cells 2022; 12:cells12010168. [PMID: 36611961 PMCID: PMC9818637 DOI: 10.3390/cells12010168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Timosaponin AIII (TSAIII), a saponin isolated from Anemarrhena asphodeloides and used in traditional Chinese medicine, exerts antitumor, anti-inflammatory, anti-angiogenesis, and pro-apoptotic activity on a variety of tumor cells. This study investigated the antitumor effects of TSAIII and the underlying mechanisms in human glioma cells in vitro and in vivo. TSAIII significantly inhibited glioma cell viability in a dose- and time-dependent manner but did not affect the growth of normal astrocytes. We also observed that in both glioma cell lines, TSAIII induces cell death and mitochondrial dysfunction, consistent with observed increases in the protein expression of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, cytochrome c, and Mcl-1. TSAIII also activated autophagy, as indicated by increased accumulation of the autophagosome markers p62 and LC3-II and the autolysosome marker LAMP1. LC3 silencing, as well as TSAIII combined with the autophagy inhibitor 3-methyladenine (3MA), increased apoptosis in GBM8401 cells. TSAIII inhibited tumor growth in xenografts and in an orthotopic GBM8401 mice model in vivo. These results demonstrate that TSAIII exhibits antitumor effects and may hold potential as a therapy for glioma.
Collapse
|
29
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
30
|
Zhu M, Jia Z, Yan X, Liu L, Fang C, Feng M, Dai Y, Zhang Y, Wu H, Huang B, Li Y, Liu J, Xiao H. Danhe granule ameliorates nonalcoholic steatohepatitis and fibrosis in rats by inhibiting ceramide de novo synthesis related to CerS6 and CerK. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115427. [PMID: 35654350 DOI: 10.1016/j.jep.2022.115427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhe granule (DHG) is used by Chinese doctors to treat blood stasis, phlegm and dampness. Its lipid-lowering ability has been investigated in our previous research. However, the anti-liver inflammatory and fibrotic effects and mechanism of action of DHG in non-alcoholic steatohepatitis (NASH) have not been explored. AIM OF THE STUDY To evaluate the ameliorative effects of DHG on liver inflammation and fibrosis in a methionine/choline-deficient (MCD) diet-induced NASH rat model, and its underlying mechanism. MATERIALS AND METHODS Sprague-Dawley rats were fed an MCD diet for two weeks and then treated with or without DHG by oral gavage for eight weeks. Their body weight and liver index were measured. The serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities as well as the liver triglyceride (TG) and free fatty acid (FFA) levels were tested using reagent kits. Inflammatory cytokines, including Tnf-α, Il-β and Il-6, and fibrosis genes, including Acta2, Col1a1, Col1a2 and Tgf-β were examined by real-time quantitative PCR (RT-qPCR). Hematoxylin-eosin (H&E), Oil Red O, Masson's and Sirius Red staining were used to observe liver changes. The plasma and liver ceramide levels were analyzed using HPLC-QQQ-MS/MS. The expression of serine palmitoyl-CoA transferase (Spt), ceramide synthase 6 (Cers6), dihydroceramide desaturase 1 (Des1), glucosylceramide synthase (Gcs), and ceramide kinase (Cerk) mRNA was assayed by RT-qPCR, while the protein expression of CerS6, DES1, GCS, CerK, and casein kinase 2α (CK2α) was tested by western blotting (WB). CerS6 degradation was evaluated using a cycloheximide (CHX) assay in vitro. RESULTS The liver index decreased by 20% in DHG groups and the serum ALT and AST decreased by approximately 50% and 30%, respectively in the DHG-H group. The liver Oil Red O staining, TG, and FFA changes showed that DHG reduced hepatic lipid accumulation by approximately 30% in NASH rats. H&E, Masson's and Sirius Red staining and the mRNA levels of Tnf-α, Il-β, Il-6, Acta2, Col1a1, Col1a2 and Tgf-β revealed that DHG alleviated liver inflammation and fibrosis in NASH rats. The ceramide (Cer 16:0), and hexosylceramide (HexCer 16:0, HexCer 18:0, HexCer 22:0, HexCer 24:0 and HexCer 24:1) levels decreased by approximately 17-56% in the plasma of the DHG-M and H rats. The Cer 16:0 content in the liver decreased by 20%, 50%, and 70% with the DHG-L, M, and H treatments; additionally, the dhCer 16:0, Cer 18:0, HexCer 18:0, HexCer 20:0 Cer 22:0-1P, Cer 24:0-1p, Cer 24:1-1p, and Cer 26:1-1p levels decreased in the DHG groups. The mRNA and protein expression levels of DES1, GCS, Cerk, CerS6, and CHX assay indicated that DHG decreased the mRNA and protein expression levels of CerK and reduced CerS6 protein expression by promoting its degradation. Additionally, DHG attenuated the protein expression of CK2α which could increase CerS6 enzymatic activity by phosphorylating its C-terminal region. CONCLUSION DHG ameliorated the levels of liver FFA and TG and inflammation and fibrosis in MCD-induced rats, which were associated with decreasing ceramide species in the plasma and liver by reducing the expression levels of CerS6 and CerK.
Collapse
Affiliation(s)
- Meixia Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
31
|
Peng Y, Li N, Tang F, Qian C, Jia T, Liu J, Xu Y. Corosolic acid sensitizes ferroptosis by upregulating HERPUD1 in liver cancer cells. Cell Death Dis 2022; 8:376. [PMID: 36038536 PMCID: PMC9424261 DOI: 10.1038/s41420-022-01169-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Primary liver cancer is the third leading cause of cancer death in the world, and the lack of effective treatments is the main reason for the high mortality. Corosolic acid (CA) has been proved to have antitumor activity. In this study, we found that CA can sensitize liver cancer cells to ferroptosis, which is a regulated form of cell death characterized by iron-dependent lipid peroxides reaching lethal levels. Here, we revealed that CA can inhibit glutathione (GSH) synthesis via HERPUD1, decreasing the cellular GSH level and causing liver cancer cells to become more sensitive to ferroptosis. Mechanistically, further studies found that HERPUD1 reduced the ubiquitination of the GSS-associated E3 ubiquitin ligase MDM2, which promoted ubiquitination of GSS, thereby inhibiting GSH synthesis to increase ferroptosis susceptibility. Importantly, a mouse xenograft model also demonstrated that CA inhibits tumor growth via HERPUD1. Collectively, our findings suggesting that CA is a candidate component for the development of treatments against liver cancer.
Collapse
Affiliation(s)
- Yingxiu Peng
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Ning Li
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Feifeng Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Chunmei Qian
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Tingting Jia
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Jingjin Liu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China
| | - Yanfeng Xu
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071, Shanghai, China.
| |
Collapse
|
32
|
Potential Roles and Key Mechanisms of Hawthorn Extract against Various Liver Diseases. Nutrients 2022; 14:nu14040867. [PMID: 35215517 PMCID: PMC8879000 DOI: 10.3390/nu14040867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Crataegus (hawthorn), a flowering shrub or tree, is a member of the Rosaceae family and consists of approximately 280 species that have been primarily cultivated in East Asia, North America, and Europe. Consumption of hawthorn preparations has been chiefly associated with pharmacological benefits for cardiovascular diseases, including congestive heart failure and angina pectoris. Treatment with hawthorn extracts can be related to improvements in the complex pathogenesis of various hepatic and cardiovascular disorders. In this regard, the present review described that the presence of hawthorn extracts ameliorated hepatic injury, lipid accumulation, inflammation, fibrosis, and cancer in an abundance of experimental models. Hawthorn extracts might have these promising activities, largely by enhancing the hepatic antioxidant system. In addition, several mechanisms, including AMP-activated protein kinase (AMPK) signaling and apoptosis, are responsible for the role of hawthorn extracts in repairing the dysfunction of injured hepatocytes. Specifically, hawthorn possesses a wide range of biological actions relevant to the treatment of toxic hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Accordingly, hawthorn extracts can be developed as a major source of therapeutic agents for liver diseases.
Collapse
|
33
|
Sun LW, Kao SH, Yang SF, Jhang SW, Lin YC, Chen CM, Hsieh YH. Corosolic Acid Attenuates the Invasiveness of Glioblastoma Cells by Promoting CHIP-Mediated AXL Degradation and Inhibiting GAS6/AXL/JAK Axis. Cells 2021; 10:cells10112919. [PMID: 34831142 PMCID: PMC8616539 DOI: 10.3390/cells10112919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Corosolic acid (CA), a bioactive compound obtained from Actinidia chinensis, has potential anti-cancer activities. Glioblastoma (GBM) is a malignant brain tumor and whether CA exerts anti-cancer activity on GBM remains unclear. This study was aimed to explore the anticancer activity and its underlying mechanism of CA in GBM cells. Our findings showed that CA ≤ 20 μM did not affect cell viability and cell proliferative rate of normal astrocyte and four GBM cells. Notably, 10 or 20 μM CA significantly inhibited cell migration and invasion of three GBM cells, decreased the protein level of F-actin and disrupted F-actin polymerization in these GBM cells. Further investigation revealed that CA decreased AXL level by promoting ubiquitin-mediated proteasome degradation and upregulating the carboxyl terminus of Hsc70-interacting protein (CHIP), an inducer of AXL polyubiquitination. CHIP knock-down restored the CA-reduced AXL and invasiveness of GBM cells. Additionally, we observed that CA-reduced Growth arrest-specific protein 6 (GAS6) and inhibited JAK2/MEK/ERK activation, and GAS6 pre-treatment restored attenuated JAK2/MEK/ERK activation and invasiveness of GBM cells. Furthermore, molecular docking analysis revealed that CA might bind to GAS6 and AXL. These findings collectively indicate that CA attenuates the invasiveness of GBM cells, attributing to CHIP upregulation and binding to GAS6 and AXL and subsequently promoting AXL degradation and downregulating GAS6-mediated JAK2/MEK/ERK cascade. Conclusively, this suggests that CA has potential anti-metastatic activity on GBM cells by targeting the CHIP/GAS6/AXL axis.
Collapse
Affiliation(s)
- Li-Wei Sun
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shang-Wun Jhang
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40201, Taiwan
| | - Yi-Chen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Nursing and Health Sciences, Dayeh University, Changhua 51591, Taiwan
- Correspondence: (C.-M.C.); (Y.-H.H.)
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-W.S.); (S.-H.K.); (S.-F.Y.); (Y.-C.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (C.-M.C.); (Y.-H.H.)
| |
Collapse
|
34
|
Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment. Biomed Pharmacother 2021; 144:112298. [PMID: 34649219 DOI: 10.1016/j.biopha.2021.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is a liver manifestation of metabolic syndrome, with a histological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH can evolve into progressive liver fibrosis and eventually lead to liver cirrhosis. The pathological mechanism of NASH is multifactorial, involving a series of metabolic disorders and changes that trigger low-level inflammation in the liver and other organs. In the pathogenesis of NASH, the signal transduction pathway involving succinate and the succinate receptor (G-protein-coupled receptor 91, GPR91) regulates inflammatory cell activation and liver fibrosis. This review describes the mechanism of the succinate-GPR91 signalling pathway in NASH and summarizes the drugs that act on this pathway, with the aim of providing a new approach to NASH treatment.
Collapse
|