1
|
Jiang ZM, Fang ZY, Yang X, Ji XX, Zhao YY, Lin BY, Weng ZB, Liu EH. Glycyrrhetinic acid ameliorates gastric mucosal injury by modulating gut microbiota and its metabolites via Thbs1/PI3K-Akt/p53 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156745. [PMID: 40305972 DOI: 10.1016/j.phymed.2025.156745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Dysbiosis of the gut microbiota is pivotal in the development of gastric mucosa injury (GMI). Glycyrrhetinic acid (GA) is a bioactive triterpenoid compound abundantly present in licorice roots. Although GA's potential in mitigating GMI is recognized, its precise mechanism remains elusive, particularly concerning the role of gut microbiota. PURPOSE This study aimed to explore the protective effects and mechanisms of GA in preventing HCl/ethanol-induced GMI in rats. RESULTS This study demonstrated the protective effects of GA on gastric mucosa, evidenced by enhanced morphology and structure as revealed through H&E staining. Utilizing fecal microbiota transplantation, GA was found to significantly mitigate oxidative damage, inflammation, and expression of apoptosis-related genes in GMI rats by a gut microbiota-dependent mechanism. 16S rRNA sequencing and metabolomics profiling revealed that GA ameliorated HCl/ethanol-triggered intestinal dysbiosis and imbalances in sphingolipid, arginine, and tryptophan metabolism. By promoting the prevalence of Bifidobacterium longum subsp. infantis (B. infantis) in the gut microbiota, GA improved metabolic disturbances linked to injury. Furthermore, its action mechanism was related to the inhibition of the Thbs1/PI3K-Akt/p53 signaling pathway. CONCLUSION The administration of GA improves GMI by mitigating intestinal dysbiosis and fostering colonization of B. infantis. GA offers therapeutic potential for GMI by modulating the Thbs1/PI3K-Akt/p53 pathway, thus alleviating inflammatory responses associated with gut microbiota imbalance.
Collapse
Affiliation(s)
- Zheng-Meng Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Yue Fang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Xing Ji
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan-Yuan Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin-Yan Lin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ze-Bin Weng
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - E-Hu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture / School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Jo HG, Seo J, Jang B, Kim Y, Kim H, Baek E, Park SY, Lee D. Integrating network pharmacology and experimental validation to advance psoriasis treatment: Multi-target mechanistic elucidation of medicinal herbs and natural compounds. Autoimmun Rev 2025; 24:103836. [PMID: 40381707 DOI: 10.1016/j.autrev.2025.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Psoriasis, a chronic immune-mediated inflammatory disease (IMID), presents significant therapeutic challenges, necessitating exploration of alternative treatments like medicinal herbs (MH) and natural compounds (NC). Network pharmacology offers predictive insights, yet a systematic evaluation connecting these predictions with experimental validation outcomes specifically for MH/NC in psoriasis is lacking. This review specifically fills this gap by comprehensively integrating and analyzing studies that combine network pharmacology predictions with subsequent experimental validation. METHODS A systematic literature search identified 44 studies employing both network pharmacology and in vitro or in vivo experimental methods for MH/NC targeting psoriasis. This review provides a systematic analysis of the specific network pharmacology platforms, predicted targets/pathways, in vivo and in vitro experimental validation models, and key biomarker changes reported across these integrated studies. Methodological approaches and the consistency between predictions and empirical findings were critically evaluated. RESULTS This first comprehensive analysis reveals that network pharmacology predictions regarding MH/NC mechanisms in psoriasis are frequently corroborated by experimental data. Key signaling pathways, including the IL-17/IL-23 axis, MAPK, and NF-κB, emerge as consistently predicted and experimentally validated targets across diverse natural products. The review maps the specific network pharmacology tools and experimental designs utilized, establishing a methodological benchmark for the field and highlighting the successful synergy between computational prediction and empirical verification. CONCLUSION By systematically integrating and critically assessing the linkage between network pharmacology predictions and experimental validation for MH/NC in psoriasis, this review offers a unique clarification of the current, validated state-of-the-art, differentiating it from previous literature. It confirms network pharmacology's predictive power for natural products, identifies robustly validated therapeutic pathways, and provides a crucial benchmark, offering data-driven insights for future research into artificial intelligence-enhanced natural product-based therapies for psoriasis and other IMIDs.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea.
| | - Jihye Seo
- Siho Korean Medicine Clinic, 407, Dongtansillicheon-ro, Hwaseong-si 18484, Republic of Korea
| | - Boyun Jang
- IntegroMediLab Co., Ltd., 143, Magokjungang-ro, Gangseo-gu, Seoul 07797, Republic of Korea
| | - Youngsoo Kim
- IntegroMediLab Co., Ltd., 143, Magokjungang-ro, Gangseo-gu, Seoul 07797, Republic of Korea
| | - Hyehwa Kim
- KC Korean Medicine Hospital, 12, Haeol 2-gil, Paju-si 10865, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo-Yeon Park
- Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si 58245, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
3
|
Vijayan V, M Unagolla J, Panchal D, John JE, Menon SS, Menon JU. Biomimetic nanoparticles for targeted therapy of liver disease. RSC PHARMACEUTICS 2025:d5pm00044k. [PMID: 40321406 PMCID: PMC12045541 DOI: 10.1039/d5pm00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Liver fibrosis is a progressive and fatal condition characterized by stiffness and scarring of the liver due to excessive buildup of extracellular matrix (ECM) proteins. If left untreated, it can progress to liver cirrhosis and hepatocellular carcinoma (HCC)-one of the fastest-rising causes of cancer mortality in the United States. Despite the increased prevalence of liver fibrosis due to infections, exposure to toxins, and unhealthy lifestyles, there are no effective treatments available. Recent advances in nanomedicine can lead to more targeted and effective strategies for treating liver diseases than existing treatments. In particular, the use of biomimetic nanoparticles (NPs) such as liposomes and cell-membrane-coated NPs is of interest. NPs functionalized with cell membranes mimic the properties of the source cell used and provide inherent immune evasion ability, homologous adhesion, and prolonged circulation. This review explores the types of biomimetic coatings, different cargoes delivered through biomimetic NPs for various treatment modalities, and the type of core NPs used for targeting liver fibrosis and HCC.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Dhruvisha Panchal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Judith Eloyi John
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | | | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
- Department of Chemical Engineering, University of Rhode Island Kingston RI 02881 USA
| |
Collapse
|
4
|
Lin Y, Zhao X, Yang Z, Dongfang Z, Zeng Y, Du C, Li J, Yin X, Xiao J, Hu C, Huang M, Huang F, Yu X. Integrating transcriptomics and network pharmacology to reveal the effect and mechanism of Bai-Jie-Jing-Xie ointment on improving skin inflammation of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119680. [PMID: 40158831 DOI: 10.1016/j.jep.2025.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a global chronic, immune-mediated, inflammatory skin disease. Bai-Jie-Jing-Xie (BJJX) ointment has been widely used in the clinic practice for its notable efficacy and is an empirical prescription for psoriasis treatment in hospitals. Nevertheless, its precise mechanism of action on psoriasis remains unclear. AIM OF THE STUDY To study the mechanism of action of the hospital empirical prescription BJJX in the treatment of psoriasis. MATERIAL AND METHODS Imiquimod (IMQ) was used to induce the psoriasis model in BALB/c mice and UPLC-MS/MS analysis was used for quality control. Subsequently, a combination of network pharmacology (NP) and Transcriptomic (RNA-Seq) methodology was used to assess the potential targets and mechanisms of action of BJJX on psoriasis. Finally, further validation was performed using flow cytometry, RT-qPCR, and western blotting. RESULTS BJJX significantly ameliorated IMQ-induced skin damage in psoriatic mice, reduced keratinocyte proliferation, and inhibited the levels of inflammatory factors (IL-23, IL-22, IL-17A, IL-6, IL-1β, and IL-8). NP predicts that BJJX may exert its therapeutic effects on psoriasis by modulating the IL-17 signaling pathway and Th17 cell differentiation. RNA-Seq analysis showed that BJJX regulated the expression of IL-17 pathway-related genes. Further experimental results demonstrated that BJJX treatment significantly reduced the mRNA expression of inflammatory factors CXCL2, CXCL3, MMP13, IL-1β, IL-23, IL-22, and IL-17A, as well as the proportion of Th17 cells. In addition, BJJX significantly inhibited the protein expression of JAK2 and STAT3. CONCLUSIONS BJJX attenuated IMQ-induced skin lesions in psoriasis mice by decreasing the expression of cytokines and chemokines mediated by the Th17/IL-17 axis. This study revealed, for the first time, the mechanism used by BJJX to treat psoriasis, providing a new paradigm for its pharmacological role in the clinical treatment of psoriasis.
Collapse
Affiliation(s)
- Yuping Lin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xiujuan Zhao
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Ziqing Yang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Zihan Dongfang
- School of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yongcheng Zeng
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chenghong Du
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Jiang Li
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xunqing Yin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Juan Xiao
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chunyan Hu
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Mei Huang
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Feng Huang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Xiaoling Yu
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| |
Collapse
|
5
|
Yu C, Wu H, Zhao D, Shi H. Echinocystic acid activates PPARγ to alleviate mannan-induced psoriasis and psoriatic arthritis in mice. Allergol Immunopathol (Madr) 2025; 53:52-58. [PMID: 40088022 DOI: 10.15586/aei.v53i2.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/30/2024] [Indexed: 03/17/2025]
Abstract
Previous studies have shown that echinocystic acid (EA) can reduce arthritis and skin damage, but the role of EA in psoriatic arthritis is unclear. This study aims to prove the role of EA in psoriatic arthritis, which was induced by intraperitoneal injection of mannan in C57BL/6J mice. The mice were divided into a control group, mannan group, mannan + EA (low-dose) group, and mannan + EA (high-dose) group. Joint tissue damage was scored, and pathological changes in joint tissue and ear skin damage were examined by HE staining. Pathway enrichment of EA drug targets was performed through the target enrichment website, and the mRNA and protein expression levels of pathway-related proteins in joint tissues and ears were verified using the PCR and western blot. The results show that injection of mannan into mice resulted in joint inflammatory infiltration and tissue damage, hyperkeratosis, and acanthosis of the ear skin, while these symptoms were alleviated after high-dose EA treatment. Pathway enrichment analysis showed that the EA drug treatment target is concentrated on the PPAR pathway. The mRNA and protein results showed that the mRNA and protein expression levels of peroxisome proliferator-activated receptor γ (PPARγ) in the joint tissues and ears of mice with psoriatic arthritis decreased, and the expression of PPARγ was activated after high-dose EA treatment. In conclusion, EA increases PPARγ expression and reduces joint and skin damage in mice with psoriatic arthritis.
Collapse
Affiliation(s)
- Chengwei Yu
- Department of Orthopedics, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Huiming Wu
- Department of Orthopedics, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Dongrui Zhao
- Department of Dermatology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China
| | - Huajie Shi
- Department of Dermatology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang Province, China;
| |
Collapse
|
6
|
Liang S, Wang K, Mao D, Ouyang Q, Lv X, Xie L, Zhu D. Curcumin alleviated dextran sulfate sodium-induced ulcerative colitis via inhibition of the Wnt/β-catenin signaling pathway and regulation of the differentiation of intestinal stem cells. Toxicol Appl Pharmacol 2025; 494:117175. [PMID: 39608729 DOI: 10.1016/j.taap.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
In this study, we investigated the regulatory role of curcumin in the differentiation of intestinal stem cells (ISCs) in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) model mice and explored whether this effect was mediated by the Wnt/β-catenin signaling pathway. We conducted experiments in DSS-induced UC model mice to observe changes in intestinal morphology through HE staining and detect the expression of key proteins in the Wnt/β-catenin signaling pathway. According to these findings, curcumin was found to have a significant impact on the differentiation of ISCs. These results indicated that curcumin inhibited the Wnt/β-catenin signaling pathway and restored ISC differentiation. The effects of curcumin on the Wnt/β-catenin signaling pathway were further confirmed using Wnt/β-catenin agonists. These findings provide a new perspective for understanding the behavior of ISCs in the context of inflammation and offer new insights into the development of novel therapeutic strategies and drugs for UC.
Collapse
Affiliation(s)
- Shaojie Liang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Dabin Mao
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510075, China.
| | - Dajian Zhu
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China.
| |
Collapse
|
7
|
Wang D, Tang W, Sun N, Cao K, Li Q, Li S, Zhang C, Zhu J, Zhu J. Uncovering the Mechanism of Scopoletin in Ameliorating Psoriasis-Like Skin Symptoms via Inhibition of PI3K/Akt/mTOR Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02188-y. [PMID: 39576591 DOI: 10.1007/s10753-024-02188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease, that always seriously decreases the patient's quality of life. To date, the drugs used to treat psoriasis have severe side effects and poor efficacy, making the development of new drugs urgent. Scopoletin (SCP), a coumarin component extracted from plants such as Artemisia indica and Arabidopsis thaliana, was reported to have anti-inflammatory and immunomodulatory effects. In this study, network pharmacology and molecular docking techniques were utilized to predict the potential possibilities and mechanism of SCP's therapeutic effects on psoriasis. It was shown that SCP may mainly affect interleukin-17 (IL-17), tumor necrosis factor (TNF) and phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, especially the key targets including TNF, Akt1, IL-6, epidermal growth factor receptor (EGFR) and heat shock protein 90 alpha family class A member 1 (HSP90AA1). Imiquimod (IMQ)-induced psoriasis-like mice were used to verify the therapeutic effects of SCP. We observed SCP could significantly alleviate psoriasis-like skin symptoms, improve the pathological changes, inhibit spleen enlargement and decrease the expression of inflammation factors in IMQ-induced mice. Besides, SCP could also inhibit the phosphorylation of PI3K, Akt, and mTOR, and the good docking activity of SCP with the three pathway proteins further proved SCP can treat psoriasis via PI3K/Akt/mTOR signaling pathway. In conclusion, SCP may be a potential drug for treating psoriasis and is worth further research.
Collapse
Affiliation(s)
- Dongna Wang
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Wenyan Tang
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Neng Sun
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Kaimei Cao
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Qinghuan Li
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Shuai Li
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, China
| | - Jianquan Zhu
- Shanghai Key Laboratory of Molecular Engineering for Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiali Zhu
- College of Pharmacy, Dali University, Dali, 671000, China.
| |
Collapse
|
8
|
Ebrahimi A, Mehrabi M, Miraghaee SS, Mohammadi P, Fatehi Kafash F, Delfani M, Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes - A systematic and mechanistic review. Int Immunopharmacol 2024; 138:112561. [PMID: 38941673 DOI: 10.1016/j.intimp.2024.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1β, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Dermatology, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Fatehi Kafash
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Delfani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Zhong Y, Zhao Y, Meng X, Wang F, Zhou L. Unveiling the Mechanism of Liangxue Siwu Decoction in Treating Rosacea Through Network Pharmacology and in-vitro Experimental Validation. J Inflamm Res 2024; 17:5685-5699. [PMID: 39219817 PMCID: PMC11365513 DOI: 10.2147/jir.s471097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Background Rosacea, a recurring dermatological disorder, demands effective therapeutic approaches. Traditional Chinese medicine, particularly Liangxue Siwu Decoction (LXSWD), has shown promise in managing inflammatory skin diseases, such as rosacea. This study focuses on uncovering LXSWD's specific effects on the inflammatory symptoms of rosacea. Objective Our research investigates LXSWD's therapeutic effectiveness in rosacea treatment and delves into its underlying mechanisms. Methods Network pharmacology was utilized to identify LXSWD's key components and their targets in rosacea management, which were then validated by molecular docking. An in vivo rosacea-like model in LL-37-induced mice was developed, subdividing them into control, model, and LXSWD groups. The LXSWD group received oral administration (25.0 g/kg/day) for six days before model induction. Post-treatment evaluations included skin tissue analyses to verify our network pharmacology predictions. Results Key active ingredients in LXSWD, such as quercetin, kaempferol, and luteolin, were identified alongside central target proteins like TNF and MMPs. Our molecular docking study confirmed the interactions between these ingredients and targets. Analyses through GO and KEGG pathways indicated LXSWD's role in mitigating inflammation, particularly influencing the TNF and IL-17 pathways. LXSWD treatment in vivo markedly alleviated LL-37-induced symptoms in mice, showing a marked reduction in inflammatory cytokines (p < 0.05) and modulation of crucial genes (p < 0.05). These results, supported by immunofluorescence analysis and Western blot, underline the modulatory effects of LXSWD on MMPs, offering significant protection against rosacea's inflammation alterations (p < 0.05). Conclusion Integrating network pharmacology, molecular docking, and in vivo experiments, this study elucidates LXSWD's potential mechanisms in rosacea treatment. It offers a novel theoretical framework for its clinical use in managing rosacea.
Collapse
Affiliation(s)
- Yun Zhong
- Department of Dermatology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yufei Zhao
- Department of Gastrointestinal Surgery, Laboratory of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Lei Zhou
- Department of Dermatology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Liu Z, Dang B, Li Z, Wang X, Liu Y, Wu F, Cao X, Wang C, Lin C. Baicalin attenuates acute skin damage induced by ultraviolet B via inhibiting pyroptosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112937. [PMID: 38743989 DOI: 10.1016/j.jphotobiol.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 μM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.
Collapse
Affiliation(s)
- Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xingsheng Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhan Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Guo Y, Mao W, Bai N, Jin L, Tang S, Lin X, Ni J, Liu X, Fu H, Shou Q. Integrated network pharmacological analysis revealed that Smilax glabra Roxb. alleviates IMQ-induced psoriatic skin inflammation through regulating T cell immune response. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117836. [PMID: 38301985 DOI: 10.1016/j.jep.2024.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is an autoimmune disease characterized by dysfunctional T cells and dysregulated immune responses. Smilax glabra Roxb. (SGR) is a formulation used in Traditional Chinese Medicine for the treatment of inflammatory skin disorders, including psoriasis. This study explores the scientific basis for its use by examining the effects of SGR on T cell differentiation and insulin receptor signaling, relevant pathways implicated in the pathophysiology of psoriasis. AIM OF THE STUDY This study investigates the therapeutic potential of SGR (a Chinese medicine) in psoriasis and its impact on T cell differentiation. MATERIALS AND METHODS An integrated network pharmacology and bioinformatics approach was employed to elucidate the mechanisms of SGR in regulating T cell differentiation. A psoriasis mouse model was utilized to evaluate the effects of SGR on T cell subsets. Immunohistochemistry and gene expression analyses were conducted to investigate the modulation of insulin receptor signaling pathways by SGR. RESULTS SGR treatment effectively reset the expression of various T cell subsets in the psoriasis mouse model, suggesting its ability to regulate T cell differentiation and immune function. Furthermore, SGR treatment inhibited insulin receptor signaling and downstream pathways, including PI3K/AKT and ERK, in psoriatic skin lesions. This indicates that SGR may exert its therapeutic effects through modulation of the insulin receptor signaling pathway. CONCLUSIONS This study provides novel insights into the therapeutic potential of SGR in psoriasis. By modulating T cell differentiation and targeting the insulin receptor signaling pathway, SGR holds promise as a potential treatment option for psoriasis.
Collapse
Affiliation(s)
- Yingxue Guo
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Weiye Mao
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Zhezhong Laboratory, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Ningning Bai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Lu Jin
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Shuiyan Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Xiaochen Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jianyu Ni
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Xia Liu
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huiying Fu
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Qiyang Shou
- Second Clinical Medical College, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Zhezhong Laboratory, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
12
|
Sun D, Du X, Cao X, Wu B, Li S, Zhao Y, Liu T, Xu L, Huang H. Neutrophil-Based Bionic Delivery System Breaks Through the Capillary Barrier of Liver Sinusoidal Endothelial Cells and Inhibits the Activation of Hepatic Stellate Cells. Mol Pharm 2024; 21:2043-2057. [PMID: 38471114 DOI: 10.1021/acs.molpharmaceut.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The capillarization of hepatic sinusoids resulting from the activation of hepatic stellate cells poses a significant challenge, impeding the effective delivery of therapeutic agents to the Disse space for liver fibrosis treatment. Therefore, overcoming these barriers and achieving efficient drug delivery to activated hepatic stellate cells (aHSCs) are pressing challenge. In this study, we developed a synergistic sequential drug delivery approach utilizing neutrophil membrane hybrid liposome@atorvastatin/amlisentan (NCM@AtAm) and vitamin A-neutrophil membrane hybrid liposome @albumin (VNCM@Bai) nanoparticles (NPs) to breach the capillary barrier for targeted HSC cell delivery. Initially, NCM@AtAm NPs were successfully directed to the site of hepatic fibrosis through neutrophil-mediated inflammatory targeting, resulting in the normalization of liver sinusoidal endothelial cells (LSECs) and restoration of fenestrations under the combined influence of At and Am. Elevated tissue levels of the p-Akt protein and endothelial nitric oxide synthase (eNOS) indicated the normalization of LSECs following treatment with At and Am. Subsequently, VNCM@Bai NPs traversed the restored LSEC fenestrations to access the Disse space, facilitating the delivery of Bai into aHSCs under vitamin A guidance. Lastly, both in vitro and in vivo results demonstrated the efficacy of Bai in inhibiting HSC cell activation by modulating the PPAR γ/TGF-β1 and STAT1/Smad7 signaling pathways, thereby effectively treating liver fibrosis. Overall, our designed synergistic sequential delivery system effectively overcomes the barrier imposed by LSECs, offering a promising therapeutic strategy for liver fibrosis treatment in clinical settings.
Collapse
Affiliation(s)
- Dan Sun
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xiao Du
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, China
| | - Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bingyu Wu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province 233030,China
| | - Yongmei Zhao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Zhu X, Xu Q, Liu Z, Cao Z, Li M, Wei J, Du L, Han C, Zhang C. Qingre Lishi Decoction ameliorates imiquimod-induced psoriasis-like skin lesions in SKH-1 mice by regulating the Treg-DC-Th17 axis and inhibiting MAPK-mediated DC maturation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116931. [PMID: 37473822 DOI: 10.1016/j.jep.2023.116931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis, an immune system disorder, is a chronic relapsing disease that cannot be cured. Chinese herbal medicine is gradually considered a promising alternative treatment for psoriasis due to its multiple effects, ability to target multiple pathways and lower toxicity. Qingre Lishi Decoction (QRLSD) is effective in clinical treatment. However, its related molecular mechanism remains to be elucidated. AIM OF THE STUDY The purpose of this research was to investigate the therapeutic impacts of Qingre Lishi Decoction on the murine model of psoriasis-like skin lesions induced by imiquimod and to reveal the underlying mechanisms. MATERIALS AND METHODS First, QRLSD was orally administered to evaluate its efficacy in an imiquimod (IMQ)-induced psoriasis mouse model. Further, UPLC-Q-TOF/MS was used to analyze the compounds of QRLSD. To investigate the mechanism and main targets of QRLSD for treating psoriasis, network pharmacology and molecular docking methods were utilized. Finally, To further confirm the anti-psoriasis target, dendritic cells derived from bone marrow (BMDCs) were cultured in vitro. RESULTS In vivo experiments found that QRLSD could regulate the ratio of dendritic cells, Treg cells, and Th17 cells in the body and inhibit inflammation and keratinocyte proliferation in psoriasis-like skin lesions. Further analysis showed that the p38-MAPK pathway is one of its main signaling pathways. In vitro experiments confirmed that QRLSD suppressed the maturation and activation of BMDCs via the p38-MAPK signaling pathway. CONCLUSIONS This study suggests that Qingre Lishi Decoction has the promise to be an effective formula for treating psoriasis through the p38-MAPK pathway, which can help break through the current limitations of psoriasis in clinical treatment.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Qingqing Xu
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Zhaoyang Liu
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Zhiqiang Cao
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Mingming Li
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Jingjing Wei
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Lingyun Du
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Changyu Han
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Chunhong Zhang
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
14
|
Kong Y, Jiang J, Huang Y, Liu X, Jin Z, Li L, Wei F, Liu X, Yin J, Zhang Y, Tong Q, Chen H. Narciclasine inhibits phospholipase A2 and regulates phospholipid metabolism to ameliorate psoriasis-like dermatitis. Front Immunol 2023; 13:1094375. [PMID: 36700214 PMCID: PMC9869703 DOI: 10.3389/fimmu.2022.1094375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Psoriasis is a common inflammatory skin disease recognized by the World Health Organization as "an incurable chronic, noninfectious, painful, disfiguring and disabling disease." The fact that metabolic syndrome (MetS) is the most common and important comorbidities of psoriasis suggests an important role of lipid metabolism in the pathogenesis of psoriasis. Narciclasine (Ncs) is an alkaloid isolated from the Amaryllidaceae plants. Its biological activities include antitumor, antibacterial, antiinflammatory, anti-angiogenic and promoting energy expenditure to improve dietinduced obesity. Here, we report that Ncs may be a potential candidate for psoriasis, acting at both the organismal and cellular levels. Methods The therapeutic effect of Ncs was assessed in IMQ-induced psoriasis-like mouse model. Then, through in vitro experiments, we explored the inhibitory effect of Ncs on HaCaT cell proliferation and Th17 cell polarization; Transcriptomics and lipidomics were used to analyze the major targets of Ncs; Single-cell sequencing data was used to identify the target cells of Ncs action. Results Ncs can inhibit keratinocyte proliferation and reduce the recruitment of immune cells in the skin by inhibiting psoriasis-associated inflammatory mediators. In addition, it showed a direct repression effect on Th17 cell polarization. Transcriptomic and lipidomic data further revealed that Ncs extensively regulated lipid metabolismrelated genes, especially the Phospholipase A2 (PLA2) family, and increased antiinflammatory lipid molecules. Combined with single-cell data analysis, we confirmed that keratinocytes are the main cells in which Ncs functions. Discussion Taken together, our findings indicate that Ncs alleviates psoriasiform skin inflammation in mice, which is associated with inhibition of PLA2 in keratinocytes and improved phospholipid metabolism. Ncs has the potential for further development as a novel anti-psoriasis drug.
Collapse
Affiliation(s)
- Yi Kong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zilin Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Fen Wei
- Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Hongxiang Chen, ; Qingyi Tong, ; Yonghui Zhang,
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Hongxiang Chen, ; Qingyi Tong, ; Yonghui Zhang,
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China,*Correspondence: Hongxiang Chen, ; Qingyi Tong, ; Yonghui Zhang,
| |
Collapse
|