1
|
Chagas MDSDS, Moragas Tellis CJ, Silva AR, Brito MADSM, Teodoro AJ, de Barros Elias M, Ferrarini SR, Behrens MD, Gonçalves-de-Albuquerque CF. Luteolin: A novel approach to fight bacterial infection. Microb Pathog 2025; 204:107519. [PMID: 40164399 DOI: 10.1016/j.micpath.2025.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Diseases caused by bacteria significantly impact public health, causing both acute and chronic issues, sequelae, and death. The problems get even more significant, considering the antimicrobial resistance. Bacterial resistance occurs when antibacterial drugs fail to kill the microbes, leading to the persistence of infection and pathogen spread in the host. Thus, the search for new molecules with antibacterial activity dramatically impacts human health. Natural products have proven to be a prosperous source of these agents. Among them, the flavonoids deserve to be highlighted. They are secondary metabolites, primarily involved in plant signaling and protection. Thus, they play an essential role in plant adaptation to the environment. Herein, we will focus on luteolin because it is commonly found in edible plants and has diverse pharmacological properties such as anti-inflammatory, anticancer, antioxidant, and antimicrobial. We will further explore the luteolin antibacterial activity, mechanisms of action, structure-activity relationship, and toxicity of luteolin. Thus, we have included reports of luteolin with antibacterial activity recently published, as well as focused on nanotechnology as a pivotal and helpful approach for the clinical use of luteolin. This review aims to foster future research on luteolin as a therapeutic agent for treating bacterial infection.
Collapse
Affiliation(s)
- Maria do Socorro Dos Santos Chagas
- Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Instituto de Biologia, UFF, Brazil; Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais para Saúde Pública, Farmanguinhos, FIOCRUZ, RJ, Brazil
| | | | - Adriana R Silva
- Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil
| | - Maria Alice Dos Santos Mascarenhas Brito
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil
| | - Anderson Junger Teodoro
- Laboratório de Biologia Celular e Nutrição (LABCEN) Universidade Federal Fluminense, UFF, Niteroi, Brazil
| | - Monique de Barros Elias
- Laboratório de Biologia Celular e Nutrição (LABCEN) Universidade Federal Fluminense, UFF, Niteroi, Brazil
| | - Stela Regina Ferrarini
- Laboratório de Nanotecnologia Farmacêutica, Universidade Federal do mato Grosso Campus Sinop - UFMT, Cuiabá, Brazil
| | - Maria Dutra Behrens
- Laboratório de Produtos Naturais para Saúde Pública, Farmanguinhos, FIOCRUZ, RJ, Brazil.
| | - Cassiano F Gonçalves-de-Albuquerque
- Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Instituto de Biologia, UFF, Brazil; Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, UNIRIO, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), UNIRIO, RJ, Brazil; Laboratório de Imunofarmacologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Biologia, UFF, Niterói, Brazil.
| |
Collapse
|
2
|
Zhao H, Wang X, Zou N, Yang Y, Yue P, Liu H, Kong Z, Ren J, Liu X, Liu J, Yin Z, Ding X, Li Y. Identification Mechanisms of Luteolin Improve the Storability and Resistance to Botrytis cinerea in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40490427 DOI: 10.1021/acs.jafc.5c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Tomatoes are an important vegetable/fruit consumed worldwide. The lack of effective storage methods causes high postharvest losses, which constrain tomato production. In this study, the potential of luteolin, an important flavonoid, as a preservative to increase the quality of tomato and Botrytis cinerea resistance during postharvest storage was assessed, and its extraction process was optimized. The results revealed that the rot rate and rot index of tomato treated with 100 mg/L luteolin were significantly reduced by about 34.76 and 32.68%, respectively, which better maintained the quality of the tomato during storage. Furthermore, luteolin demonstrated a notable inhibitory effect on ethylene production and effectively slowed the degradation process of nutrients and antioxidant-related substances. Experimental results indicated that its total antioxidant capacity was 3.6 times higher than that of the control group, thereby effectively delaying the senescence process in the tomato. Notably, luteolin strengthened the resistance of tomato to B. cinerea by triggering jasmonic acid-dependent defenses. These results suggest the potential of luteolin application in preserving tomato and provide valuable information for developing new preservation strategies and promoting sustainable postharvest practices in the food industry.
Collapse
Affiliation(s)
- Haipeng Zhao
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyu Wang
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Nan Zou
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Yang
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Pengjie Yue
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haoqi Liu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ziying Kong
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jian Ren
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaohan Liu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiazong Liu
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyi Yin
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xinhua Ding
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Li
- State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
3
|
Binmahfouz LS, Al Otaibi A, Binmahfouz NS, Abdel-Naim AB, Eid BG, Shaik RA, Bagher AM. Luteolin modulates the TGFB1/PI3K/PTEN axis in hormone-induced uterine leiomyomas: Insights from a rat model. Eur J Pharmacol 2025; 996:177439. [PMID: 40043870 DOI: 10.1016/j.ejphar.2025.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Uterine leiomyomas (UL), or fibroids, are non-cancerous tumors of the uterine smooth muscle, affecting approximately 70% of women of reproductive age. They are the most prevalent solid tumors in the gynecological tract and a major indication for hysterectomy. The pathogenesis of UL involves uterine inflammation, uncontrolled cell division, and suppressed apoptosis. This study evaluated the protective effects of luteolin, a flavonoid known for its anti-inflammatory and antioxidant properties, against diethylstilbestrol and progesterone-induced UL in female rats. Twenty-four female Wistar rats were divided into four groups: (1) control, (2) luteolin (10 mg/kg, PO), (3) UL (diethylstilbestrol 1.35 mg/kg + progesterone 1 mg/kg, SC), and (4) UL + luteolin (10 mg/kg). The treatment duration was five weeks. Histological analyses were performed using hematoxylin and eosin (H&E) staining and Masson's Trichrome staining to evaluate uterine architecture and fibrosis. Histological results demonstrated normal uterine architecture in the control and luteolin groups, with marked neoplastic cell proliferation and fibrosis in the UL group, significantly mitigated by luteolin treatment. Luteolin reduced uterine weights and exhibited antioxidant, anti-inflammatory, pro-apoptotic, and anti-proliferative effects. Immunohistochemical analysis revealed that luteolin significantly reduced α-SMA protein expression, suggesting its role in modulating fibrotic pathways by inhibiting TGF-β1 and PI3K and enhancing PTEN production. These findings highlight luteolin's potential as a non-invasive therapeutic option for UL and suggest the need for further clinical studies to establish its efficacy, optimize dosage, and evaluate its safety profile in humans.
Collapse
Affiliation(s)
- Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Al Otaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Care, Maternal and Children Specialist Hospital, Jeddah, 23816, Saudi Arabia
| | - Najlaa S Binmahfouz
- Department of Anatomical Histopathology, East Jeddah General Hospital, Jeddah, 22253, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Li M, Gu X, Yang J, Zhang C, Zhou Y, Huang P, Wang X, Zhang L, Jiang L, Zhai L, Yu M, Cheng G, Yang L. Luteolin: A potential therapeutic agent for respiratory diseases. Eur J Pharmacol 2025; 999:177699. [PMID: 40324574 DOI: 10.1016/j.ejphar.2025.177699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Acute lung injury, COVID-19, lung cancer, and asthma are a few of the respiratory conditions that are the main causes of morbidity and mortality worldwide. The increasing incidence and mortality rates have attracted significant attention to the prevention and treatment of these conditions. In recent years, there has been a renewed interest in utilizing naturally derived compounds as therapeutic agents for respiratory diseases. Luteolin (Lut), a flavonoid compound, possesses an extensive range of pharmacological characteristics, encompassing anti-inflammatory, antioxidative, antineoplastic, and antimicrobial activities. However, a comprehensive summary of Lut's therapeutic effects and mechanisms in respiratory diseases remains lacking. This review examines the physicochemical properties, toxicity, and avenues of Lut's action in respiratory ailments. Lut exerts therapeutic effects through pathways such as nuclear factor kappa-B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and pyroptosis, modulating key processes such as the suppression of inflammatory mediators, attenuation of oxidative assault, and induction of apoptosis in lung cancer cells. This review strives to provide critical realizations into respiratory disease therapeutics and contribute to the foundation for drug development.
Collapse
Affiliation(s)
- Meng Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinru Gu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaming Yang
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ce Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Zhou
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lulu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Lidong Zhai
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingyu Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China; Southwest United Graduate School, Kunming, 650504, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Liang Q, Liu X, Xu X, Chen Z, Luo T, Su Y, Xie C. Molecular mechanisms and therapeutic perspectives of luteolin on diabetes and its complications. Eur J Pharmacol 2025; 1000:177691. [PMID: 40311831 DOI: 10.1016/j.ejphar.2025.177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Extensive preclinical studies have established luteolin, a flavonoid with potent antidiabetic activity, as a therapeutic candidate for preventing and managing various diabetic complications including cardiomyopathy, nephropathy, and osteopathy. This systematic review evaluates current evidence regarding luteolin's antidiabetic potential. AIM OF THE STUDY This study evaluates luteolin's efficacy in diabetes management through evidence synthesis, while critically assessing current research challenges and translational opportunities. METHODS A comprehensive literature search was conducted across Pubmed, Embase, Web of Science, and Google Scholar databases, encompassing articles published between 2000 and 2024. RESULTS Luteolin is a naturally occurring flavonoid that has strong antidiabetic properties. It regulates intestinal microenvironmental homeostasis, lipogenesis and catabolism, and the absorption of carbohydrates. It also modulates nine diabetic complications by reducing inflammation, oxidative stress, apoptosis, and autophagy. Luteolin's potential nutritional and physiological benefits notwithstanding, attention must be directed immediately to its bioavailability, innovative formulations, safety assessment, synergistic effects, and optimal dosage and time for supplementation. In particular, clinical studies are needed to validate efficacy and safety and provide a reliable scientific basis. CONCLUSION Luteolin may act as a pleiotropic molecule targeting multiple signaling cascades to exert antidiabetic bioactivity.
Collapse
Affiliation(s)
- Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xin Xu
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Ting Luo
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yi Su
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072, China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
6
|
Zafar A, Alsaidan OA, Mujtaba MA, Sultana S. Development of Luteolin-Loaded Calcium Alginate and Gum Tragacanth Blend Microbeads for Oral Delivery: In Vitro Characterization, Antioxidant, Antimicrobial, and Anticancer Activity Against Colon Cancer Cell Line (HT-29). Assay Drug Dev Technol 2025. [PMID: 40183675 DOI: 10.1089/adt.2024.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The utilization of herbal bioactive compounds for health maintenance is now increasing the interest of consumers because it has therapeutic benefits. Luteolin (LLN) is a natural bioactive compound and is found in various plant sources. It has many pharmacological activities, i.e., anticancer, antidiabetic, antioxidant, anti-inflammatory, and antimicrobial. It has poor water solubility, leading to low dissolution, low bioavailability, and low therapeutic efficacy. The present research work was to develop the LLN-loaded gel microbeads using a combination of sodium alginate (SA) and gum tragacanth polymers to strengthen microbeads (BD) and enhance the therapeutic efficacy. The microbeads were prepared by using the ionotropic gelation method and evaluated by various physicochemical parameters, i.e., particle size, encapsulation efficiency, swelling index, FITR, and X-ray diffraction study. The optimized microbeads (LLNBD3) showed a 97.63 ± 3.12% yield, 845 ± 6.21 μm in size, and 78.54 ± 3.65% drug entrapment efficiency. The microbeads exhibited excellent swelling in intestinal pH (6.8) compared with an acidic medium (pH 1.2). The LLNBD3 exhibited a sustained release profile (89.23 ± 2.51% in 12 h) with first-order release kinetics (R2 = 0.9752) with the Fickian diffusion mechanism of drug release. The Fourier transform infrared spectra and X-ray diffractograms did not show any distinct peaks of LLN, revealing that the LLN was encapsulated into a microbeads matrix. The LLNBD3 showed significant antioxidant activity compared with pure LLN, confirmed by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method. In addition, it also showed remarkable in vitro anticancer activity against the colorectal cell line (HT-29) and antimicrobial activity against Staphylococcus aureus and Escherichia coli. The stability study demonstrated no significant change in swelling and release behavior. The finding concluded that tragacanth gum and SA microbeads could be promising drug carriers to improve the dissolution and oral delivery of herbal bioactive compounds and synthetic drugs.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Saheen Sultana
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhang R, Li W, Yang J, Fan X, Fan H, Li W. The Role of Luteolin in Inhibiting Prostaglandin-Endoperoxide Synthase 2 to Relieve Neointimal Hyperplasia in Arteriovenous Fistula. Adv Biol (Weinh) 2025; 9:e2400437. [PMID: 39960128 DOI: 10.1002/adbi.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/24/2025] [Indexed: 04/17/2025]
Abstract
This study aims to investigate the role and mechanism of luteolin in inflammation and phenotypic switch of vascular smooth muscle cells (VSMCs) in an arteriovenous fistula (AVF) model, for providing a potential agent for the prevention and therapy of AVF neointimal hyperplasia. In vivo, an AVF model is created in Sprague Dawley rats. In vitro, rat VSMCs are treated with platelet-derived growth factor-BB (PDGF-BB) to induce the phenotypic switch of VSMCs. Histological AVF changes are analyzed using hematoxylin-eosin. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) are utilized to detect prostaglandin-endoperoxide synthase 2 (PTGS2) expression. In vivo, luteolin inhibits neointima formation and reduces vimentin, α-SMA, MCP-1, MMP-9, TNF-α, and IL-6 levels. In vitro, under PDGF-BB treatment, luteolin inhibits proliferation and migration and reduces TNF-α, vimentin, α-SMA, MCP-1, MMP-9, and IL-6 levels in VSMCs. In rat AVF tissues, PTGS2 expression is increased. Luteolin inhibits PTGS2 expression in vivo and in vitro. PTGS2 overexpression reverses the role of luteolin in extracellular matrix protein expression, proliferation, inflammation, and migration in VSMCs treated with PDGF-BB. Altogether, in the AVF, luteolin inhibits proliferation, migration, the phenotypic switch of VSMCs, neointima formation, and the inflammatory response through inhibiting PTGS2 expression.
Collapse
Affiliation(s)
- Ruibin Zhang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, P. R. China
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Wei Li
- Department of hand and foot, Gaomi People's Hospital, Gaomi, Shandong, 261500, P. R. China
| | - Jihua Yang
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Xiujie Fan
- Department of Medical Experimental Diagnosis Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Huili Fan
- Department of Nephrology, Jinxiang Affiliated Hospital of Jining Medical University, Jining, Shandong, 272200, P. R. China
| | - Wei Li
- Department of Nephrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, 250014, P. R. China
| |
Collapse
|
8
|
Shi J, Dai L, Gu J, Liu L, Chen Y, Jiang Y, Yu Y. Luteolin alleviates olfactory dysfunction in eosinophilic chronic rhinosinusitis through modulation of the TLR4/NF-κB signaling pathway. Int Immunopharmacol 2025; 148:114189. [PMID: 39892170 DOI: 10.1016/j.intimp.2025.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVES Eosinophilic chronic rhinosinusitis (ECRS) is characterized by early, severe olfactory dysfunction and a high recurrence rate, with inadequate treatments. This article aims to elucidate the potential mechanisms by which luteolin may treat olfactory dysfunction in the context of ECRS. METHODS Thirty C57 BL/6 mice were randomly assigned to five groups: a control group and four experimental groups (ECRS, ECRS + Luteolin (Low, Medium, High Dose)). We conducted RNA sequencing, behavioral testing, ELISA, PCR, HE staining, Western blot analysis, and immunofluorescence staining. Additionally, human olfactory epithelial Cells (HOEPCs) were treated with Luteolin, TAK-242, QNZ, and Luteolin + LPS to investigate the underlying mechanisms. RESULTS Luteolin significantly reduced IL-4, IL-5, and IL-13 levels in the nasal lavage fluid (NLF) of ECRS mice, improving olfactory function and restoring OMP+ mature and Gap43+ immature olfactory sensory neurons (OSNs). RNA sequencing revealed the involvement of the TLR4/NF-κB pathway in ECRS-related olfactory dysfunction and luteolin's therapeutic effects. Luteolin reduced TLR4+ cells, P65 nuclear translocation, and decreased protein levels of IL-1β, TLR4, MyD88, p-P65, P65, and p-P38. The treatment also lowered OSNs cell apoptosis by decreasing the levels of cleaved caspase-3 and caspase-9 levels, and increasing Bcl-2 protein. Antioxidant enzymes SOD, CAT, and GSH-Px were elevated, while MDA levels decreased. In ECRS HOEPCs, luteolin's anti-apoptotic effects on OSNs were reversed by LPS-induced TLR4/NF-κB activation. CONCLUSIONS Luteolin ameliorates olfactory dysfunction associated with ECRS by modulating the TLR4/NF-κB signaling pathway. This modulation results in a reduction of TH2-type inflammation, oxidative stress, and apoptosis in OSNs.
Collapse
Affiliation(s)
- Jiali Shi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China; Department of Otorhinolaryngology, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University. Shanghai PR China.
| | - Li Dai
- Department of Otorhinolaryngology, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University. Shanghai PR China.
| | - Jun Gu
- Department of Otorhinolaryngology, Changshu Second People's Hospital Jiangsu PR China.
| | - Lu Liu
- Center for Drug Safety Evaluation and Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai PR China.
| | - Yunhua Chen
- Department of Otorhinolaryngology, Changshu Second People's Hospital Jiangsu PR China.
| | - Yiming Jiang
- Department of Otorhinolaryngology, Ren Ji Hospital, School of Medicine Shanghai Jiao Tong University. Shanghai PR China.
| | - Yafeng Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Soochow University Suzhou Jiangsu PR China.
| |
Collapse
|
9
|
Lv J, Song X, Luo Z, Huang D, Xiao L, Zou K. Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Front Pharmacol 2025; 16:1535555. [PMID: 40012626 PMCID: PMC11861102 DOI: 10.3389/fphar.2025.1535555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Luteolin is a flavonoid widely found in plants, including vegetables, botanical drugs, and fruits. Owing to its diverse pharmacological activities, such as anticancer, oxidative stress protection, anti-inflammatory, and neuron-preserving effects, luteolin has attracted attention in research and medicine. Luteolin exhibits therapeutic effects on various pulmonary disease models through multiple molecular mechanisms; these include inhibition of activation of the PI3K/Akt-mediated Nuclear Factor kappa-B (NF-κB) and MAPK signaling pathways, as well as the promotion of regulatory T cell (Treg) function and enhancement of alveolar epithelial sodium channel (ENaC) activity (alleviating inflammation and oxidative stress responses). Luteolin has therapeutic effects on chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary fibrosis, allergic asthma, and lung cancer. Luteolin, a naturally occurring polyphenol, is poorly water-soluble. The oral route may be ineffective because the gut poorly absorbs this type of flavonoid. Therefore, although luteolin exhibits significant biological activity, its clinical application is limited by challenges associated with its poor water solubility and low bioavailability, which are critical factors for its efficacy and pharmacological application. These challenges can be addressed by modifying the chemical structure and enhancing pharmaceutical formulations. We summarized the research advancements in improving the solubility and bioavailability of luteolin, as well as the effects of luteolin on various pulmonary diseases and their related mechanisms, with the aim of providing new ideas for researchers.
Collapse
Affiliation(s)
- Jialian Lv
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyue Song
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zixin Luo
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Duoqin Huang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Zhu X, Tian C, Yao D, Li S, Lv J, Chen Y, Huang X. Anti-inflammatory properties of ophioglonin derived from the fern Ophioglossum vulgatum L. via inactivating NF-κB and MAPK signaling pathways. FEBS Open Bio 2025; 15:122-139. [PMID: 39455284 PMCID: PMC11705509 DOI: 10.1002/2211-5463.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Medicinal plants contain bioactive compounds that have therapeutic effects on human health. Ophioglossum vulgatum L. is a representative species of the fern genus Ophioglossum that has anti-inflammatory properties as recognized in folk medicine. Herein, we performed a nitric oxide (NO) assay-guided screening in RAW264.7 cells to investigate the active components of the plant. We found that ophioglonin (OPN), a characteristic homoflavonoid of the genus Ophioglossum, is one of the bioactive components. Therefore, we performed a comparative analysis of the isolated compounds and found that OPN has effects similar to those of isolated dihydroquercetin and luteolin at the concentrations tested. The antioxidant and anti-inflammatory activities of OPN were extensively validated using lipopolysaccharide -stimulated RAW264.7 cells, mouse bone marrow-derived macrophages (BMDMs), and peritoneal exudate macrophages (PEMs). In vivo experiments with a carrageenan-induced mouse paw edema model further confirmed the anti-inflammatory effect of OPN. Additionally, we found that OPN and Ophioglossum vulgatum extracts inhibit the activation of signal transducers, NF-ĸB p65, IĸBα, ERK, p38, and JNK, consistent with the findings of pathway enrichment analysis. This work reinforces the anti-inflammatory properties of Ophioglossum vulgatum and indicates that OPN is a promising therapeutic agent for inflammation-associated disorders. Further clinical evaluations, including clinical trials, would be beneficial to validate the anti-inflammatory properties of OPN.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical CollegeChongqingChina
- Institute of Immunology, People's Liberation ArmyThird Military Medical UniversityChongqingChina
| | - Cheng Tian
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical CollegeChongqingChina
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery SystemChongqing Medical and Pharmaceutical CollegeChongqingChina
| | - Dan Yao
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical CollegeChongqingChina
| | - Siqi Li
- Institute of Immunology, People's Liberation ArmyThird Military Medical UniversityChongqingChina
| | - Junjiang Lv
- Science and Technology Industry Development Center, Chongqing Medical and Pharmaceutical CollegeChongqingChina
| | - Yongwen Chen
- Institute of Immunology, People's Liberation ArmyThird Military Medical UniversityChongqingChina
| | - Xiaoyong Huang
- Institute of Immunology, People's Liberation ArmyThird Military Medical UniversityChongqingChina
| |
Collapse
|
11
|
Russo A, Moy J, Khin M, Dorsey TR, Lopez Carrero A, Burdette JE. Loss of phosphatase and tensin homolog ( PTEN) increases Lysyl oxidase-like 2 ( LOXL2) expression enhancing the growth of fallopian tube epithelial cells as three-dimensional spheroids. CANCER PATHOGENESIS AND THERAPY 2025; 3:68-75. [PMID: 39872364 PMCID: PMC11763906 DOI: 10.1016/j.cpt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 01/30/2025]
Abstract
Background High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization. In murine oviductal epithelial (MOE) cells (the equivalent of human FTE) loss of PTEN results in the upregulation of transcripts associated with the extracellular matrix, with a specific focus on the elevation of lysyl oxidase-like 2 (LOXL2). Although LOXL2 is known to drive transformation and invasion in solid tumors and is associated with a poor prognosis in ovarian cancer, its specific role in the tumorigenesis of ovarian cancer originating from FTE remains unclear. Therefore, we aim to investigate whether LOXL2 mediates tumorigenesis from the fallopian tube epithelium. Methods In this study, we utilized clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CAS9) technology to delete LOXL2 in PTEN-deficient MOE cells to understand its role in mediating the oncogenic effects of PTEN loss. In addition, CRISPR-CAS9 was used to delete LOXL2 in OVCAR8 ovarian cancer cells. We monitored the changes in tumorigenic properties, such as migration, invasion, and growth of three-dimensional (3D) spheroids, to assess whether the loss of LOXL2 resulted in any changes. Results We found that a reduction in LOXL2 expression did not significantly change the migration or invasive capabilities of PTEN-depleted MOE or human ovarian cancer cells. However, we found that a reduction in LOXL2 expression resulted in a significant reduction in 3D MTS formation and survival in both lines. Conclusions These results reveal for the first time that PTEN loss in FTE cells increases LOXL2 expression through downregulation of Pax2, and LOXL2 deletion blocks 3D spheroid formation.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| | - Junlone Moy
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| | | | - Alfredo Lopez Carrero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2025; 126:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
13
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
14
|
Wu S, Wang ST, Chen GY, Hsu C, Chen YH, Tsai HY, Weng TI, Chen CL, Wu YF, Su NW. Monophosphate Derivatives of Luteolin and Apigenin as Efficient Precursors with Improved Oral Bioavailability in Rats. Antioxidants (Basel) 2024; 13:1530. [PMID: 39765858 PMCID: PMC11727040 DOI: 10.3390/antiox13121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Luteolin (Lut) and apigenin (Apn), flavones present in various edible plants, exhibit diverse antioxidant and pharmacological activities but have limited in vivo efficacy due to low water solubility and poor bioavailability. Here, we generated luteolin and apigenin monophosphate derivatives (LutPs and ApnPs) individually via microbial biotransformation. We then characterized their physicochemical properties and evaluated their in vitro and in vivo pharmacokinetics and bioavailability. Both LutPs and ApnPs showed enhanced solubility and dissolution and remained stable in simulated gastrointestinal conditions. Additionally, they efficiently reverted to parental forms via alkaline phosphatase in Caco-2 cells. Following oral administration in rats, LutPs and ApnPs exhibited higher plasma exposure to both aglycone and conjugated forms compared to Lut and Apn. Notably, the in vivo biotransformation of Apn to Lut was observed in all apigenin-related groups. Our study suggests that flavone monophosphates are effective alternatives with enhanced bioavailability, providing insights for the potential application of emerging bioactive nutraceuticals.
Collapse
Affiliation(s)
- Sydney Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; (S.W.); (C.H.); (H.-Y.T.)
| | - Shang-Ta Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (S.-T.W.); (C.-L.C.)
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Yuan Chen
- Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (T.-I.W.); (Y.-F.W.)
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; (S.W.); (C.H.); (H.-Y.T.)
| | - Yi-Hsin Chen
- Department of Biochemical Science & Technology, National Taiwan University, Taipei 106, Taiwan;
| | - Hsin-Ya Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; (S.W.); (C.H.); (H.-Y.T.)
| | - Te-I Weng
- Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (T.-I.W.); (Y.-F.W.)
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chien-Li Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; (S.-T.W.); (C.-L.C.)
| | - Yi-Fang Wu
- Forensic and Clinical Toxicology Center, National Taiwan University Hospital, Taipei 100, Taiwan; (G.-Y.C.); (T.-I.W.); (Y.-F.W.)
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; (S.W.); (C.H.); (H.-Y.T.)
- Department of Biochemical Science & Technology, National Taiwan University, Taipei 106, Taiwan;
| |
Collapse
|
15
|
Dai Y, Guan X, Guo F, Kong X, Ji S, Shang D, Bai C, Zhang Q, Zhao L. Botanical drugs and their natural compounds: a neglected treasury for inhibiting the carcinogenesis of pancreatic ductal adenocarcinoma. PHARMACEUTICAL BIOLOGY 2024; 62:853-873. [PMID: 39520705 PMCID: PMC11552278 DOI: 10.1080/13880209.2024.2421759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
CONTEXT Pancreatic ductal adenocarcinoma (PDAC), which is characterized by its malignant nature, presents challenges for early detection and is associated with a poor prognosis. Any strategy that can interfere with the beginning or earlier stage of PDAC greatly delays disease progression. In response to this intractable problem, the exploration of new drugs is critical to reduce the incidence of PDAC. OBJECTIVE In this study, we summarize the mechanisms of pancreatitis-induced PDAC and traditional Chinese medicine (TCM) theory and review the roles and mechanisms of botanical drugs and their natural compounds that can inhibit the process of pancreatitis-induced PDAC. METHODS With the keywords 'chronic pancreatitis', 'TCM', 'Chinese medicinal formulae', 'natural compounds', 'PDAC' and 'pancreatic cancer', we conducted an extensive literature search of the PubMed, Web of Science, and other databases to identify studies that effectively prevent PDAC in complex inflammatory microenvironments. RESULTS We summarized the mechanism of pancreatitis-induced PDAC. Persistent inflammatory microenvironments cause multiple changes in the pancreas itself, including tissue damage, abnormal cell differentiation, and even gene mutation. According to TCM, pancreatitis-induced PDAC is the process of 'dampness-heat obstructing the spleen and deficiency due to stagnation' induced by a variety of pathological factors. A variety of botanical drugs and their natural compounds, such as Chaihu classical formulae, flavonoids, phenolics, terpenoids, etc., may be potential drugs to interfere with the development of PDAC via reshaping the inflammatory microenvironment by improving tissue injury and pancreatic fibrosis. CONCLUSIONS Botanical drugs and their natural compounds show great potential for preventing PDAC in complex inflammatory microenvironments.
Collapse
Affiliation(s)
- Yunfei Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xi Guan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Kong
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of pharmacy, Dalian Medical University, Dalian, China
| | - Shuqi Ji
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changchuan Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Wang W, Liu Y, Cheng X, Yu Q, Hou S, Zhao J, Luo J. Fluorescence Enhancement of Nonemissive Monodeprotonated Luteolin in a Poly(vinyl alcohol) Film. J Phys Chem B 2024; 128:11328-11334. [PMID: 39484864 DOI: 10.1021/acs.jpcb.4c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Solid polymer matrixes can modulate the electronic states of embedded chromophores and have been widely used in flexible optoelectronic and optical materials. Luteolin is one of the most common natural flavonoids, and its neutral and monodeprotonated forms are nonemissive in aqueous solution induced by ultrafast excited-state proton transfer (ESPT) followed by nonradiative relaxation. In this study, we have incorporated luteolin into poly(vinyl alcohol) (PVA) films and studied their fluorescence behaviors. Neutral and one monodeprotonated luteolin coexist in the PVA film. Weak steady-state fluorescence of neutral luteolin peaking at about 440 nm is observed for the first time. In addition, the monodeprotonated luteolin in PVA film exhibits obvious fluorescence peaking at 500 nm, with a fluorescence quantum yield of as high as 0.4 and a fluorescence lifetime of as long as 2.4 ns. Time-dependent density functional theory calculations have determined that the ESPT of neutral luteolin is barrierless but that of monodeprotonated luteolin needs to surmount a barrier, explaining their distinct emission properties. These results indicate the modulation ability of the PVA film in both ground-state deprotonation and ESPT, broadening the application areas of the solid polymer matrix.
Collapse
Affiliation(s)
- Weili Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Yan Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaolan Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jie Zhao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
17
|
Pan B, Wu F, Lu S, Lu W, Cao J, Cheng F, Ou M, Chen Y, Zhang F, Wu G, Mei L. Luteolin-Loaded Hyaluronidase Nanoparticles with Deep Tissue Penetration Capability for Idiopathic Pulmonary Fibrosis Treatment. SMALL METHODS 2024:e2400980. [PMID: 39370583 DOI: 10.1002/smtd.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by sustained fibrotic lesions. Orally administered drugs usually fail to efficiently penetrate the interstitial tissue and reach the lesions, resulting in low treatment efficiency. Luteolin (Lut) is a natural flavonoid, active metabolites of which possess antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. In this study, a nano-formulation is developed by loading Lut into hyaluronidase nanoparticles (Lut@HAase). These Lut@HAase nanoparticles (NPs) exhibit small size and good stability, suitable for noninvasive inhalation and accumulation in the lungs, and hyaluronidase at the site of lesions can degrade hyaluronic acid in the interstitial tissue, enabling efficient penetration of Lut. Lut's therapeutic effect, when administered via NPs, is studied both in vitro (using MRC5 cells) and in vivo (using IPF mice models), and its anti-fibrotic properties are found to inhibit inflammation and eliminate reactive oxygen species. Conclusively, this study demonstrates that Lut@HAase can improve lung function and enhance survival rates while reducing lung damage with few abnormalities during IPF treatment.
Collapse
Affiliation(s)
- Bo Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fangping Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Wenwen Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Youyi Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fan Zhang
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guolin Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
18
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
20
|
Yang J, Chen J, Li Q, Xu RA, Chen X. Effects of three flavonoids on the metabolism of lenvatinib. Front Pharmacol 2024; 15:1438259. [PMID: 39228528 PMCID: PMC11368737 DOI: 10.3389/fphar.2024.1438259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Lenvatinib is a first-line therapy for the treatment of hepatocellular carcinoma (HCC), an active multi-target tyrosine kinase inhibitor (TKI). The interaction between Traditional Chinese Medicine (TCM) and chemicals has increasingly become a research hotspot. The objective of this study was to pinpoint the effects of three flavonoids on the metabolism of lenvatinib. Enzyme reaction system was established and optimized in vitro, and in vivo experiments were conducted in Sprague-Dawley (SD) rats, where the analytes were detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). We found that among three flavonoids, luteolin and myricetin had strong inhibitory effects on lenvatinib metabolism, with half-maximal inhibitory concentration (IC50) values of 11.36 ± 0.46 µM and 11.21 ± 0.81 µM in rat liver microsomes (RLM), respectively, and 6.89 ± 0.43 µM and 12.32 ± 1.21 µM in human liver microsomes (HLM), respectively. In Sprague-Dawley rats, the combined administration of lenvatinib and luteolin obviously expanded the exposure to lenvatinib; however, co-administered with myricetin did not have any changes, which may be due to the poor bioavailability of myricetin in vivo. Furthermore, the inhibitory type of luteolin on lenvatinib showed an un-competitive in RLM and a mixed in HLM. Collectively, flavonoids with liver protection, especially luteolin, may inhibit lenvatinib metabolism in vitro and in vivo.
Collapse
Affiliation(s)
- Jinzhao Yang
- Wenzhou People’s Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Zhang N, Chen P, Liang X, Sun J, Liu Q, Guan S, Wang Q. Luteolin targets the AGE-RAGE signaling to mitigate inflammation and ferroptosis in chronic atrophic gastritis. Aging (Albany NY) 2024; 16:10918-10930. [PMID: 38917486 PMCID: PMC11272119 DOI: 10.18632/aging.205969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Chronic atrophic gastritis (CAG) is a chronic inflammatory disease and precancerous lesion in stomach cancer. Abnormal activation cellular ferroptosis further damages gastric tissue, which is susceptible to inflammation. Luteolin has powerful anti-inflammatory and regulatory potential for cellular ferroptosis. We aimed to clarify the involvement of luteolin in inflammation and ferroptosis during CAG. Luteolin targets were searched to identify intersecting genes in the chronic atrophic gastritis disease database. The AGE-RAGE pathway is a potential target of luteolin for the treatment of chronic atrophic gastritis and a binding site between luteolin and RAGE was predicted through a computer simulation of molecular docking. We established a CAG rat model using N-methyl-N-nitro-N-nitroguanidine. The therapeutic effect of luteolin on CAG was detected using western blotting, qPCR, hematoxylin and eosin staining, lipid oxidation (MDA), and Fe2+ assays. Luteolin inhibited the AGE-RAGE signaling pathway and reduced the inflammatory response in gastric tissues. Additionally, luteolin downregulated the concentration of (MDA) and Fe2+, and CAG downregulated the expression levels of ACSL4 and NOX1 and upregulated the expression levels of FIH1 and GPX4 ferroptosis-related proteins, thus inhibiting the ferroptosis of gastric tissue cells, which had a therapeutic effect on CAG.
Collapse
Affiliation(s)
- Nailin Zhang
- Clinical Research Base Office, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Hebei, China
| | - Xiaoyan Liang
- Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Sun
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Hebei University of Chinese Medicine, Hebei, China
| | - Qiquan Liu
- Department of Spleen and Stomach Diseases, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
| | - Shengjiang Guan
- Pharmaceutical Department, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
| | - Qiao Wang
- Pharmacological Analysis Teaching and Research Department, Hebei Medical University, Hebei, China
| |
Collapse
|
22
|
Zhai M, Wu P, Liao Y, Wu L, Zhao Y. Polymer Microspheres and Their Application in Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:6556. [PMID: 38928262 PMCID: PMC11204375 DOI: 10.3390/ijms25126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (M.Z.); (P.W.); (Y.L.); (L.W.)
| |
Collapse
|
23
|
Zhu L, Liang R, Guo Y, Cai Y, Song F, Hu Y, Liu Y, Ge M, Zheng G. Incorporating Network Pharmacology and Experimental Validation to Identify Bioactive Compounds and Potential Mechanisms of Digitalis in Treating Anaplastic Thyroid Cancer. ACS OMEGA 2024; 9:15590-15602. [PMID: 38585091 PMCID: PMC10993403 DOI: 10.1021/acsomega.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal malignant tumors for which there is no effective treatment. There are an increasing number of studies on herbal medicine for treating malignant tumors, and the classic botanical medicine Digitalis and its active ingredients for treating heart failure and arrhythmias have been revealed to have significant antitumor efficacy against a wide range of malignant tumors. However, the main components of Digitalis and the molecular mechanisms of its anti-ATC effects have not been extensively studied. Here, we screened the main components and core targets of Digitalis and verified the relationship between the active components and targets through network pharmacology, molecular docking, and experimental validation. These experiments showed that the active ingredients of Digitalis inhibit ATC cell activity and lead to ATC cell death through the apoptotic pathway.
Collapse
Affiliation(s)
- Lei Zhu
- Suzhou
Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
- Department
of Head and Neck Surgery, the Fifth Hospital Affiliated to Wenzhou
Medical University, Lishui Central Hospital, 323020 Lishui City, Zhejiang Province, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Ruimin Liang
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yawen Guo
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yefeng Cai
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Department
of Thyroid Surgery, The First Affiliated
Hospital of Wenzhou Medical University, 325015 Wenzhou City, Zhejiang Province, China
| | - Fahuan Song
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yiqun Hu
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yunye Liu
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Minghua Ge
- Suzhou
Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Guowan Zheng
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| |
Collapse
|