1
|
Villalba A, Brassington I, Smajdor A, Cutas D. Synthetic DNA and mitochondrial donation: no need for donor eggs? JOURNAL OF MEDICAL ETHICS 2025:jme-2024-110122. [PMID: 40335280 DOI: 10.1136/jme-2024-110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
Mitochondrial replacement therapy has been developed in order to prevent the transmission of mitochondrial mutations, yet it raises ethical concerns, particularly regarding the involvement of third-party DNA and the risks associated with donor procedures. This paper explores an alternative approach using synthetic DNA (synDNA) to construct mitochondrial organelles, thereby bypassing the need for donor oocytes and bypassing risks to donors. We argue that those who support mitochondrial replacement techniques as an ethically acceptable means of preventing the transmission of mitochondrial disease should consider the use of synthetic mitochondria as a preferable ethical alternative, should it prove technically viable. That this will be viable is more than we can demonstrate here. However, progress in synDNA technology suggests that it is not unreasonable to think that synthetic mitochondria creation is feasible, and perhaps even probable.
Collapse
Affiliation(s)
- Adrian Villalba
- Université Paris Cité, Paris, France
- University of Granada, Granada, Spain
- GIBIO- Bioethics Research Group, Health Department, International University of Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
2
|
Pankammoon P, Salinas MBS, Thitaram C, Sathanawongs A. The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives. Int J Mol Sci 2025; 26:3310. [PMID: 40244161 PMCID: PMC11989385 DOI: 10.3390/ijms26073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
Collapse
Affiliation(s)
- Peachanika Pankammoon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
| | - Marvin Bryan Segundo Salinas
- Department of Basic Veterinary Sciences, College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines;
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Sathanawongs
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Mayeur A, Magnan F, Mathieu S, Rubens P, Sperelakis Beedham B, Sonigo C, Steffann J, Frydman N. What importance do donors and recipients attribute to the nuclear DNA-related genetic heritage of oocyte donation? Hum Reprod 2024; 39:770-778. [PMID: 38420661 DOI: 10.1093/humrep/deae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION How do oocyte donors and recipients perceive the genetic link related to the transfer of nuclear DNA between donors and offspring? SUMMARY ANSWER Whether they are donors or recipients, individuals attach great importance to the transmission of their genetic heritage, since 94.5% would opt for the pronuclear transfer method to preserve this genetic link in the context of oocyte donation. WHAT IS KNOWN ALREADY Since 1983, the use of oocyte donation has increased worldwide. Performed in France since the late 1980s and initially offered to women with premature ovarian insufficiency, its indications have progressively expanded and now it is proposed in many indications to prevent the transmission of genetically inherited diseases. This has resulted in an increase in the waiting time for access to oocyte donation due to the difficulty in recruiting oocyte donors in French ART centres. Several articles have discussed how to fairly distribute donor oocytes to couples, but few have interviewed women in the general population to record their feelings about oocyte donation, as either the donor or recipient and the importance given to the genetic link between the oocyte donors and the children born. Mitochondrial replacement therapy (MRT) is a technique originally developed for women at risk of transmitting a mitochondrial DNA mutation. Recently, MRT has been considered for embryo arrest and oocyte rejuvenation as it could help females to reproduce with their own genetic material through the transfer of their oocyte nucleus into a healthy donor oocyte cytoplasm. STUDY DESIGN, SIZE, DURATION We conducted an opinion survey from January 2021 to December 2021, during which 1956 women completed the questionnaire. Thirteen participants were excluded from the analysis due to incomplete responses to all the questions. Consequently, 1943 women were included in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS We specifically developed a questionnaire for this study, which was created and distributed using the Drag'n Survey® software. The questionnaire consisted of 21 items presented alongside a video created with whiteboard animation software. The aim was to analyse whether certain factors, such as age, education level, marital status, number of children, use of ART for pregnancy, video viewing, and knowledge about oocyte donation, were associated with feelings towards oocyte donation, by using a univariate conditional logistic regression model. This statistical method was also used to assess whether women would be more inclined to consider oocyte donation with the pronuclear transfer technique rather than the whole oocyte donation. All parameters found to be statistically significant in the univariate analysis were subsequently tested in a multivariate model using logistic regression. MAIN RESULTS AND THE ROLE OF CHANCE Most women were concerned about the biological genetic contribution of the donated oocyte (94.8%). The most common reason for a women's reluctance to donate their oocytes was their unwillingness to pass on their genetic material (33.3%). Nearly 70% of women who were initially hesitant to donate their oocytes indicated that they would reconsider their decision if the oocyte donation was conducted using donated cytoplasm and the pronuclear transfer technique. Concomitantly, >75% of the respondents mentioned that it would be easier to receive a cytoplasm donation. The largest proportion of the population surveyed (94.5%) expressed their support for its legalization. LIMITATIONS, REASONS FOR CAUTION In this study, a substantial portion of the responses came from individuals with medical or paramedical backgrounds, potentially introducing a recruitment bias among potential donors. The rate of missing responses to the question regarding the desire to become an oocyte donor was 13.6%, while the question about becoming an oocyte cytoplasm donor had a missing response rate of 23%. These missing responses may introduce a bias in the interpretation of the data. WIDER IMPLICATIONS OF THE FINDINGS This study was the first to demonstrate that, for the French population studied, the combination of oocyte cytoplasm donation with pronuclear transfer could offer a promising approach to enhance the acceptance of oocyte donation for both the donor and the recipient. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used for this study. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- A Mayeur
- Service de Biologie de la Reproduction-CECOS, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
- Université de Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - F Magnan
- Service de Biologie de la Reproduction-CECOS, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
| | - S Mathieu
- École Pratique des Hautes Études (EPHE), Paris Sciences Lettres (PSL), GSRL UMR8582, Paris, France
| | - P Rubens
- Service de Médecine Génomique des Maladies rares, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Necker-Enfants Malades, Paris, France
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Paris, France
| | - B Sperelakis Beedham
- Service de Médecine Génomique des Maladies rares, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Necker-Enfants Malades, Paris, France
| | - C Sonigo
- Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Saclay, Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Antoine Béclère, Clamart, France
- France Université Paris Saclay, Inserm, Physiologie et physiopathologie endocrinienne, Le Kremlin-Bicêtre, France
| | - J Steffann
- Service de Médecine Génomique des Maladies rares, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Necker-Enfants Malades, Paris, France
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Paris, France
| | - N Frydman
- Service de Biologie de la Reproduction-CECOS, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
- Université de Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
4
|
Moorthy R, Bhattamisra SK, Pandey M, Mayuren J, Kow CS, Candasamy M. Mitochondria and diabetes: insights and potential therapies. Expert Rev Endocrinol Metab 2024; 19:141-154. [PMID: 38347803 DOI: 10.1080/17446651.2024.2307526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Type 2 diabetes (T2D) presents significant global health and economic challenges, contributing to complications such as stroke, cardiovascular disease, kidney dysfunction, and cancer. The current review explores the crucial role of mitochondria, essential for fuel metabolism, in diabetes-related processes. AREAS COVERED Mitochondrial deficits impact insulin-resistant skeletal muscles, adipose tissue, liver, and pancreatic β-cells, affecting glucose and lipid balance. Exercise emerges as a key factor in enhancing mitochondrial function, thereby reducing insulin resistance. Additionally, the therapeutic potential of mitochondrial uncoupling, which generates heat instead of ATP, is discussed. We explore the intricate link between mitochondrial function and diabetes, investigating genetic interventions to mitigate diabetes-related complications. We also cover the impact of insulin deficiency on mitochondrial function, the role of exercise in addressing mitochondrial defects in insulin resistance, and the potential of mitochondrial uncoupling. Furthermore, a comprehensive analysis of Mitochondrial Replacement Therapies (MRT) techniques is presented. EXPERT OPINION MRTs hold promise in preventing the transmission of mitochondrial disease. However, addressing ethical, regulatory, and technical considerations is crucial. Integrating mitochondrial-based treatments requires a careful balance between innovation and safety. Ethical dimensions and regulatory aspects of MRT are examined, emphasizing collaborative efforts for the responsible advancement of human health.
Collapse
Affiliation(s)
- Renupiriya Moorthy
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology, GITAM School of Pharmacy, Gandhi Institute of Technology and Management (GITAM Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Manish Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chia Siang Kow
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Li F, Zhu J, Liu J, Hu Y, Wu P, Zeng C, Lu R, Wu N, Xue Q. Targeting Estrogen Receptor Beta Ameliorates Diminished Ovarian Reserve via Suppression of the FOXO3a/Autophagy Pathway. Aging Dis 2024; 16:AD.2024.0221. [PMID: 38421826 PMCID: PMC11745447 DOI: 10.14336/ad.2024.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Diminished ovarian reserve (DOR) refers to a decrease in the number and/or quality of oocytes, leading to infertility, poor ovarian response and adverse pregnancy outcomes. Currently, the pathogenesis of DOR is largely unknown, and the efficacy of existing therapeutic methods is limited. Therefore, in-depth exploration of the mechanism underlying DOR is highly important for identifying molecular therapeutic targets for DOR. Our study showed that estrogen receptor beta (ERβ) mRNA and protein expression was upregulated in granulosa cells (GCs) from patients with DOR and in the ovaries of DOR model mice. Mechanistically, elevated ERβ promotes forkhead transcription factor family 3a (FOXO3a) expression, which contributes to autophagic activation in GCs. Activation of FOXO3a/autophagy signalling leads to decreased cell proliferation and increased cell apoptosis and ultimately leads to DOR. In a cyclophosphamide (Cy)-induced DOR mouse model, treatment with PHTPP, a selective ERβ antagonist, rescued fertility by restoring normal sex hormone secretion, estrus cycle duration, follicle development, oocyte quality and litter size. Taken together, these findings reveal a pathological mechanism of DOR based on ERβ overexpression and identify PHTPP as a potential therapeutic agent for DOR.
Collapse
Affiliation(s)
- Fangyuan Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jinchen Liu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Center, Peking University First Hospital, Beijing, China
| | - Peili Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ruihui Lu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ning Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Jibrilla M, Raji H, Okeke MI. Survey of attitude to human genome modification in Nigeria. J Community Genet 2024; 15:1-11. [PMID: 37995060 PMCID: PMC10857991 DOI: 10.1007/s12687-023-00689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Gene editing and mitochondrial replacement therapy (MRT) are biotechnologies used to modify the host nuclear and mitochondrial DNA, respectively. Gene editing is the modification of a region of the host genome using site-specific nucleases, in particular the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system. Heritable and somatic genome editing (HGE and SGE) are used in gene therapy. MRT is a technique used to substitute the defective mitochondria in the recipient embryo with a female donor healthy mitochondrion in order to prevent the inheritance of mothers' defective mitochondria resulting in the change of mitochondria of the entire generation to come. To evaluate the perception of the Nigerian citizens on human genome modification, two survey forms were created and distributed in-person and majorly online. There was a total of 268 responses, 188 from the public and 80 from health workers and bio-scientists. The results showed poor knowledge about gene editing and MRT by the Nigerian public, but its use to prevent and cure inherited diseases was supported. Morality and religion have great influence on the attitude of Nigerians towards genome modification, but the influence of religion and morality is not unequivocal. Multiple regression analysis of Nigerian public responses shows that gender (females), age (19-30 years), monthly income (NGN 0 to 30,000), and level of education (tertiary) are significantly associated with approval of human genome editing, but the survey of health workers and bio-scientists shows no significant association except for females who approve and Muslims who disapprove of human genome editing.
Collapse
Affiliation(s)
- Maryam Jibrilla
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, American University of Nigeria, 98 Lamido Zubairu Way, PMB, Yola, 2250, Adamawa State, Nigeria
| | - Hayatu Raji
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, American University of Nigeria, 98 Lamido Zubairu Way, PMB, Yola, 2250, Adamawa State, Nigeria
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, American University of Nigeria, 98 Lamido Zubairu Way, PMB, Yola, 2250, Adamawa State, Nigeria.
| |
Collapse
|
7
|
Wang K, Yao X, Lin SQ, Zhu XQ, Pan XH, Ruan GP. Cellular and molecular mechanisms of highly active mesenchymal stem cells in the treatment of senescence of rhesus monkey ovary. Stem Cell Res Ther 2024; 15:14. [PMID: 38191526 PMCID: PMC10775597 DOI: 10.1186/s13287-023-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Recent studies have shown that umbilical cord mesenchymal stem cells have an anti-aging effect in ovaries, but the cellular and molecular mechanisms of HA-MSC ovarian anti-aging remain to be studied. Therefore, we conducted a 10X Genomics single-nucleus transcriptome sequencing experiment on the ovaries of macaque monkeys after HA-MSC treatment. METHODS The results of cell subgroup classification were visualized by 10X Genomics single nuclear transcriptome sequencing. The aging model of hGCs was established, and the migration ability of the cells was determined after coculture of HA-MSCs and aging hGCs. The genes screened by single nuclear transcriptional sequencing were verified in vitro by qPCR. RESULTS Compared with the aging model group, the number of cell receptor pairs in each subgroup of the HA-MSC-treated group increased overall. Treatment with 200 μmol/L H2O2 for 48 h was used as the optimum condition for the induction of hGC senescence. After coculture of noncontact HA-MSCs with senescent hGCs, it was found that HA-MSCs can reverse the cell structure, proliferation ability, senescence condition, expression level of senescence-related genes, and expression level of key genes regulating the senescence pathway in normal hGCs. CONCLUSIONS HA-MSC therapy can improve the tissue structure and secretion function of the ovary through multiple cellular and molecular mechanisms to resist ovarian aging. In vitro validation experiments further supported the results of single-cell sequencing, which provides evidence supporting a new option for stem cell treatment of ovarian senescence.
Collapse
Affiliation(s)
- Kai Wang
- The Basic Medical Laboratory of 920, Hospital of Joint Logistics Support Force of PLA, Kunming, 650032, Yunnan, China
- Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiang Yao
- The Basic Medical Laboratory of 920, Hospital of Joint Logistics Support Force of PLA, Kunming, 650032, Yunnan, China
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan, China
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, 650032, Yunnan, China
| | - Shu-Qian Lin
- The Basic Medical Laboratory of 920, Hospital of Joint Logistics Support Force of PLA, Kunming, 650032, Yunnan, China
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan, China
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, 650032, Yunnan, China
| | - Xiang-Qing Zhu
- The Basic Medical Laboratory of 920, Hospital of Joint Logistics Support Force of PLA, Kunming, 650032, Yunnan, China
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan, China
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, 650032, Yunnan, China
| | - Xing-Hua Pan
- The Basic Medical Laboratory of 920, Hospital of Joint Logistics Support Force of PLA, Kunming, 650032, Yunnan, China.
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan, China.
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, 650032, Yunnan, China.
| | - Guang-Ping Ruan
- The Basic Medical Laboratory of 920, Hospital of Joint Logistics Support Force of PLA, Kunming, 650032, Yunnan, China.
- The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan, China.
- The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, Kunming, 650032, Yunnan, China.
| |
Collapse
|
8
|
Chin HL, Lai PS, Tay SKH. A clinical approach to diagnosis and management of mitochondrial myopathies. Neurotherapeutics 2024; 21:e00304. [PMID: 38241155 PMCID: PMC10903095 DOI: 10.1016/j.neurot.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stacey Kiat Hong Tay
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore.
| |
Collapse
|
9
|
Liang J, Huang F, Song Z, Tang R, Zhang P, Chen R. Impact of NAD+ metabolism on ovarian aging. Immun Ageing 2023; 20:70. [PMID: 38041117 PMCID: PMC10693113 DOI: 10.1186/s12979-023-00398-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senescence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address the many factors involved in this complicated procedure, which could improve fertility in women of advanced maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy related to ovarian aging.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Zhaoqi Song
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China.
| |
Collapse
|
10
|
Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int J Mol Sci 2022; 23:16053. [PMID: 36555691 PMCID: PMC9788331 DOI: 10.3390/ijms232416053] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuejia Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lei Jiao
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
11
|
Siristatidis C, Mantzavinos T, Vlahos N. Maternal spindle transfer for mitochondrial disease: lessons to be learnt before extending the method to other conditions? HUM FERTIL 2022; 25:838-847. [PMID: 33993847 DOI: 10.1080/14647273.2021.1925168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondrial diseases are a group of conditions attributed to mutations of specific genes that regulate mitochondrial function. Maternal spindle transfer (MST) has been proposed as a method to prevent the transmission of these diseases and utilisation of the technique resulted in the birth of a baby free of disease in 2017 in Mexico. Potential flaws in research governance and the associated criticism emerged from the expansion of MST to provide a potentially new assisted reproductive technique to overcome infertility problems characterised by repeated in vitro embryo development arrest caused by mitochondrial dysfunction and cytoplasmic deficiencies of the oocyte. This applied technique represents a good example of the need to strike "a balance between taking appropriate precautions and hampering innovation". The purpose of this article is to explore, through a comprehensive literature search, whether and how this process can evolve from an experimental method to treat a medical condition to a standard of care solution for certain types of infertility. We argue that a number of key issues should be considered before applying the technique more broadly. These include regulatory oversight, safety and efficacy, cost, implications for research, essential laboratory skills and oversight, as well as the care needs of patients and egg donors.
Collapse
Affiliation(s)
- Charalampos Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, "Aretaieio" University Hospital, Athens, Greece
| | - Themis Mantzavinos
- Scientific director of "Institute of Life" IVF Center, Iaso Maternity Hospital, Athens, Greece
| | - Nikos Vlahos
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, "Aretaieio" University Hospital, Athens, Greece
| |
Collapse
|
12
|
Early evidence of the artificial transfer/transplant of mitochondria to oocytes and zygotes by MitoCeption. Mitochondrion 2022; 65:102-112. [PMID: 35618256 DOI: 10.1016/j.mito.2022.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
Oocytes may carry mutations in their mitochondrial DNA (mtDNA) which affect fertility and embryo development leading to hereditary diseases or rejection. Mitochondrial replacement therapies (MRTs) such as polar body transfer, spindle transfer and pronuclear transfer, aim to change dysfunctional to normal mitochondria inside oocytes and zygotes resulting in healthier offspring. Even with promising results, MRTs techniques are invasive to oocytes and may negatively affect their viability and the success of the procedure. This article shows early evidence of the use of MitoCeption, a mitochondria transfer/transplant (AMT/T) technique to possibly induce the internalization of exogenous mitochondria in a dose-dependent manner to recipient oocytes in comparison to coincubation. By using human isolated mitochondria in a mix obtained from different donors we were able to identify their mtDNA in murine oocytes by qPCR. Fluorescence microscopy showed that exogenous and transferred mitochondria (MitoTracker ® Red) by MitoCeption were internalized in oocytes and zygotes (CellTracker® Green). After maintaining mitocepted zygotes to two-cell embryos, we transferred them to subrogate female mice and obtained healthy mice pups; however, without clear evidence of the maintenance of human mtDNA in the tissues of mice pups. These early results are puzzling, and they open the path to generate more research regarding the use of MitoCeption in comparison to coincubation in order to transfer mitochondria to oocytes using less invasive procedures.
Collapse
|
13
|
Therapeutic applications of mitochondrial transplantation. Biochimie 2022; 195:1-15. [DOI: 10.1016/j.biochi.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
|
14
|
van der Reest J, Nardini Cecchino G, Haigis MC, Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev 2021; 70:101378. [PMID: 34091076 DOI: 10.1016/j.arr.2021.101378] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
The oocyte is recognised as the largest cell in mammalian species and other multicellular organisms. Mitochondria represent a high proportion of the cytoplasm in oocytes and mitochondrial architecture is different in oocytes than in somatic cells, characterised by a rounder appearance and fragmented network. Although the number of mitochondria per oocyte is higher than in any other mammalian cell, their number and activity decrease with advancing age. Mitochondria integrate numerous processes essential for cellular function, such as metabolic processes related to energy production, biosynthesis, and waste removal, as well as Ca2+ signalling and reactive oxygen species (ROS) homeostasis. Further, mitochondria are responsible for the cellular adaptation to different types of stressors such as oxidative stress or DNA damage. When these stressors outstrip the adaptive capacity of mitochondria to restore homeostasis, it leads to mitochondrial dysfunction. Decades of studies indicate that mitochondrial function is multifaceted, which is reflected in the oocyte, where mitochondria support numerous processes during oocyte maturation, fertilization, and early embryonic development. Dysregulation of mitochondrial processes has been consistently reported in ageing and age-related diseases. In this review, we describe the functions of mitochondria as bioenergetic powerhouses and signal transducers in oocytes, how dysfunction of mitochondrial processes contributes to reproductive ageing, and whether mitochondria could be targeted to promote oocyte rejuvenation.
Collapse
|
15
|
Fujimine-Sato A, Kuno T, Higashi K, Sugawara A, Hiraga H, Takahashi A, Tanaka K, Yokoyama E, Shiga N, Watanabe Z, Yaegashi N, Tachibana M. Exploration of the Cytoplasmic Function of Abnormally Fertilized Embryos via Novel Pronuclear-Stage Cytoplasmic Transfer. Int J Mol Sci 2021; 22:ijms22168765. [PMID: 34445470 PMCID: PMC8395835 DOI: 10.3390/ijms22168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
In regular IVF, a portion of oocytes exhibit abnormal numbers of pronuclei (PN) that is considered as abnormal fertilization, and they are routinely discarded. However, it is known that abnormal ploidy still does not completely abandon embryo development and implantation. To explore the potential of cytoplasm from those abnormally fertilized oocytes, we developed a novel technique for the transfer of large cytoplasm between pronuclear-stage mouse embryos, and assessed its impact. A large volume of cytoplast could be efficiently transferred in the PN stage using a novel two-step method of pronuclear-stage cytoplasmic transfer (PNCT). PNCT revealed the difference in the cytoplasmic function among abnormally fertilized embryos where the cytoplasm of 3PN was developmentally more competent than 1PN, and the supplementing of fresh 3PN cytoplasm restored the impaired developmental potential of postovulatory “aged” oocytes. PNCT-derived embryos harbored significantly higher mitochondrial DNA copies, ATP content, oxygen consumption rate, and total cells. The difference in cytoplasmic function between 3PN and 1PN mouse oocytes probably attributed to the proper activation via sperm and may impact subsequent epigenetic events. These results imply that PNCT may serve as a potential alternative treatment to whole egg donation for patients with age-related recurrent IVF failure.
Collapse
Affiliation(s)
- Ayako Fujimine-Sato
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Kuno
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Higashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Atsushi Sugawara
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Hiroaki Hiraga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Aiko Takahashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Keiko Tanaka
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Emi Yokoyama
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naomi Shiga
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masahito Tachibana
- Department of Obstetrics and Gynecology, Tohoku University Hospital, Sendai 980-8574, Japan; (A.F.-S.); (T.K.); (K.H.); (A.S.); (H.H.); (A.T.); (K.T.); (E.Y.); (N.S.); (Z.W.); (N.Y.)
- Correspondence: ; Tel.: +81-22-717-7253; Fax: +81-22-717-7258
| |
Collapse
|
16
|
Fu L, Luo YX, Liu Y, Liu H, Li HZ, Yu Y. Potential of Mitochondrial Genome Editing for Human Fertility Health. Front Genet 2021; 12:673951. [PMID: 34354734 PMCID: PMC8329452 DOI: 10.3389/fgene.2021.673951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes vital proteins and RNAs for the normal functioning of the mitochondria. Mutations in mtDNA leading to mitochondrial dysfunction are relevant to a large spectrum of diseases, including fertility disorders. Since mtDNA undergoes rather complex processes during gametogenesis and fertilization, clarification of the changes and functions of mtDNA and its essential impact on gamete quality and fertility during this process is of great significance. Thanks to the emergence and rapid development of gene editing technology, breakthroughs have been made in mitochondrial genome editing (MGE), offering great potential for the treatment of mtDNA-related diseases. In this review, we summarize the features of mitochondria and their unique genome, emphasizing their inheritance patterns; illustrate the role of mtDNA in gametogenesis and fertilization; and discuss potential therapies based on MGE as well as the outlook in this field.
Collapse
Affiliation(s)
- Lin Fu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, FICS, Shenzhen, China
| | - Hui Liu
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hong-Zhen Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Sfakianoudis K, Rapani A, Grigoriadis S, Retsina D, Maziotis E, Tsioulou P, Giannelou P, Pantos K, Koutsilieris M, Vlahos N, Mastorakos G, Simopoulou M. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? Cell Transplant 2021; 29:963689720926154. [PMID: 32686983 PMCID: PMC7563844 DOI: 10.1177/0963689720926154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian insufficiency is described as a multifaceted issue typically encountered in the field of assisted reproduction. The three main identified diagnoses of ovarian insufficiency include premature ovarian failure (POF), poor ovarian response (POR), and advanced maternal age (AMA). Patient heterogeneity in the era of individualized medicine drives research forward leading to the emergence of novel approaches. This plethora of innovative treatments in the service of adequately managing ovarian insufficiency is called to undertake the challenge of addressing infertile patients exploring their reproductive options. This review provides an all-inclusive presentation and critical analysis on novel treatments that have not achieved routine clinical practice status yet, but have recently emerged as promising. In light of the lack of randomized controlled trials conveying safety and efficiency, clinicians are left puzzled in addressing the "how" and "for whom" these approaches may be beneficial. From ovarian injection employing platelet-rich plasma (PRP) or stem cells to artificial gametes and ovaries, ovarian transplantation, and mitochondrial replacement therapy, this descriptive review provides insight toward assisting the practitioner in decision making regarding these cutting-edge treatments. Biological mechanisms, invasiveness levels, efficiency, as well as possible complications, the current status along with bioethical concerns are discussed in the context of identifying future optimal treatment.
Collapse
Affiliation(s)
| | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Retsina
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Unit of Endocrinology, Diabetes Mellitus and Metabolism, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petroula Tsioulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polina Giannelou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Vlahos
- Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Assisted Reproduction Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) Syndrome: Frequency, Clinical Features, Imaging, Histopathologic, and Molecular Genetic Findings in a Third-level Health Care Center in Mexico. Neurologist 2021; 26:143-148. [PMID: 34190208 DOI: 10.1097/nrl.0000000000000331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, is a multisystemic entity of mitochondrial inheritance. To date, there is no epidemiological information on MELAS syndrome in Mexico. CASE SERIES A retrospective, cross-sectional design was employed to collect and analyze the data. The clinical records of patients with mitochondrial cytopathies in the period ranging from January 2018 to March 2020 were reviewed. Patients who met definitive Yatsuga diagnostic criteria for MELAS syndrome were included to describe frequency, clinical, imaging, histopathologic, and molecular studies. Of 56 patients diagnosed with mitochondrial cytopathy, 6 patients met definitive Yatsuga criterion for MELAS (10.7%). The median age at diagnosis was 34 years (30 to 34 y), 2 females and the median time from onset of symptoms at diagnosis 3.5 years (1 to 10 y). The median of the number of stroke-like episodes before the diagnosis was 3 (range, 2 to 3). The main findings in computed tomography were basal ganglia calcifications (33%), whereas in magnetic resonance imaging were a lactate peak in the spectroscopy sequence in 2 patients. Five patients (84%) had red-ragged fibers and phantom fibers in the Cox stain in the muscle biopsy. Four patients (67%) had presence of 3243A>G mutation in the mitochondrial MT-TL1 gene. One patient died because of status epilepticus. CONCLUSIONS MELAS syndrome represents a common diagnostic challenge for clinicians, often delaying definitive diagnosis. It should be suspected in young patients with stroke of undetermined etiology associated with other systemic and neurological features.
Collapse
|
19
|
mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life (Basel) 2021; 11:life11070633. [PMID: 34209862 PMCID: PMC8307225 DOI: 10.3390/life11070633] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is predominately uniparentally transmitted. This results in organisms with a single type of mtDNA (homoplasmy), but two or more mtDNA haplotypes have been observed in low frequency in several species (heteroplasmy). In this review, we aim to highlight several aspects of heteroplasmy regarding its origin and its significance on mtDNA function and evolution, which has been progressively recognized in the last several years. Heteroplasmic organisms commonly occur through somatic mutations during an individual’s lifetime. They also occur due to leakage of paternal mtDNA, which rarely happens during fertilization. Alternatively, heteroplasmy can be potentially inherited maternally if an egg is already heteroplasmic. Recent advances in sequencing techniques have increased the ability to detect and quantify heteroplasmy and have revealed that mitochondrial DNA copies in the nucleus (NUMTs) can imitate true heteroplasmy. Heteroplasmy can have significant evolutionary consequences on the survival of mtDNA from the accumulation of deleterious mutations and for its coevolution with the nuclear genome. Particularly in humans, heteroplasmy plays an important role in the emergence of mitochondrial diseases and determines the success of the mitochondrial replacement therapy, a recent method that has been developed to cure mitochondrial diseases.
Collapse
|
20
|
Pereira CV, Gitschlag BL, Patel MR. Cellular mechanisms of mtDNA heteroplasmy dynamics. Crit Rev Biochem Mol Biol 2021; 56:510-525. [PMID: 34120542 DOI: 10.1080/10409238.2021.1934812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise de novo. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.
Collapse
Affiliation(s)
- Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, Tsui KH. The Molecular Regulation in the Pathophysiology in Ovarian Aging. Aging Dis 2021; 12:934-949. [PMID: 34094652 PMCID: PMC8139203 DOI: 10.14336/ad.2020.1113] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
The female reproductive system is of great significance to women’s health. Aging of the female reproductive system occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With an increase in life expectancy worldwide, reproductive aging has gradually become a key health issue among women. Therefore, an adequate understanding of the causes and molecular mechanisms of ovarian aging is essential towards the inhibition of age-related diseases and the promotion of health and longevity in women. In general, women begin to experience a decline in ovarian function around the age of 35 years, which is mainly manifested as a decrease in the number of ovarian follicles and the quality of oocytes. Studies have revealed the occurrence of mitochondrial dysfunction, reduced DNA repair, epigenetic changes, and metabolic alterations in the cells within the ovaries as age increases. In the present work, we reviewed the possible factors of aging-induced ovarian insufficiency based on its clinical diagnosis and performed an in-depth investigation of the relevant molecular mechanisms and potential targets to provide novel approaches for the effective improvement of ovarian function in older women.
Collapse
Affiliation(s)
- Chia-Jung Li
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Te Lin
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hsiao-Wen Tsai
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chyi-Uei Chern
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- 4Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- 3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,5Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,6Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,7Female Cancer Foundation, Taipei, Taiwan
| | - Kuan-Hao Tsui
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,8Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
22
|
Belli M, Palmerini MG, Bianchi S, Bernardi S, Khalili MA, Nottola SA, Macchiarelli G. Ultrastructure of mitochondria of human oocytes in different clinical conditions during assisted reproduction. Arch Biochem Biophys 2021; 703:108854. [PMID: 33794190 DOI: 10.1016/j.abb.2021.108854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Infertility affects around 8% of couples with a slight change in percentage in the last years. Despite the significant efforts made in Assisted Reproductive Technologies (ARTs) in handling this disorder, oocyte quality remains a crucial factor for a positive outcome. A better understanding of the dynamics underlying oocyte maturation, fertilization, and embryo development remains one of the main areas for progress in the ARTs field. Mitochondria are believed to play an essential role in these processes. Mitochondria have a crucial part in producing energy for oocyte maturation and embryo development throughout precise cellular functions comprising Ca2+ homeostasis regulation, glycolysis, amino acid and fatty acid metabolism, and regulation of apoptosis. Recent studies suggest that mitochondrial structure, content, and function may be related to oocyte competence, embryo viability, and implantation success during ARTs. Their defects could lead to low fertilization rates and embryonic development failure. This review aimed to provide an overview of the available literature data surrounding the correlation between changes at ultrastructural level of mitochondria or correlated-mitochondrial aggregates and oocyte quality and ARTs treatments. Our reported data demonstrated that oocyte mitochondrial ultrastructural alterations could be partial or complete recovery during the early embryo stages. However, these changes could persist as quiescent during the pre-implantation embryo development, causing abnormalities that become evident only during fetal and postnatal life. These factors led to consider the mitochondria as a crucial marker of oocyte and embryo quality, as well as a strategic target for further prospective therapeutical approaches.
Collapse
Affiliation(s)
- Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161, Rome, Italy.
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
23
|
Christodoulaki A, Boel A, Tang M, De Roo C, Stoop D, Heindryckx B. Prospects of Germline Nuclear Transfer in Women With Diminished Ovarian Reserve. Front Endocrinol (Lausanne) 2021; 12:635370. [PMID: 33692760 PMCID: PMC7937897 DOI: 10.3389/fendo.2021.635370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diminished ovarian reserve (DOR) is associated with a reduced quantity and quality of the retrieved oocytes, usually leading to poor reproductive outcomes which remain a great challenge for assisted reproduction technology (ART). Women with DOR often have to seek for oocyte donation, precluding genetically related offspring. Germline nuclear transfer (NT) is a novel technology in ART that involves the transfer of the nuclear genome from an affected oocyte/zygote of the patient to the cytoplast of an enucleated donor oocyte/zygote. Therefore, it offers opportunities for the generation of genetically related embryos. Currently, although NT is clinically applied only in women with serious mitochondrial DNA disorders, this technology has also been proposed to overcome certain forms of female infertility, such as advanced maternal age and embryo developmental arrest. In this review, we are proposing the NT technology as a future treatment option for DOR patients. Strikingly, the application of different NT strategies will result in an increase of the total number of available reconstituted embryos for DOR patients.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Maoxing Tang
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
24
|
Tesarik J, Galán-Lázaro M, Mendoza-Tesarik R. Ovarian Aging: Molecular Mechanisms and Medical Management. Int J Mol Sci 2021; 22:1371. [PMID: 33573050 PMCID: PMC7866420 DOI: 10.3390/ijms22031371] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
This is a short review of the basic molecular mechanisms of ovarian aging, written with a particular focus on the use of this data to improve the diagnostic and therapeutic protocols both for women affected by physiological (age-related) ovarian decay and for those suffering premature ovarian insufficiency. Ovarian aging has a genetic basis that conditions the ovarian activity via a plethora of cell-signaling pathways that control the functions of different types of cells in the ovary. There are various factors that can influence these pathways so as to reduce their efficiency. Oxidative stress, often related to mitochondrial dysfunction, leading to the apoptosis of ovarian cells, can be at the origin of vicious circles in which the primary cause feeds back other abnormalities, resulting in an overall decline in the ovarian activity and in the quantity and quality of oocytes. The correct diagnosis of the molecular mechanisms involved in ovarian aging can serve to design treatment strategies that can slow down ovarian decay and increase the quantity and quality of oocytes that can be obtained for an in vitro fertilization attempt. The available treatment options include the use of antioxidants, melatonin, growth hormones, and mitochondrial therapies. All of these treatments have to be considered in the context of each couple's history and current clinical condition, and a customized (patient-tailored) treatment protocol is to be elaborated.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen Clinic, 18006 Granada, Spain; (M.G.-L.); (R.M.-T.)
| | | | | |
Collapse
|
25
|
Brenner CA. Genetic ethics and mtDNA replacement techniques. New Bioeth 2021; 27:3-18. [PMID: 33472558 DOI: 10.1080/20502877.2021.1876204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The United Kingdom parliament made history in 2015 when they voted to allow the use of mitochondrial (mtDNA) replacement techniques. Mitochondrial diseases are genetically inherited and currently, the only known cure is replacement therapies. However, most other countries have been slow to adopt policy changes that allow for mtDNA replacement due to the ethical challenges of the techniques. While there are ethical challenges concerning mtDNA replacement, there is a need to address these challenges and allow these techniques in the US to provide treatment for individuals affected. This paper first addresses mitochondrial diseases and replacement techniques currently used and analyzes ethical challenges related to the interventions, such as safety, efficacy, and contributed genetic material from three individuals. This paper then addresses how the ethical principles, beneficence, nonmaleficence, autonomy and justice support mtDNA replacement. Suggestions on how the US can allow mtDNA replacement by adopting similar policy changes to the UK are provided, as well as additional measures to protect patients. Given the rate of individuals affected, severity of mitochondrial diseases, and lack of treatment options available, it's important to address how to overcome ethical challenges and policy barriers.
Collapse
|
26
|
Sendra L, García-Mares A, Herrero MJ, Aliño SF. Mitochondrial DNA Replacement Techniques to Prevent Human Mitochondrial Diseases. Int J Mol Sci 2021; 22:E551. [PMID: 33430493 PMCID: PMC7827455 DOI: 10.3390/ijms22020551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Mitochondrial DNA (mtDNA) diseases are a group of maternally inherited genetic disorders caused by a lack of energy production. Currently, mtDNA diseases have a poor prognosis and no known cure. The chance to have unaffected offspring with a genetic link is important for the affected families, and mitochondrial replacement techniques (MRTs) allow them to do so. MRTs consist of transferring the nuclear DNA from an oocyte with pathogenic mtDNA to an enucleated donor oocyte without pathogenic mtDNA. This paper aims to determine the efficacy, associated risks, and main ethical and legal issues related to MRTs. Methods: A bibliographic review was performed on the MEDLINE and Web of Science databases, along with searches for related clinical trials and news. Results: A total of 48 publications were included for review. Five MRT procedures were identified and their efficacy was compared. Three main risks associated with MRTs were discussed, and the ethical views and legal position of MRTs were reviewed. Conclusions: MRTs are an effective approach to minimizing the risk of transmitting mtDNA diseases, but they do not remove it entirely. Global legal regulation of MRTs is required.
Collapse
Affiliation(s)
- Luis Sendra
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (L.S.); (S.F.A.)
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
| | - Alfredo García-Mares
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
| | - María José Herrero
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (L.S.); (S.F.A.)
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
| | - Salvador F. Aliño
- Unidad de Farmacogenética, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (L.S.); (S.F.A.)
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain;
- Unidad de Farmacología Clínica, Área del Medicamento, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
27
|
Therapeutical Management and Drug Safety in Mitochondrial Diseases-Update 2020. J Clin Med 2020; 10:jcm10010094. [PMID: 33383961 PMCID: PMC7794679 DOI: 10.3390/jcm10010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases (MDs) are a group of genetic disorders that may manifest with vast clinical heterogeneity in childhood or adulthood. These diseases are characterized by dysfunctional mitochondria and oxidative phosphorylation deficiency. Patients are usually treated with supportive and symptomatic therapies due to the absence of a specific disease-modifying therapy. Management of patients with MDs is based on different therapeutical strategies, particularly the early treatment of organ-specific complications and the avoidance of catabolic stressors or toxic medication. In this review, we discuss the therapeutic management of MDs, supported by a revision of the literature, and provide an overview of the drugs that should be either avoided or carefully used both for the specific treatment of MDs and for the management of comorbidities these subjects may manifest. We finally discuss the latest therapies approved for the management of MDs and some ongoing clinical trials.
Collapse
|
28
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|
29
|
Ogawa T, Fukasawa H, Hirata S. Improvement of early developmental competence of postovulatory-aged oocytes using metaphase II spindle injection in mice. Reprod Med Biol 2020; 19:357-364. [PMID: 33071637 PMCID: PMC7542019 DOI: 10.1002/rmb2.12335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose Assisted reproductive technology (ART) is a widely applied fertility treatment. However, the developmental competence of aged oocytes from women of a late reproductive age is seriously reduced and the aged oocytes often fail in fertilization even when ART is used. To resolve this problem, we examined usefulness of a new method “the metaphase II spindle transfer (MESI)” as ART using mouse oocytes. Methods This work was composed of two experiments. First, 24 hours after collection, embryos from oocytes (1‐day‐old oocytes, called postovulatory‐aged oocytes), were observed, after intracytoplasmic sperm injection (ICSI), and it was found that they were not able to reach the blastocyst stage. Next, the metaphase II chromosome‐spindle complexes from 1‐day‐old oocytes were injected into cytoplasts from oocytes just collected, using piezo pulses to generate reconstructed oocytes. This procedure was named metaphase II spindle injection (MESI). Results After ICSI, embryos from the reconstructed oocytes (32/105), which contained the genes of 1‐day‐old oocytes, were able to develop into the blastocyst stage. The fragmentation rate after ICSI was 28.6%. Thus, the developmental competence of 1‐day‐old oocytes was improved by MESI. Conclusions The MESI method has the potential to improve the success rate of infertility treatments for women of a late reproductive age.
Collapse
Affiliation(s)
- Tatsuyuki Ogawa
- Department of Obstetrics and Gynecology Faculty of Medicine University of Yamanashi Chuo Japan
| | - Hiroko Fukasawa
- Department of Obstetrics and Gynecology Faculty of Medicine University of Yamanashi Chuo Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology Faculty of Medicine University of Yamanashi Chuo Japan
| |
Collapse
|
30
|
Trebichalská Z, Kyjovská D, Kloudová S, Otevřel P, Hampl A, Holubcová Z. Cytoplasmic maturation in human oocytes: an ultrastructural study †. Biol Reprod 2020; 104:106-116. [PMID: 33404651 PMCID: PMC7786262 DOI: 10.1093/biolre/ioaa174] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Female fertility relies on successful egg development. Besides chromosome segregation, complex structural and biochemical changes in the cytoplasmic compartment are necessary to confer the female gamete the capacity to undergo normal fertilization and sustain embryonic development. Despite the profound impact on egg quality, morphological bases of cytoplasmic maturation remain largely unknown. Here, we report our findings from the ultrastructural analysis of 69 unfertilized human oocytes from 34 young and healthy egg donors. By comparison of samples fixed at three consecutive developmental stages, we explored how ooplasmic architecture changes during meiotic maturation in vitro. The morphometric image analysis supported observation that the major reorganization of cytoplasm occurs before polar body extrusion. The organelles initially concentrated around prophase nucleus were repositioned toward the periphery and evenly distributed throughout the ooplasm. As maturation progressed, distinct secretory apparatus appeared to transform into cortical granules that clustered underneath the oocyte's surface. The most prominent feature was the gradual formation of heterologous complexes composed of variable elements of endoplasmic reticulum and multiple mitochondria with primitive morphology. Based on the generated image dataset, we proposed a morphological map of cytoplasmic maturation, which may serve as a reference for future comparative studies. In conclusion, this work improves our understanding of human oocyte morphology, cytoplasmic maturation, and intracellular factors defining human egg quality. Although this analysis involved spare oocytes completing development in vitro, it provides essential insight into the enigmatic process by which human egg progenitors prepare for fertilization.
Collapse
Affiliation(s)
- Z Trebichalská
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - D Kyjovská
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - S Kloudová
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - P Otevřel
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - A Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Z Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| |
Collapse
|
31
|
The Conundrum of Poor Ovarian Response: From Diagnosis to Treatment. Diagnostics (Basel) 2020; 10:diagnostics10090687. [PMID: 32932955 PMCID: PMC7555981 DOI: 10.3390/diagnostics10090687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Despite recent striking advances in assisted reproductive technology (ART), poor ovarian response (POR) diagnosis and treatment is still considered challenging. Poor responders constitute a heterogeneous cohort with the common denominator of under-responding to controlled ovarian stimulation. Inevitably, respective success rates are significantly compromised. As POR pathophysiology entails the elusive factor of compromised ovarian function, both diagnosis and management fuel an ongoing heated debate depicted in the literature. From the criteria employed for diagnosis to the plethora of strategies and adjuvant therapies proposed, the conundrum of POR still puzzles the practitioner. What is more, novel treatment approaches from stem cell therapy and platelet-rich plasma intra-ovarian infusion to mitochondrial replacement therapy have emerged, albeit not claiming clinical routine status yet. The complex and time sensitive nature of this subgroup of infertile patients indicates the demand for a consensus on a horizontally accepted definition, diagnosis and subsequent effective treating strategy. This critical review analyzes the standing criteria employed in order to diagnose and aptly categorize POR patients, while it proceeds to critically evaluate current and novel strategies regarding their management. Discrepancies in diagnosis and respective implications are discussed, while the existing diversity in management options highlights the need for individualized management.
Collapse
|
32
|
Sharma H, Singh D, Mahant A, Sohal SK, Kesavan AK, Samiksha. Development of mitochondrial replacement therapy: A review. Heliyon 2020; 6:e04643. [PMID: 32984570 PMCID: PMC7492815 DOI: 10.1016/j.heliyon.2020.e04643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial replacement therapy (MRT) is a new form of reproductive invitro fertilization (IVF) which works on the principle of replacing a women's abnormal mitochondrial DNA (mt-DNA) with the donor's healthy one. MRT include different techniques like spindles transfer (ST), pronuclear transfer (PNT) or polar body transfer (PBT). Transmission of defective mitochondrial DNA to the next generation can also be prevented by using these approaches. The development of healthy baby free from genetic disorders and to terminate the lethal mitochondrial disorders are the chief motive of this technique. In aged individuals, through in vitro fertilization, MRT provides the substitution of defective cytoplasm with cured one to enhance the expectation of pregnancy rates. However, moral, social, and cultural objections have restricted its exploration. Therefore, this review summarizes the various methods involved in MRT, its global status, its exaggerated censure over the years which depicts a strong emphasis for social acceptance and clinical application in the world of medical science.
Collapse
Affiliation(s)
- Hitika Sharma
- Department of Zoology, Khalsa College Amritsar, Punjab, 143005, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| | - Anup Kumar Kesavan
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samiksha
- Department of Zoology, Guru Nanak Dev University Amritsar, Punjab, 143005, India
| |
Collapse
|
33
|
Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: Challenges and opportunities. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165743. [PMID: 32105823 PMCID: PMC9252426 DOI: 10.1016/j.bbadis.2020.165743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease mainly affecting retinal ganglion cells (RGCs). The pathogenesis of LHON remains ill-characterized due to a historic lack of effective disease models. Promising models have recently begun to emerge; however, less effective models remain popular. Many such models represent LHON using non-neuronal cells or assume that mutant mtDNA alone is sufficient to model the disease. This is problematic because context-specific factors play a significant role in LHON pathogenesis, as the mtDNA mutation itself is necessary but not sufficient to cause LHON. Effective models of LHON should be capable of demonstrating processes that distinguish healthy carrier cells from diseased cells. In light of these considerations, we review the pathophysiology of LHON as it relates to old, new and future models. We further discuss treatments for LHON and unanswered questions that might be explored using these new model systems.
Collapse
Affiliation(s)
- Tyler Bahr
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. First Author
| | - Kyle Welburn
- University of the Incarnate Word School of Medicine 7615 Kennedy Hill Drive, San Antonio, Texas 78235 Contributing Author
| | - Jonathan Donnelly
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. Contributing author
| | - Yidong Bai
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229
| |
Collapse
|
34
|
Lewis CJ, Dixit B, Batiuk E, Hall CJ, O'Connor MS, Boominathan A. Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes. Redox Biol 2020; 30:101429. [PMID: 31981894 PMCID: PMC6976934 DOI: 10.1016/j.redox.2020.101429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Bhavna Dixit
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Elizabeth Batiuk
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Carter J Hall
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Matthew S O'Connor
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| | - Amutha Boominathan
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| |
Collapse
|
35
|
MELAS Missed for Years: Stroke-Like Lesions Are No Indication for Brain Biopsy. Case Rep Neurol Med 2019; 2019:9312451. [PMID: 31949962 PMCID: PMC6948273 DOI: 10.1155/2019/9312451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022] Open
Abstract
A 56-year-old female with a history of chronic alcoholism until age 38 y with a relapse between ages 45 and 46 y developed seizures, psychosis, and hemianopia to the left at age 46 y. Imaging revealed a right parieto-occipital lesion with intralesional bleeding. Five months after the first lesion she developed a second left parieto-occipital lesion, resulting in cortical blindness. Extensive workup, including brain biopsy, was noninformative. Retrospectively, the occipital abnormalities were identified as stroke-like lesions (SLLs). Further manifestations of the mitochondrial disorder (MID) were tremor, cerebral atrophy, bilateral basal ganglia, calcification, glaucoma, hypoacusis, short stature, hyperostosis frontalis, hyperthyroidism, sick-sinus syndrome and AV-block-1, and myopathy. According to the Walker criteria, a possible MID was diagnosed. In conclusion, adult-onset MID may be missed for years, SLLs may be easily misinterpreted entailing brain biopsy, and psychosis may contribute to a reduced impact for proper workup of a MID.
Collapse
|
36
|
Dylag AM, Brookes PS, O'Reilly MA. Swapping mitochondria: a key to understanding susceptibility to neonatal chronic lung disease. Am J Physiol Lung Cell Mol Physiol 2019; 317:L737-L739. [PMID: 31596117 DOI: 10.1152/ajplung.00395.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Paul S Brookes
- Department of Anesthesiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
37
|
Abstract
Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases. Pluripotent stem cells (PSCs) can be converted into germ cells such as sperm or oocytes in the laboratory. Notably, germ cells derived from nuclear transfer embryonic stem cells (NT-ESCs) or induced pluripotent stem cells (iPSCs) inherit the full parental genome. The most important issue in this technique is the generation of a haploid chromosome from diploid somatic cells. We hereby examine current science and limitations underpinning these important developments and provide recommendations for moving forward.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Convergence Medicine & Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunju Kang
- Department of Convergence Medicine & Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
38
|
Takeda K. Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J Reprod Dev 2019; 65:485-489. [PMID: 31462597 PMCID: PMC6923153 DOI: 10.1262/jrd.2019-089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Animal cloning technology has been developed to produce progenies genetically identical to a given donor cell. However, in nuclear transfer protocols, the recipient oocytes contribute a heritable mitochondrial genomic (mtDNA) background to the progeny. Additionally, a small amount of donor cell-derived mitochondria accompanies the transferred nucleus in the process; hence, the mtDNAs of two origins are mixed in the cytoplasm (heteroplasmy) of the reconstituted oocyte. Herein, I would like to introduce some of our previous results concerning five key considerations associated with animal cloning, including: mtDNA heteroplasmy in somatic cell nuclear transferred (SCNT) animals, the variation in the transmission of mtDNA heteroplasmy to subsequent generations SCNT cows and pigs, the influence of mtDNA sequence differences on mitochondrial proteins in SCNT cows and pigs, the effects of the introduction of mitochondria derived from somatic cells into recipient oocytes on embryonic development, and alterations of mtDNA heteroplasmy in inter/intraspecies nuclear transfer embryos.
Collapse
Affiliation(s)
- Kumiko Takeda
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan
| |
Collapse
|