1
|
Qi J, Zhao S, Chen J, Guo Q, Hong Y, Meng F. Facile fabrication of antibacterial membranes with human-friendly aloin for water purification. WATER RESEARCH 2025; 280:123515. [PMID: 40158287 DOI: 10.1016/j.watres.2025.123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Currently, chemicals or nanoparticles are widely used for modifying membranes to improve their antifouling properties. However, the chemicals released, particularly during long-term water or wastewater filtration, are highly toxic to the environment and humans. Herein, an herb-inspired, green antibacterial membrane with exceptional sustainable antifouling properties was developed using aloin. The resultant membranes exhibited excellent bacterial inactivating efficiency because of the electrostatic interactions between the amine groups on the membrane and the bacterial cells, which contributed to cell deformation. The aloin molecules also significantly increased reactive oxygen species levels, causing oxidative damage to bacterial cells. Moreover, the functional decorative layer, which exhibited remarkable resistance to bacterial adhesion because of the abundant hydroxyl, carbonyl, and amino groups in aloin, endowed the as-prepared membranes with strong polarity, reducing bacterial adhesion and biofilm formation. When applied in a membrane bioreactor, the aloin-modified membranes demonstrated a > 27.0 % lower fouling rate than commercial microfiltration membranes. Overall, the successful fabrication strategy and material features described offer a green alternative for membrane development and provide new avenues for the design of healthcare materials such as wound dressings.
Collapse
Affiliation(s)
- Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Jian Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Qiwei Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yirong Hong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Wang L, Li Y, Wang S, Lv L, Liu H, Zhang G, Zhao Y. Rapid screening of α-amylase inhibitors from Aloe vera based on polydopamine/L-cysteine bifunctionalized magnetic mesoporous silica immobilized α-amylase. Anal Bioanal Chem 2025; 417:2971-2982. [PMID: 40131436 DOI: 10.1007/s00216-025-05841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Diabetes mellitus is a metabolic disorder that impacts millions of individuals globally. In the treatment of this condition, it is imperative to explore natural resources for therapeutic agents that exhibit fewer adverse effects and enhanced efficacy. Currently, the methods employed for isolating anti-diabetic lead compounds from natural sources are often intricate and time-consuming. Therefore, there is an urgent need to develop efficient and rapid screening techniques. In this study, α-amylase was immobilized using a novel polydopamine/L-cysteine bifunctionalized magnetic mesoporous silica composite material (Fe3O4@nSiO2@mSiO2@PDA@L-Cys) for the first time. A ligand fishing approach utilizing the immobilized α-amylase was developed to rapidly screen for α-amylase inhibitors from Aloe vera. Characterization and property analysis of the immobilized enzyme showed that the immobilized α-amylase exhibited exceptional stability and reusability. Two ligands were successfully screened from Aloe vera and then characterized as aloin B and aloin A using ultra-high performance liquid chromatography tandem mass spectrometry. Their respective IC50 values were 0.99 ± 0.09 mM and 1.14 ± 0.05 mM. Molecular docking studies confirmed the interaction of both ligands with specific amino acid residues within the active site of α-amylase. The study presents a fast and efficient approach for screening α-amylase inhibitors from intricate natural sources, thereby offering significant potential for the development of anti-diabetic agents.
Collapse
Affiliation(s)
- Lei Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Lin Lv
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Xihua University, Chengdu, 610039, China.
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
3
|
Jain A, Kishore N. Mechanistic insight into association of lysozyme, serum albumin, and insulin with aloin: Thermodynamic and conformational analysis. Int J Biol Macromol 2025; 306:141413. [PMID: 39993682 DOI: 10.1016/j.ijbiomac.2025.141413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Lysozyme, serum albumin, and insulin carry out essential functions in the living systems. The properties and functions of these proteins may be positively impacted in association with Aloe vera, which is known to have usefulness as dietary supplement and clinical conditions. In this work, the conformational changes in these proteins have been analysed as a result of interaction with aloin, which has a long history of use in traditional health management. A combination of circular dichroism spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry have been used in analysing the associated thermodynamic signatures and structural changes. It is observed that lysozyme, and bovine serum albumin showed weak binding behaviour with aloin at molar ratio of (1:1), which is found to be entropically driven at first binding site while enthalpically driven at second binding site. Similarly for insulin also, the interaction of aloin increased with increase in its concentration and the binding of ligand at first and second site is entropically and enthalpically driven, respectively. These three proteins offer hydrophobic and hydrophilic functionalities for establishing intermolecular interactions with aloin. Differential scanning calorimetry and circular dichroism spectroscopy have provided mechanistic details on tertiary structural changes in these proteins as a result of interactions. The results offer valuable insights into molecular mechanism of conformational changes in these proteins and hence their properties in association with aloin, thereby, having biological implications related to health and food industry.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Li R, Wang Y, Lao Y, You C, Qing L, Guan X, Wang J, Li X, Li Q, Liu S, Dong Z. Effect and Mechanism of Aloin in Ameliorating Chronic Prostatitis/Chronic Pelvic Pain Syndrome: Network Pharmacology and Experimental Verification. Drug Des Devel Ther 2025; 19:1945-1969. [PMID: 40110504 PMCID: PMC11920635 DOI: 10.2147/dddt.s473678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose This research aims to investigate the role and potential mechanisms of Aloin in Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) through network pharmacology and experimental approaches. Methods Using network pharmacology methods, potential targets of Aloin and targets related to CP/CPPS were screened from public databases. The protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to predict the core targets and pathways of Aloin against CP/CPPS. The effects of Aloin in ameliorating CP/CPPS were verified in animal experiments. Results A total of 235 genes interacting with Aloin in CP/CPPS were identified. PPI network analysis revealed five core targets: AKT1, EGFR, ESR1, HSP90AA1, and SRC. GO analysis yielded 2916 enrichment results, with 2562 related to Biological Process (BP), 94 to Cellular Component (CC), and 260 to Molecular Function (MF). KEGG pathway analysis identified 172 pathways. Molecular docking confirmed stable binding between Aloin and core targets. Molecular dynamics simulations further validated binding stability by analyzing Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), hydrogen bonds, Solvent Accessible Surface Area (SASA), and Gibbs free energy of Aloin-target complexes. Experimental validation showed that Aloin alleviated pain, reduced inflammatory factors, and decreased oxidative stress in a rat model of CP/CPPS. The qRT-PCR results showed that Aloin intervention reduced the mRNA expression of AKT1, EGFR, HSP90AA1, and SRC, while increasing ESR1 mRNA expression. These changes may underlie its therapeutic effects in CP/CPPS. Conclusion Our study revealed that Aloin exerts a beneficial effect on mitigating the pain symptoms associated with CP/CPPS, ameliorating inflammation, and reducing oxidative stress. Through network pharmacology, potential targets and signaling pathways were identified, suggesting the therapeutic promise of Aloin for CP/CPPS. These findings advocate for further exploration into its clinical efficacy and mechanistic underpinnings in the treatment of CP/CPPS.
Collapse
Affiliation(s)
- Rongxin Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yanan Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yongfeng Lao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Chengyu You
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Liangliang Qing
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Xin Guan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Jian Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Xiaolong Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Qingchao Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Shuai Liu
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Zhilong Dong
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Gansu Province Key Laboratory of Urological Diseases, Lanzhou, Gansu, 730030, People’s Republic of China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, People’s Republic of China
| |
Collapse
|
5
|
Chen YN, Lu JY, Gao CF, Fang ZR, Zhou Y. Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis. JOURNAL OF INTEGRATIVE MEDICINE 2025; 23:195-208. [PMID: 40102085 DOI: 10.1016/j.joim.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/20/2024] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Aloin, the main active component in Aloe vera (L.) Burm. f., has shown promising anti-tumor effects. This study investigated the impact of aloin in lung squamous cell carcinoma (LUSC) and explored its functional mechanism. METHODS We analyzed the viability, migration, invasion, proliferation, and apoptosis of two LUSC cell lines after treatment with aloin. Target molecules of aloin and downstream target transcripts of nuclear receptor subfamily 3 group C member 2 (NR3C2) were predicted by bioinformatics. The biological functions of NR3C2 and metallothionein 1 M (MT1M) in the malignant properties of LUSC cells were determined. A co-culture system of LUSC cells with monocyte-derived macrophages was constructed. Mouse xenograft tumor models were generated to analyze the functions of aloin and NR3C2 in the tumorigenic activity of LUSC cells and macrophage polarization in vivo. RESULTS Aloin suppressed malignant properties of LUSC cells in vitro. However, these effects were negated by the silencing of NR3C2. NR3C2 was found to activate MT1M transcription by binding to its promoter. Additional upregulation of MT1M suppressed the malignant behavior of LUSC cells augmented by NR3C2 silencing. Analysis of the M1 and M2 markers/cytokines in the macrophages or the culture supernatant revealed that aloin treatment or MT1M overexpression in LUSC cells enhanced M1 polarization while suppressing M2 polarization of macrophages, whereas NR3C2 silencing led to reverse trends. Consistent findings were reproduced in vivo. CONCLUSION This study demonstrated that aloin activates the NR3C2/MT1M axis to suppress the malignant behavior of LUSC cells and M2 macrophage polarization. Please cite this article as: Chen YN, Lu JY, Gao CF, Fang ZR, Zhou Y. Aloin blocks the malignant behavior of lung squamous cell carcinoma cells and M2 macrophage polarization by modulating the NR3C2/MT1M axis. J Integr Med. 2025; 23(2): 195-208.
Collapse
Affiliation(s)
- Ying-Na Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| | - Jie-Ya Lu
- Department of Nephrology, Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, Jiangsu Province, China.
| | - Cheng-Feng Gao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhi-Ruo Fang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yan Zhou
- Department of Digestive Diseases, Changzhou Traditional Chinese Medicine Hospital, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
6
|
Hakami ZH, Abdo W, Nazeam JA, Osman SM, Goda W, Fadl SE, Alsulimani A, Al-Noshokaty TM, Haridy M, Alnasser SM, Abdeen A. Aloe arborescens Standardized Glycosidic Fraction Suppresses Hepatocarcinoma by Modulating TIMP1, MMP9 Genes Expression, and Inflammation/Ki67/TGFβ1 Pathway. Phytother Res 2025; 39:1090-1106. [PMID: 39731399 DOI: 10.1002/ptr.8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
(1) Background and aim: Aloe arborescens Mill. ( A. arborescens ) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties. However, the molecular mechanisms underlying these activities have not yet been fully elucidated. This study aimed to explore the effects of the plant polar glycosidic fraction (AAG) on hepatocellular carcinoma (HCC) in an in vivo model induced by diethylnitrosamine (DEN). (2) Experimental procedure: The fraction was standardized using HPLC-PDA-MS/MS fingerprinting, and two distinct intragastric AAG dose regimens were examined (10 and 20 mg/kg) in combination with DEN 200 mg/kg. Serum alpha-fetoprotein (AFP), gamma-glutamyl transferase (γ-GGT), glutathione S-transferase placental (GST-P), mRNA expression of metabolic cytochrome enzymes (CYP1A3 and CYP2B2), inflammatory genes (nuclear factor kappa-B p65 subunit; NF-κB p65), metalloproteases 9 (MMP9), tissue inhibitors of metalloproteases (TIMP1), transforming growth factor beta 1 (TGFβ1), and histological features were assessed. (3) Key results and conclusions and implications: AAG was characterized by five major secondary metabolites: saponins, chromones, anthraquinone, and triterpenes. The fraction reduced hepatic malignancy characteristics by diminishing the size and number of altered foci and lowering hepatic cancer biomarkers, such as γ-GGT, AFP, and GST-positive foci. It also reduced the mRNA levels of CYP1A3 and CYP2B2, NF-κB p65, and MMP9, hepatic Ki-67, and TGFβ1 while upregulating TIMP1 levels. This study revealed that AAG exhibited a marked suppressive effect on HCC cell proliferation, displaying a range of mechanistic actions, including decreasing the metabolic activation of cytochrome enzymes, which consequently reduced the production of reactive oxygen species and other genes implicated in cancer development. AAG could be a significant therapeutic candidate for patients diagnosed with hepatocarcinoma.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Samir M Osman
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Wael Goda
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Sabreen E Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matruh University, Matruh, Egypt
| | - Ahmad Alsulimani
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohie Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
7
|
Liao B, Zhang C, Shen J, Chen D, Wang J, Chen X, Zhou Y, Wei Y, Shi Y, Gou L, Guo Q, Zhou X, Xie H, Zhao L, Liao G, Zhu Z, Cheng L, Zhou X, Li Y, Ren B. Aloin remodels the cell wall of Candida albicans to reduce its hyphal virulence against oral candidiasis. Appl Microbiol Biotechnol 2025; 109:21. [PMID: 39853490 PMCID: PMC11761986 DOI: 10.1007/s00253-025-13411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Aloe vera (L.) Burm.f. is a traditional Chinese medicine known for treating various ailments, including fungal infections. Aloin is one of the major components from A. vera, but its antifungal mechanism and therapeutic potential against oral candidiasis are not clear. This study aimed to examine the mechanism of aloin against Candida albicans and its inhibitory activity against oral candidiasis. In this study, we for the first time found that aloin could induce the formation of abnormal hyphae with smaller hyphal diameters and fewer branching points in C. albicans including 11 clinical isolates without growth inhibition. The transcriptome and further cell wall contents analysis indicated that aloin remodeled the cell wall to increase the contents of β-1,3-glucan and furtherly showed an antagonistic effect with micafungin. Aloin also significantly inhibited the cell damage of oral epithelial cells and oral candidiasis in mice infected by C. albicans due to its inhibitory actions on the hyphal development and expressions of virulence factors, including candidalysin (coded by ECE1). Our results suggest that aloin is a promising antifungal agent for controlling candidiasis and targeting hyphal development and pathogenesis represents a practical strategy for developing new antifungal drugs. KEY POINTS: • Aloin remodels the C. albicans cell wall to form avirulent hyphae. • Aloin inhibits C. albicans infections in oral epithelial cells and mouse mucosa without toxicity. • Aloin is a promising antifungal agent with therapeutic potential against C. albicans infections.
Collapse
Affiliation(s)
- Binyou Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanli Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiawei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ding Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongyu Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Information Management & Department of Stomatology Informatics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhuoli Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Chaudhary S, Sharma S, Fuloria S. A Panoramic Review on the Management of Rheumatoid Arthritis through Herbalism. Curr Rheumatol Rev 2025; 21:4-24. [PMID: 38591212 DOI: 10.2174/0115733971279100240328063232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Bedong, Kedah Aman, Malaysia
| |
Collapse
|
9
|
Su J, Deng X, Hu S, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S, Zheng L. Aloe-emodin plus TIENAM ameliorate cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating microbiota. Front Microbiol 2024; 15:1491169. [PMID: 39726955 PMCID: PMC11669710 DOI: 10.3389/fmicb.2024.1491169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota. Here, we investigated whether administering AE and TIE post-sepsis onset, using a cecal ligation and puncture (CLP)-induced sepsis model, extends survival and improves physiological functions. Survival rates, inflammatory cytokines, tissue damage, immune cell populations, ascitic fluid microbiota, and key signaling pathways were assessed. Combining AE and TIE significantly enhanced survival rates, and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Moreover, substantial improvements in survival rates of AE + TIE-treated mice (10% to 60%) within 168 h were observed relative to the CLP group. This combination therapy also effectively modulated inflammatory marker (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) levels and immune cell counts by decreasing those of B, NK, and TNFR2+ Treg cells, while increasing that of CD8+ T cells; alleviated tissue damage; reduced bacterial load in the peritoneal cavity; and suppressed the NF-κB signaling pathway. We also observed a significantly altered peritoneal cavity microbiota composition post-treatment, characterized by reduced pathogenic bacteria (Bacteroides) abundance. Our findings underscore the potential of AE + TIE in treating sepsis, and encourage further research and possible clinical implementations to surmount the limitations of TIE and amplify the therapeutic potential of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
10
|
Zhao Z, Wen Y, Peng Y, Wang W, Ma H. Aloin alleviates corneal injury in alkali burn via inhibiting neutrophil extracellular traps and promoting Nrf2. Immunopharmacol Immunotoxicol 2024; 46:773-784. [PMID: 39279256 DOI: 10.1080/08923973.2024.2402365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Ocular chemical burns are a leading cause of blindness. The cornea is injured by alkali-induced oxidative disturbances and an inflammatory response. The aim of this study was to evaluate the protective effects of aloin, an antioxidant, and anti-inflammatory compound, on corneal alkali burn. MATERIALS AND METHODS Mice eyes were injured by NaOH and subsequently treated with aloin eye drop and intraperitoneal injection. Pathological characteristics of the eyes were examined, and corneal samples were collected for further analysis. RESULTS Aloin diminished neutrophil infiltration and the production of proinflammatory cytokines. Aloin also attenuated apoptosis in human corneal epithelial cells (HCEs) by reducing oxidative stress through the activation of the Nrf2 pathway. Additionally, aloin suppressed the formation of neutrophil extracellular traps (NETs) and inhibited their deposition on the cornea. Moreover, aloin mitigated alkali-induced apoptosis in HCEs caused by NETs. CONCLUSIONS These findings suggest that aloin has potential as an antioxidant and anti-inflammatory compound for treating corneal alkali burn by inhibiting NETs formation and promoting Nrf2.
Collapse
Affiliation(s)
- Zhongxiu Zhao
- Department of Ophthalmology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, China
- Department of Refractive Center, Chongqing Nanping Aire Eye Hospital, China
| | - Yan Wen
- Department of Refractive Center, Chongqing Aire Eye Hospital, Chongqing, China
| | - Yanli Peng
- Department of Refractive Center, Chongqing Aire Eye Hospital, Chongqing, China
| | - Weili Wang
- Department of Nephrology, the First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huafeng Ma
- Department of Ophthalmology, The Second Clinical Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Su J, Xiao J, Deng X, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S. Combining Aloin with TIENAM ameliorates cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating abdominal cavity microbiota. Int Immunopharmacol 2024; 141:112925. [PMID: 39154534 DOI: 10.1016/j.intimp.2024.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Despite the high mortality rate, sepsis lacks specific and effective treatment options. Conventional antibiotics, such as TIENAM (TIE; imipenem and cilastatin sodium for injection), face challenges owing to the emergence of bacterial resistance, which reduces their effectiveness and causes adverse effects. Addressing resistance and judicious drug use is crucial. Our research revealed that aloin (Alo) significantly boosts survival rates and reduces inflammation and bacterial load in mice with sepsis, demonstrating strong antimicrobial activity. Using a synergistic Alo + TIE regimen in a cecal ligation and puncture (CLP)-induced sepsis model, we observed a remarkable increase in survival rates from 10 % to 75 % within 72 h compared with the CLP group alone. This combination therapy also modulated inflammatory markers interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, mitigated tissue damage, regulated immune cells by lowering NK, activated CD8+ and CD4+ T cells while increasing peritoneal macrophages, and decreased the bacterial load in the peritoneal cavity. We noted a significant shift in the abdominal cavity microbiota composition post-treatment, with a decrease in harmful bacteria, such as Lachnospiraceae_NK4A136_group, Klebsiella, Bacillus, and Escherichia, and an increase in beneficial bacteria, such as Lactobacillus and Mucispirillum. Our study emphasizes the efficacy of combining Alo with TIE to combat sepsis, and paves the way for further investigations and potential clinical applications aiming to overcome the limitations of TIE and enhance the therapeutic prospects of Alo.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jianbin Xiao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
12
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
13
|
Ying X, Yu C, Yang W, Ye L, Sun R, Gu T, Fan S, Yao S. The transformation of multifunctional bio-patch to hydrogel on skin wounds for efficient scarless wound healing. Mater Today Bio 2024; 24:100901. [PMID: 38188643 PMCID: PMC10770564 DOI: 10.1016/j.mtbio.2023.100901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Hydrogels have been widely used in various biomedical applications, including skin regeneration and tissue repair. However, the capability of certain hydrogels to absorb exudate or blood from surrounding wounds, coupled with the challenge in their long-term storage to prevent bacterial growth, can pose limitations to their efficacy in biological applications. To address these challenges, the development of a multifunctional aloin-arginine-alginate (short for 3A) bio-patch capable of transforming into a hydrogel upon absorbing exudate or blood from neighboring wounds for cutaneous regeneration is proposed. The 3A bio-patch exhibits outstanding features, including an excellent porous structure, swelling properties, and biodegradability. These characteristics allow for the rapid absorption of wound exudates and subsequent transformation into a hydrogel that is suitable for treating skin wounds. Furthermore, the 3A bio-patch exhibits remarkable antibacterial and anti-inflammatory properties, leading to accelerated wound healing and scarless repair in vivo. This study presents a novel approach to the development of cutaneous wound dressing materials.
Collapse
Affiliation(s)
- Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 310003, China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
14
|
Palaniyappan S, Sridhar A, Arumugam M, Ramasamy T. Bioactive Analysis of Antibacterial Efficacy and Antioxidant Potential of Aloe barbadensis Miller Leaf Extracts and Exploration of Secondary Metabolites Using GC-MS Profiling. Appl Biochem Biotechnol 2024; 196:729-773. [PMID: 37184725 DOI: 10.1007/s12010-023-04565-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Aloe barbadensis Miller (ABM) is a traditional medicinal plant all over the world. Numerous studies were conducted to exhibit its medicinal properties and most of them were concentrated on its metabolites against human pathogens. The current research work evaluates the attributes of different polar-based extracts (ethanol, methanol, ethyl acetate, acetone, hexane, and petroleum ether) of dried Aloe barbadensis leaf (ABL) to investigate its phytochemical constituents, antioxidant potential (DPPH, ABTS), phenolic, tannin, flavonoid contents, identification of bioactive compounds, and functional groups by gas chromatography-mass spectrometry (GC-MS) and fourier transform infrared spectroscopy (FT-IR) respectively, and comparing antibacterial efficacy against human pathogens, aquatic bacterial pathogens, and zoonotic bacteria associated with fish and human. The present results showed that the methanolic extract of ABL showed higher antioxidant activity (DPPH-59.73 ± 2.01%; ABTS-74.1 ± 1.29%), total phenolic (10.660 ± 1.242 mg GAE/g), tannin (7.158 ± 0.668 mg TAE/g), and flavonoid content (49.545 ± 1.928 µg QE/g) than that of other solvent extracts. Non-polar solvents hexane and petroleum ether exhibited lesser activity among the extracts. In the case of antibacterial activity, higher inhibition zone was recorded in methanol extract of ABL (25.00 ± 0.70 mm) against Aeromonas salmonicida. Variations in antibacterial activity were observed depending on solvents and extracts. In the current study, polar solvents revealed higher antibacterial activity when compared to the non-polar and the mid-polar solvents. Diverse crucial bioactive compounds were detected in GC-MS analysis. The vital compounds were hexadecanoic acid (30.69%) and 2-pentanone, 4-hydroxy-4-methyl (23.77%) which are responsible for higher antioxidant and antibacterial activity. Similar functional groups were identified in all the solvent extracts of ABL with slight variations in the FT-IR analysis. Polar-based solvent extraction influenced the elution of phytocompounds more than that of the other solvents used in this study. The obtained results suggested that the ABM could be an excellent source for antioxidant and antibacterial activities and can also serve as a potential source of effective bioactive compounds to combat human as well as aquatic pathogens.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
15
|
Dawuti A, Ma L, An X, Guan J, Zhou C, He L, Xu Y, Han B, Abulizi A. Exploring the effect and mechanism of Aloin A against cancer cachexia-induced muscle atrophy via network pharmacology, molecular docking, molecular dynamics and experimental validation. Aging (Albany NY) 2023; 15:15557-15577. [PMID: 38180061 PMCID: PMC10781478 DOI: 10.18632/aging.205416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
80% of advanced cancer patients suffer from cachexia, but there are no FDA-approved drugs. Therefore, it is imperative to discover potential drugs. OBJECTIVE This study aims at exploring the effect and targets of Aloin A against cancer cachexia (CC)-induced muscle atrophy. METHODS Network pharmacology, molecular docking, molecular dynamics (MD) and animal model of CC-induced muscle atrophy with a series of behavior tests, muscle quality, HE staining and RT-PCR were performed to investigate the anticachectic effects and targets of Aloin A and its molecular mechanism. RESULTS Based on network pharmacology, 51 potential targets of Aloin A on CC-induced muscle atrophy were found, and then 10 hub genes were predicted by the PPI network. Next, KEGG and GO enrichment analysis showed that the anticachectic effect of Aloin A is associated with PI3K-AKT, MAPK, TNF, TLR, etc., pathways, and biological processes like inflammation, apoptosis and cell proliferation. Molecular docking and MD results showed good binding ability between the Aloin A and key targets. Moreover, experiments in vivo demonstrated that Aloin A effectively rescued muscle function and wasting by improving muscle quality, mean CSA, and distribution of muscle fibers by regulating HSP90AA1/AKT signaling in tumor-bearing mice. CONCLUSION This study offers new insights for researchers to understand the effect and mechanism of Aloin A against CC using network pharmacology, molecular docking, MD and experimental validation, and Aloin A retards CC-induced muscle wasting through multiple targets and pathways, including HSP90AA1/AKT signaling, which provides evidence for Aloin A as a potential therapy for cancer cachexia in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lisha Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xueyan An
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Changdong Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Linyun He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Younus HA, Saleem F, Hameed A, Al-Rashida M, Al-Qawasmeh RA, El-Naggar M, Rana S, Saeed M, Khan KM. Part-II: an update of Schiff bases synthesis and applications in medicinal chemistry-a patent review (2016-2023). Expert Opin Ther Pat 2023; 33:841-864. [PMID: 38115554 DOI: 10.1080/13543776.2023.2297729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Schiff bases are compounds with characteristic features of azomethine linkage (-C=N-). Schiff bases are capable of coordinating with metal ions via azomethine nitrogen. Schiff base derivatives and their metal complexes are known for intriguing novel therapeutic properties. In organic synthesis, the Schiff base reaction is prime in creating the C-N bond. Synthetic accessibility and structural diversity are the salient features for facile synthesis of Schiff base hybrids via a condensation reaction between an aldehyde/ketone and primary amines. AREA COVERED This review aims to provide a comprehensive overview of the commendable medicinal applications of Schiff base derivatives and their metal complexes patented from 2016 to 2023. EXPERT OPINION Schiff base derivatives are exceptional molecules for their assorted applications in medicinal chemistry. Several Schiff base products are marketed as drugs, and plenty of room is available for the purposive synthesis of new compounds in a diverse pool of disciplines. Expansion in the derivatization of Schiff bases in innumerable directions with multitudinous applications makes them 'magical molecules.' These compounds have proved extraordinary, from medicinal chemistry to other fields outside medicine. This review covers the therapeutic importance of Schiff base derivatives and aims to cover the patents published in recent years (2016-2023).
Collapse
Affiliation(s)
- Hafiza Amna Younus
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Raed A Al-Qawasmeh
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Mohamed El-Naggar
- Pure and Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Sobia Rana
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
17
|
Su J, Zhou F, Wu S, Tong Z. Research Progress on Natural Small-Molecule Compounds for the Prevention and Treatment of Sepsis. Int J Mol Sci 2023; 24:12732. [PMID: 37628912 PMCID: PMC10454676 DOI: 10.3390/ijms241612732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sepsis is a serious disease with high mortality and has been a hot research topic in medical research in recent years. With the continuous reporting of in-depth research on the pathological mechanisms of sepsis, various compounds have been developed to prevent and treat sepsis. Natural small-molecule compounds play vital roles in the prevention and treatment of sepsis; for example, compounds such as resveratrol, emodin, salidroside, ginsenoside, and others can modulate signaling through the NF-κB, STAT3, STAT1, PI3K, and other pathways to relieve the inflammatory response, immunosuppression, and organ failure caused by sepsis. Here, we discuss the functions and mechanisms of natural small-molecule compounds in preventing and treating sepsis. This review will lay the theoretical foundation for discovering new natural small-molecule compounds that can potentially prevent and treat sepsis.
Collapse
|
18
|
Qu S, Yu S, Ma X, Wang R. "Medicine food homology" plants promote periodontal health: antimicrobial, anti-inflammatory, and inhibition of bone resorption. Front Nutr 2023; 10:1193289. [PMID: 37396128 PMCID: PMC10307967 DOI: 10.3389/fnut.2023.1193289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
"Medicine food homology" (MFH) is a term with a lengthy history. It refers to the fact that a lot of traditional natural products have both culinary and therapeutic benefits. The antibacterial, anti-inflammatory and anticancer effects of MFH plants and their secondary metabolites have been confirmed by numerous research. A bacterially generated inflammatory illness with a complicated pathophysiology, periodontitis causes the loss of the teeth's supporting tissues. Several MFH plants have recently been shown to have the ability to prevent and treat periodontitis, which is exhibited by blocking the disease's pathogens and the virulence factors that go along with them, lowering the host's inflammatory reactions and halting the loss of alveolar bone. To give a theoretical foundation for the creation of functional foods, oral care products and adjuvant therapies, this review has especially explored the potential medicinal benefit of MFH plants and their secondary metabolites in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shanlin Qu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Shuo Yu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaolin Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
19
|
Alhadrami HA, Sayed AM, Hassan HM, Rateb ME. Aloin A inhibits SARS CoV-2 replication by targeting its binding with ACE2 - Evidence from modeling-supported molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:11647-11656. [PMID: 36755429 DOI: 10.1080/07391102.2023.2175262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/01/2023] [Indexed: 02/10/2023]
Abstract
The current study aimed to expand on the recently published results and assess the inhibitory efficacy of aloin A against SARS CoV-2. In vitro testing of aloin A against SARS CoV-2 proteases (i.e., MPro and PLPro) showed weak to moderate activity (IC50 = 68.56 ± 1.13 µM and 24.77 ± 1.57 µM, respectively). However, aloin A was able to inhibit the replication of SARS CoV-2 in Vero E6 cells efficiently with an IC50 of 0.095 ± 0.022 µM. Depending on the reported poor permeability of aloin A alongside its insignificant protease inhibitory activities presented in this study, we ran a number of extensive virtual screenings and physics-based simulations to determine the compound's potential mode of action. As a result, RBD-ACE2 was identified as a key target for aloin A. Results from 600 ns-long molecular dynamics (MD) simulation experiments pointed to aloin A's role as an RBD-ACE2 destabilizer. Therefore, the results of this work may pave the way for further development of this scaffold and the eventual production of innovative anti-SARS CoV-2 medicines with several mechanisms of action.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University Hospital, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, Scotland
| |
Collapse
|
20
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (DOX), as a kind of chemotherapy agent with remarkable therapeutic effect, can be used to treat diverse malignant tumors clinically. Dose-dependent cardiotoxicity is the most serious adverse reaction after DOX treatment, which eventually leads to cardiomyopathy and greatly limits the clinical application of DOX. DOX-induced cardiomyopathy is not a result of a single mechanistic action, and multiple mechanisms have been discovered and demonstrated experimentally, such as oxidative stress, inflammation, mitochondrial damage, calcium homeostasis disorder, ferroptosis, autophagy and apoptosis. Dexrazoxane (DEX) is the only protective agent approved by FDA for the treatment of DOX cardiomyopathy, but its clinical treatment still has some limitations. Therefore, we need to find other effective therapeutic drugs as soon as possible. In this paper, the drugs that effectively improve cardiomyopathy in recent years are mainly described from the aspects of natural drugs, endogenous substances, new dosage forms, herbal medicines, chemical modification and marketed drugs. The aim of the present study is to evaluate the effects of these drugs on DOX-induced anticancer and cardiomyopathy curative effects, so as to provide some reference value for clinical treatment of DOX-induced cardiomyopathy in the future.
Collapse
Affiliation(s)
- Ye Chen
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Saixian Shi
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
21
|
Isolation of Aloe saponaria-Derived Extracellular Vesicles and Investigation of Their Potential for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14091905. [PMID: 36145653 PMCID: PMC9504946 DOI: 10.3390/pharmaceutics14091905] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A chronic wound is caused by a failure to progress through the normal phases of wound repair in an orderly and timely manner. To induce skin regeneration while inhibiting chronic inflammation, numerous natural products, and in particular, plant-derived biomaterials, have been developed. Aloe saponaria, is known to contain flavonoid and phenolic acid compounds with anti-oxidative and anti-inflammatory properties. Here, we isolated extracellular vesicles (EVs) from Aloe saponaria by polyethylene glycol (PEG)-based precipitation and investigated their potential as a therapeutic for chronic wound healing. The Aloe saponaria-derived EVs (AS-EVs) showed no significant cytotoxicity on several cell types, despite a high level of intracellular uptake. When lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were treated with AS-EVs, significant reductions in the expression of pro-inflammatory genes, such as interleukin-6 and interleukin-1β, were observed. Proliferation and migration of human dermal fibroblasts, as determined by the water-soluble tetrazolium salt-8 and transwell migration assay, respectively, were shown to be promoted by treatment with AS-EVs. It was also demonstrated that AS-EVs enhanced tube formation in human umbilical vein endothelial cells, indicating a stimulatory activity on angiogenesis; one of the crucial steps for effective wound healing. Collectively, our results suggest the potential of AS-EVs as a natural therapeutic for chronic wound healing.
Collapse
|
22
|
Yang Y, Wu JJ, Xia J, Wan Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Can aloin develop to medicines or healthcare products? Biomed Pharmacother 2022; 153:113421. [DOI: 10.1016/j.biopha.2022.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
|
23
|
Devi A, Dwibedi V, Rath SK, Khan ZA. Theories and Mechanism of Aging and Longevity Through Evolutionary Lens: a Coalition of Plant Anti-oxidants. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022; 32:291-320. [DOI: 10.1007/s43450-022-00254-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2025]
|