1
|
Cao X, Cong P, Song Y, Liu Y, Xue C, Xu J. Promising mass spectrometry imaging: exploring microscale insights in food. Crit Rev Food Sci Nutr 2025:1-32. [PMID: 39817602 DOI: 10.1080/10408398.2025.2451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms. These two aspects synergistically enhanced MSI's analytical capabilities: QMSI enabled accurate relative and absolute quantification, providing reliable data for composition analysis, while super-resolution algorithms improved molecular spatial imaging resolution, facilitating biomarker and trace substance detection. MSI outperformed conventional methods in comprehensively exploring food functional factors, biomarker discovery, and monitoring processing/storage effects by discerning molecular species and their spatial distributions. However, challenges such as immature techniques, complex data processing, non-standardized instruments, and high costs existed. Future trends in instrument enhancement, multispectral integration, and data analysis improvement were expected to deepen our understanding of food chemistry and safety, highlighting MSI's revolutionary potential in food analysis and research.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Heffernan D, Pilz M, Klein M, Haack M, Race AM, Brück T, Qoura F, Strittmatter N. Screening of volatile organic compounds (VOCs) from liquid fungal cultures using ambient mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04769-6. [PMID: 37389599 PMCID: PMC10329071 DOI: 10.1007/s00216-023-04769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
The potential of fungi for use as biotechnological factories in the production of a range of valuable metabolites, such as enzymes, terpenes, and volatile aroma compounds, is high. Unlike other microorganisms, fungi mostly secrete secondary metabolites into the culture medium, allowing for easy extraction and analysis. To date, the most commonly used technique in the analysis of volatile organic compounds (VOCs) is gas chromatography, which is time and labour consuming. We propose an alternative ambient screening method that provides rapid chemical information for characterising the VOCs of filamentous fungi in liquid culture using a commercially available ambient dielectric barrier discharge ionisation (DBDI) source connected to a quadrupole-Orbitrap mass spectrometer. The effects of method parameters on measured peak intensities of a series of 8 selected aroma standards were optimised with the best conditions being selected for sample analysis. The developed method was then deployed to the screening of VOCs from samples of 13 fungal strains in three different types of complex growth media showing clear differences in VOC profiles across the different media, enabling determination of best culturing conditions for each compound-strain combination. Our findings underline the applicability of ambient DBDI for the direct detection and comparison of aroma compounds produced by filamentous fungi in liquid culture.
Collapse
Affiliation(s)
- Daniel Heffernan
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Melania Pilz
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Marco Klein
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Martina Haack
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Alan M Race
- Institute of Medical Bioinformatics and Biostatistics, University of Marburg, Marburg, Germany
| | - Thomas Brück
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Farah Qoura
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Strittmatter
- Department of Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany.
| |
Collapse
|
3
|
Ron I, Sharabi H, Zaltsman A, Leibman A, Hotoveli M, Pevzner A, Kendler S. Non-Contact, Continuous Sampling of Porous Surfaces for the Detection of Particulate and Adsorbed Organic Contaminations by Low-Temperature Plasma Coupled to Ion Mobility Spectrometer. SENSORS (BASEL, SWITZERLAND) 2023; 23:2253. [PMID: 36850851 PMCID: PMC9961393 DOI: 10.3390/s23042253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Chemical analysis of hazardous surface contaminations, such as hazardous substances, explosives or illicit drugs, is an essential task in security, environmental and safety applications. This task is mostly based on the collection of particles with swabs, followed by thermal desorption into a vapor analyzer, usually a detector based on ion mobility spectrometry (IMS). While this methodology is well established for several civil applications, such as border control, it is still not efficient enough for various conditions, as in sampling rough and porous surfaces. Additionally, the process of thermal desorption is energetically inefficient, requires bulky hardware and introduces device contamination memory effects. Low-temperature plasma (LTP) has been demonstrated as an ionization and desorption source for sample preparation-free analysis, mostly at the inlet of a mass spectrometer analyzer, and in rare cases in conjunction with an ion mobility spectrometer. Herein, we demonstrate, for the first time, the operation of a simple, low cost, home-built LTP apparatus for desorbing non-volatile analytes from various porous surfaces into the inlet of a handheld IMS vapor analyzer. We show ion mobility spectra that originate from operating the LTP jet on porous surfaces such as asphalt and shoes, contaminated with model amine-containing organic compounds. The spectra are in good correlation with spectra measured for thermally desorbed species. We verify through LC-MS analysis of the collected vapors that the sampled species are not fragmented, and can thus be identified by commercial IMS detectors.
Collapse
Affiliation(s)
- Izhar Ron
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hagay Sharabi
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Amalia Zaltsman
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Amir Leibman
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Mordi Hotoveli
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil & Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Alexander Pevzner
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Shai Kendler
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil & Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Department of Environmental Physics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
4
|
Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. MASS SPECTROMETRY REVIEWS 2023; 42:95-130. [PMID: 34128567 DOI: 10.1002/mas.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.
Collapse
Affiliation(s)
- Hanlu Yue
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Feiyao He
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- College of Life Sciences, Sichuan University, Chengdu, China
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
García-Rojas NS, Guillén-Alonso H, Martínez-Jarquín S, Moreno-Pedraza A, Soto-Rodríguez LD, Winkler R. Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS). Metabolites 2022; 12:185. [PMID: 35208258 PMCID: PMC8874637 DOI: 10.3390/metabo12020185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient ionisation mass spectrometry (AIMS) enables studying biological systems in their native state and direct high-throughput analyses. The ionisation occurs in the physical conditions of the surrounding environment. Simple spray or plasma-based AIMS devices allow the desorption and ionisation of molecules from solid, liquid and gaseous samples. 3D printing helps to implement new ideas and concepts in AIMS quickly. Here, we present examples of 3D printed AIMS sources and devices for ion transfer and manipulation. Further, we show the use of 3D printer parts for building custom AIMS sampling robots and imaging systems. Using 3D printing technology allows upgrading existing mass spectrometers with relatively low cost and effort.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
- Department of Biochemical Engineering, Nacional Technological Institute, Celaya 38010, Mexico
| | | | - Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Leonardo D. Soto-Rodríguez
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies (CINVESTAV) Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico; (N.S.G.-R.); (H.G.-A.); (A.M.-P.); (L.D.S.-R.)
| |
Collapse
|
6
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
7
|
Yan B, Murta T, Elia EA, Steven RT, Bunch J. Direct Tissue Mass Spectrometry Imaging by Atmospheric Pressure UV-Laser Desorption Plasma Postionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:429-435. [PMID: 33289553 DOI: 10.1021/jasms.0c00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) operated at atmospheric pressure has been shown to be a promising technique for mass spectrometry imaging of biological tissues at high spatial resolution. Recent studies have shown several orders of magnitude improvement in sensitivity afforded by coupling with a low-temperature plasma (LTP) for postionization. In this work we report the first results from "matrix-free" imaging using our atmospheric pressure (AP) transmission mode (TM) (MA)LDI source with LTP postionization. Direct MSI analysis of murine testis with no sample preparation after tissue sectioning enabled imaging of a range of lipid classes at pixel sizes of 25 μm. We compared results from the matrix-free methods with MALDI experiments in which the matrix was applied on top, underneath, or layered as a sandwich. The sandwich preparation was found to lead to ion yields approximately 2- or 3-fold higher than the other methods, indicating that the addition of a light absorbing matrix remains beneficial. Nonetheless, LDI methods confer a range of advantages, and the sensitivity improvements provided by postionization strategies are a promising step toward high-efficiency laser sampling under ambient conditions.
Collapse
Affiliation(s)
- Bin Yan
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Teresa Murta
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Efstathios A Elia
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Rory T Steven
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
8
|
|
9
|
Perez CJ, Bagga AK, Prova SS, Yousefi Taemeh M, Ifa DR. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:27-53. [PMID: 29698560 DOI: 10.1002/rcm.8145] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 05/18/2023]
Abstract
Ambient mass spectrometry (AMS)-based techniques are performed under ambient conditions in which the ionization and desorption occur in the open environment allowing the direct analysis of molecules with minimal or no sample preparation. A selected group of AMS techniques demonstrate imaging capabilities that can provide information about the localization of molecules on complex sample surfaces such as biological tissues. 2D, 3D, and multimodal imaging have unlocked an array of applications to systematically address complex problems in many areas of research such as drug monitoring, natural products, forensics, and cancer diagnostics. In the present review, we summarize recent advances in the field with respect to the implementation of new ambient ionization techniques and current applications in the last 5 years. In more detail, we mainly focus on imaging applications in topics related to animal whole bodies and tissues, single cells, cancer diagnostics and biomarkers, microbial cultures and co-cultures, plant and natural product metabolomics, and forensic applications. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Consuelo J Perez
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Aafreen K Bagga
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Shamina S Prova
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Maryam Yousefi Taemeh
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Demian R Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
10
|
Gerbig S, Neese S, Penner A, Spengler B, Schulz S. Real-Time Food Authentication Using a Miniature Mass Spectrometer. Anal Chem 2017; 89:10717-10725. [PMID: 28892367 DOI: 10.1021/acs.analchem.7b01689] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food adulteration is a threat to public health and the economy. In order to determine food adulteration efficiently, rapid and easy-to-use on-site analytical methods are needed. In this study, a miniaturized mass spectrometer in combination with three ambient ionization methods was used for food authentication. The chemical fingerprints of three milk types, five fish species, and two coffee types were measured using electrospray ionization, desorption electrospray ionization, and low temperature plasma ionization. Minimum sample preparation was needed for the analysis of liquid and solid food samples. Mass spectrometric data was processed using the laboratory-built software MS food classifier, which allows for the definition of specific food profiles from reference data sets using multivariate statistical methods and the subsequent classification of unknown data. Applicability of the obtained mass spectrometric fingerprints for food authentication was evaluated using different data processing methods, leave-10%-out cross-validation, and real-time classification of new data. Classification accuracy of 100% was achieved for the differentiation of milk types and fish species, and a classification accuracy of 96.4% was achieved for coffee types in cross-validation experiments. Measurement of two milk mixtures yielded correct classification of >94%. For real-time classification, the accuracies were comparable. Functionality of the software program and its performance is described. Processing time for a reference data set and a newly acquired spectrum was found to be 12 s and 2 s, respectively. These proof-of-principle experiments show that the combination of a miniaturized mass spectrometer, ambient ionization, and statistical analysis is suitable for on-site real-time food authentication.
Collapse
Affiliation(s)
- Stefanie Gerbig
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen , 35392 Giessen, Germany
| | - Stephan Neese
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen , 35392 Giessen, Germany
| | - Alexander Penner
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen , 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen , 35392 Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen , 35392 Giessen, Germany
| |
Collapse
|
11
|
Martínez-Jarquín S, Winkler R. Low-temperature plasma (LTP) jets for mass spectrometry (MS): Ion processes, instrumental set-ups, and application examples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Martínez-Jarquín S, Moreno-Pedraza A, Guillén-Alonso H, Winkler R. Template for 3D Printing a Low-Temperature Plasma Probe. Anal Chem 2016; 88:6976-80. [PMID: 27302654 DOI: 10.1021/acs.analchem.6b01019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Low-temperature plasma (LTP) ionization represents an emerging technology in ambient mass spectrometry. LTP enables the solvent-free direct detection of a broad range of molecules and mass spectrometry imaging (MSI). The low energy consumption and modest technical requirements of these ion sources favors their employment in mobile applications and as a means to upgrade existing mass analyzers. However, the broad adoption of LTP is hindered by the lack of commercial devices, and constructing personal devices is tricky. Improper setup can result in equipment malfunction or may cause serious damage to instruments due to strong electromagnetic fields or arcing. With this in mind, we developed a reproducible LTP probe, which is designed exclusively from commercial and 3D printed components. The plasma jet generated by the device has a diameter of about 200 μm, which is satisfactory for the ambient imaging of macroscopic samples. We coupled the 3D-LTP probe to an ion trap analyzer and demonstrated the functionality of the ion source by detecting organic and chemical compounds from pure reference standards, biological substances, and pharmaceutical samples. Molecules were primarily detected in their protonated form or as water/ammonium adducts. The identification of compounds was possible by standard collision-induced dissociation (CID) fragmentation spectra. The files necessary to reproduce the 3D parts are available from the project page ( http://lababi.bioprocess.org/index.php/3d-ltp ) under a dual license model, which permits reproduction of the probe and further community-driven development for noncommercial use ("peer production"). Our reproducible probe design thus contributes to a facilitated adaption and evolution of low-temperature plasma technologies in analytical chemistry.
Collapse
Affiliation(s)
- Sandra Martínez-Jarquín
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato , Irapuato, 36821, Mexico
| | - Abigail Moreno-Pedraza
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato , Irapuato, 36821, Mexico
| | - Héctor Guillén-Alonso
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato , Irapuato, 36821, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato , Irapuato, 36821, Mexico
| |
Collapse
|
13
|
Zhang W, Huang G. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1947-1953. [PMID: 26443392 DOI: 10.1002/rcm.7300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). METHODS Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. RESULTS Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. CONCLUSIONS LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, P.R. China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, P.R. China
| |
Collapse
|
14
|
MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum). Anal Bioanal Chem 2015; 407:5673-84. [PMID: 26007697 DOI: 10.1007/s00216-015-8744-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
In cartography, the combination of colour and contour lines is used to express a three-dimensional landscape on a two-dimensional map. We transferred this concept to the analysis of mass spectrometry imaging (MSI) data and developed a collection of R scripts for the efficient evaluation of .imzML archives in a four-step strategy: (1) calculation of the density distribution of mass-to-charge ratio (m/z) signals in the .imzML file and assembling of a pseudo-master spectrum with peak list, (2) automated generation of mass images for a defined scan range and subsequent visual inspection, (3) visualisation of individual ion distributions and export of relevant .mzML spectra and (4) creation of overlay graphics of ion images and photographies. The use of a Hue-Chroma-Luminance (HCL) colour model in MSI graphics takes into account the human perception for colours and supports the correct evaluation of signal intensities. Further, readers with colour blindness are supported. Contour maps promote the visual recognition of patterns in MSI data, which is particularly useful for noisy data sets. We demonstrate the scalability of MSI.R scripts by running them on different systems: on a personal computer, on Amazon Web Services (AWS) instances and on an institutional cluster. By implementing a parallel computing strategy, the execution speed for .imzML data scanning with image generation could be improved by more than an order of magnitude. Applying our MSI.R scripts ( http://www.bioprocess.org/MSI.R ) to low-temperature plasma (LTP)-MSI data shows the localisation of volatile and semi-volatile compounds in the cross-cut of a chilli (Capsicum annuum) fruit. The subsequent identification of compounds by gas and liquid chromatography coupled to mass spectrometry (GC-MS, LC-MS) proves that LTP-MSI enables the direct measurement of volatile organic compound (VOC) distributions from biological tissues.
Collapse
|
15
|
Spencer SE, Tyler CA, Tolocka MP, Glish GL. Low-Temperature Plasma Ionization-Mass Spectrometry for the Analysis of Compounds in Organic Aerosol Particles. Anal Chem 2015; 87:2249-54. [DOI: 10.1021/ac5038889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sandra E. Spencer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chelsea A. Tyler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Michael P. Tolocka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
16
|
Guo C, Tang F, Chen J, Wang X, Zhang S, Zhang X. Development of dielectric-barrier-discharge ionization. Anal Bioanal Chem 2014; 407:2345-64. [DOI: 10.1007/s00216-014-8281-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
17
|
Salter TLR, Bunch J, Gilmore IS. Importance of Sample Form and Surface Temperature for Analysis by Ambient Plasma Mass Spectrometry (PADI). Anal Chem 2014; 86:9264-70. [DOI: 10.1021/ac502363v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Josephine Bunch
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ian S. Gilmore
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| |
Collapse
|
18
|
Albert A, Shelley JT, Engelhard C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem 2014; 406:6111-27. [DOI: 10.1007/s00216-014-7989-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 01/23/2023]
|
19
|
Maldonado-Torres M, López-Hernández JF, Jiménez-Sandoval P, Winkler R. 'Plug and Play' assembly of a low-temperature plasma ionization mass spectrometry imaging (LTP-MSI) system. J Proteomics 2014; 102:60-5. [PMID: 24642210 DOI: 10.1016/j.jprot.2014.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 02/01/2023]
Abstract
Mass spectrometry imaging (MSI) is of high and growing interest in life science research, but the investment for necessary equipment is often prohibitive for small research groups. Therefore, we developed a basic MSI system from low cost 'Plug and Play' components, which are connected to the Universal Serial Bus (USB) of a standard computer. Our open source software OpenMZxy (http://www.bioprocess.org/openmzxy) enables automatic and manual sampling, as well as the recording of position data. For ionization we used a low-temperature plasma probe (LTP), coupled to a quadrupole mass analyzer. The current set-up has a practical resolution of 1mm, and a sampling area of 100×100mm, resulting in up to 10,000 sampling points. Our prototype is easy and economical to adopt for different types of mass analyzers. We prove the usability of the LTP-MSI system for macroscopic samples by imaging the distribution of metabolites in the longitudinal cross-cut of a chili (Capsicum annuum, 'Jalapeño pepper') fruit. The localization of capsaicin in the placenta could be confirmed. But additionally, yet unknown low molecular weight compounds were detected in defined areas, which underline the potential of LTP-MSI for the imaging of volatile and semi-volatile metabolites and for the discovery of new natural products. Biological significance Knowledge about the spatial distribution of metabolites, proteins, or lipids in a given tissue often leads to novel findings in medicine and biology. Therefore, mass spectrometry based imaging (MSI) is becoming increasingly popular in life science research. However, the investment for necessary equipment is often prohibitive for small research groups. We built a prototype with an ambient ionization source, which is easy and economical to adopt for different types of mass analyzers. Therefore, we hope that our system contributes to a broader use of mass spectrometry imaging for answering biological questions.
Collapse
Affiliation(s)
| | | | - Pedro Jiménez-Sandoval
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato, Mexico.
| |
Collapse
|
20
|
Bowfield A, Bunch J, Salter TL, Steven RT, Gilmore IS, Barrett DA, Alexander MR, McKay K, Bradley JW. Characterisation of a micro-plasma for ambient mass spectrometry imaging. Analyst 2014; 139:5430-8. [DOI: 10.1039/c4an01110d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A systematic characterisation and optimisation of parameters of a plasma-mediated ion source to achieve the best spatial resolution for MSI.
Collapse
Affiliation(s)
- Andrew Bowfield
- Department of Electrical Engineering and Electronics
- University of Liverpool
- L69 3GJ, UK
- National Physical Laboratory
- , UK
| | | | | | | | | | - Dave A. Barrett
- Centre for Analytical Bioscience and Laboratory of Biophysics
- Surface Analysis School of Pharmacy
- University of Nottingham
- , UK
| | - Morgan R. Alexander
- Centre for Analytical Bioscience and Laboratory of Biophysics
- Surface Analysis School of Pharmacy
- University of Nottingham
- , UK
| | - Kirsty McKay
- Department of Electrical Engineering and Electronics
- University of Liverpool
- L69 3GJ, UK
| | - James W. Bradley
- Department of Electrical Engineering and Electronics
- University of Liverpool
- L69 3GJ, UK
| |
Collapse
|