1
|
Kawahara T, Suzuki S, Nakagawa T, Kamo Y, Kanouchi M, Fujita M, Hattori M, Suzuki A, Tanemura K, Yoshida S, Hara K. Age-Dependent Clonal Expansion of Non-Sperm-Forming Spermatogonial Stem Cells in Mouse Testes. Aging Cell 2025:e70019. [PMID: 39985763 DOI: 10.1111/acel.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/30/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
In male mammals, spermatogonial stem cells (SSCs) are essential for sustaining lifelong spermatogenesis within the testicular open niche, a unique environment that allows SSC migration over an extended niche area. As SSCs undergo continuous mitotic division, mutations accumulate and are transmitted to the descendant SSC clones. Therefore, SSC clonal fate behaviors, in terms of their efficiencies in completing spermatogenesis and undergoing expansion within the niche, influence sperm genomic diversity. We aimed to elucidate the effects of physiological aging on SSC clonal fate behavior within the testicular open niche. We used single-cell RNA sequencing, lineage tracing, and intravital live imaging to investigate SSC behavior in aged mouse testes, where spermatogenesis, although reduced, persists. We found that undifferentiated spermatogonia maintained gene expression heterogeneity during aging. Among these, GFRα1+ cells, which exhibited state heterogeneity, showed accelerated proliferation and persistent motility, continuing to function as SSCs in older mice. In contrast, a subset of SSCs characterized by low Egr4 and Cops5 expression did not contribute to spermatid formation. These non-sperm-forming SSC clones increased in proportion among the total SSC clones and expanded spatially within the testicular open niche in old mice, a phenomenon not observed in young mice. The expansion of non-sperm-forming SSC clones in aged testes suggests that they occupy a niche space, limiting the availability of functional SSCs and potentially reducing sperm production and genetic diversity. These findings highlight age-specific clonal characteristics as hallmarks of stem cell aging within the testicular open niche and provide novel insights into the mechanisms governing reproductive aging.
Collapse
Affiliation(s)
- Terumichi Kawahara
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Yuki Kamo
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Miki Kanouchi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Miyako Fujita
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Maki Hattori
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsuko Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kentaro Tanemura
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Kenshiro Hara
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Advanced Research Division for New Fields Within a Higher Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Zhao ZH, Gu LJ, Zhang XG, Wang ZB, Ou XH, Sun QY. Single-cell and spatial transcriptomes reveal the impact of maternal low protein diet on follicular cell composition and ovarian micro-environment in the offspring. J Nutr Biochem 2025; 136:109789. [PMID: 39490908 DOI: 10.1016/j.jnutbio.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Maternal low protein diet around pregnancy reduces the primordial follicles in offspring ovary. Resolving cellular and molecular mechanisms associated with low protein diet is therefore urgently needed for the guidance of dietary interventions. Here, we utilized single-cell and spatial RNA-seq to create transcriptomic atlases of offspring ovaries from maternal low protein diet mice. Analysis of cell type specific low protein diet associated transcriptional changes revealed increased unfolded protein and decreased oxidative phosphorylation defense as a hallmark of low protein diet effects. Altered pathways included hedgehog signaling in granulosa cells, BMP signaling in theca cells and PTN signaling in early theca cells. Notably, the disordered follicular cell function and ovarian microenvironment may closely corelated with decreased follicular number and quality. Collectively, our findings depict the transcriptomic atlases of the offspring ovary derived from maternal low protein diet group and provide candidate molecular mechanisms underlying the complex ovarian cell changes conferred by low protein diet.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Guohui Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang-Hong Ou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Sriram S, Macedo T, Mavinkurve‐Groothuis A, van de Wetering M, Looijenga LHJ. Non-alkylating agents-induced gonadotoxicity in pre-pubertal males: Insights on the clinical and pre-clinical front. Clin Transl Sci 2024; 17:e70075. [PMID: 39582284 PMCID: PMC11586508 DOI: 10.1111/cts.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Whilst chemotherapy regimens have proven to be more successful for pediatric cancer patients over the years, their influence on long-term side effects is relatively poorly understood. One of the possible targets is the gonads, with gonadotoxic agents representing those that threaten the patient's ability to have children post surviving the primary disease treatment. Many risk stratification guidelines have categorized these agents based on the severity of their effect on the pre-pubertal testis. While the consensus is that those agents factored with a cyclophosphamide equivalent dosage pose the highest threat to fertility (e.g. alkylating agents), other agents might still contribute to a reduced testis function; especially in the case of combination therapies. Besides, it is important to note that studies deciphering the effect of other non-alkylating agents on the pre-pubertal testis lack standardized conclusions for clinically relevant outcomes. This makes it imperative to ensure the knowledge gap is addressed between the clinic and pre-clinic to understand potential gonadotoxic effects, ultimately leading to improved patient care. Therefore, this review will summarize the key findings in understanding the gonadotoxic effects of the most commonly researched non-alkylating agents: vincristine, etoposide, doxorubicin, and imatinib on the pre-pubertal testis.
Collapse
Affiliation(s)
- Sruthi Sriram
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Tiago Macedo
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- University Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
4
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
5
|
Chen W, Wang P, Liu C, Han Y, Zhao F. Male Germ Cell Specification in Plants. Int J Mol Sci 2024; 25:6643. [PMID: 38928348 PMCID: PMC11204311 DOI: 10.3390/ijms25126643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Germ cells (GCs) serve as indispensable carriers in both animals and plants, ensuring genetic continuity across generations. While it is generally acknowledged that the timing of germline segregation differs significantly between animals and plants, ongoing debates persist as new evidence continues to emerge. In this review, we delve into studies focusing on male germ cell specifications in plants, and we summarize the core gene regulatory circuits in germ cell specification, which show remarkable parallels to those governing meristem homeostasis. The similarity in germline establishment between animals and plants is also discussed.
Collapse
Affiliation(s)
- Wenqian Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Pan Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Chan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Yuting Han
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Feng Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai 201108, China
| |
Collapse
|
6
|
Ohta N, Christiaen L. Cellular remodeling and JAK inhibition promote zygotic gene expression in the Ciona germline. EMBO Rep 2024; 25:2188-2201. [PMID: 38649664 PMCID: PMC11094015 DOI: 10.1038/s44319-024-00139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.
Collapse
Affiliation(s)
- Naoyuki Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway.
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
8
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
9
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Jorge AS, Recchia K, Glória MH, de Souza AF, Pessôa LVDF, Fantinato Neto P, Martins DDS, de Andrade AFC, Martins SMMK, Bressan FF, Pieri NCG. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals (Basel) 2023; 13:2520. [PMID: 37570330 PMCID: PMC10417053 DOI: 10.3390/ani13152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Primordial germ cells (PGCs) are the precursors of gametes. Due to their importance for the formation and reproduction of an organism, understanding the mechanisms and pathways of PGCs and the differences between males and females is essential. However, there is little research in domestic animals, e.g., swine, regarding the epigenetic and pluripotency profiles of PGCs during development. This study analyzed the expression of epigenetic and various pluripotent and germline markers associated with the development and differentiation of PGCs in porcine (pPGCs), aiming to understand the different gene expression profiles between the genders. The analysis of gonads at different gestational periods (from 24 to 35 days post fertilization (dpf) and in adults) was evaluated by immunofluorescence and RT-qPCR and showed phenotypic differences between the gonads of male and female embryos. In addition, the pPGCs were positive for OCT4 and VASA; some cells were H3k27me3 positive in male embryos and adult testes. In adults, the cells of the testes were positive for germline markers, as confirmed by gene expression analysis. The results may contribute to understanding the pPGC pathways during reproductive development, while also contributing to the knowledge needed to generate mature gametes in vitro.
Collapse
Affiliation(s)
- Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laís Vicari de Figueirêdo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
11
|
Tavares Tamborindeguy M, Lorenzatto PF, Lamers ML, Lenz G. Asymmetric mitosis contributes to different migratory performance in sister cells. Exp Cell Res 2023:113715. [PMID: 37429373 DOI: 10.1016/j.yexcr.2023.113715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In cancer, cell migration contributes to the spread of tumor cells resulting in metastasis. Heterogeneity in the migration capacity can produce individual cells with heightened capacity leading to invasion and metastasis. Our hypothesis is that cell migration characteristics can divide asymmetrically in mitosis, allowing a subset of cells to have a larger contribution to invasion and metastasis. Therefore, our aim is to elucidate whether sister cells have different migratory capacity and analyze if this difference is defined by mitosis. Through time-lapse videos, we analyzed migration speed, directionality, maximum displacement of each trajectory, and velocity as well as cell area and polarity and then compared the values between mother-daughter cells and between sister cells of three tumor cell lines (A172, MCF7, SCC25) and two normal cell lines (MRC5 and CHO·K1 cells). We observed that daughter cells had a different migratory phenotype compared to their mothers, and one single mitosis is enough for the sisters behave like nonrelated cells. However, mitosis did not influence cell area and polarity dynamics. These findings indicates that migration performance is not heritable, and that asymmetric cell division might have an important impact on cancer invasion and metastasis, by producing cells with different migratory capacity.
Collapse
Affiliation(s)
- Maurício Tavares Tamborindeguy
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paola Farias Lorenzatto
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Departamento de Ciencias Morfológicas, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
13
|
Ma N, Xu E, Luo Q, Song G. Rac1: A Regulator of Cell Migration and A Potential Target for Cancer Therapy. Molecules 2023; 28:molecules28072976. [PMID: 37049739 PMCID: PMC10096471 DOI: 10.3390/molecules28072976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cell migration is crucial for physiological and pathological processes such as morphogenesis, wound repair, immune response and cancer invasion/metastasis. There are many factors affecting cell migration, and the regulatory mechanisms are complex. Rac1 is a GTP-binding protein with small molecular weight belonging to the Rac subfamily of the Rho GTPase family. As a key molecule in regulating cell migration, Rac1 participates in signal transduction from the external cell to the actin cytoskeleton and promotes the establishment of cell polarity which plays an important role in cancer cell invasion/metastasis. In this review, we firstly introduce the molecular structure and activity regulation of Rac1, and then summarize the role of Rac1 in cancer invasion/metastasis and other physiological processes. We also discuss the regulatory mechanisms of Rac1 in cell migration and highlight it as a potential target in cancer therapy. Finally, the current state as well as the future challenges in this area are considered. Understanding the role and the regulatory mechanism of Rac1 in cell migration can provide fundamental insights into Rac1-related cancer progression and further help us to develop novel intervention strategies for cancer therapy in clinic.
Collapse
|
14
|
Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:3-32. [PMID: 37678976 DOI: 10.1016/bs.pmbts.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Stem cells have self-renewal capability and can proliferate and differentiate into a variety of functionally active cells that can serve in various tissues and organs. This review discusses the history, definition, and classification of stem cells. Human pluripotent stem cells (hPSCs) mainly include embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Embryonic stem cells are derived from the inner cell mass of the embryo. Induced pluripotent stem cells are derived from reprogramming somatic cells. Pluripotent stem cells have the ability to differentiate into cells derived from all three germ layers (endoderm, mesoderm, and ectoderm). Adult stem cells can be multipotent or unipotent and can produce tissue-specific terminally differentiated cells. Stem cells can be used in cell therapy to replace and regenerate damaged tissues or organs.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
16
|
Ko CF, Chang YC, Cho HC, Yu J. The Puf-A Protein Is Required for Primordial Germ Cell Development. Cells 2022; 11:cells11091476. [PMID: 35563782 PMCID: PMC9105799 DOI: 10.3390/cells11091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Puf-A, a nucleolar Puf domain protein, is required for ribosome biogenesis. A study of Puf-A in zebrafish has shown that Puf-A is highly expressed in primordial germ cells (PGCs) and participates in PGC development. However, it remains unclear how Puf-A governs PGC development in mammals. Here, we generated transgenic mice carrying inducible Puf-A shRNA and obtained double heterozygous mice with Puf-A shRNA and Oct4-EGFP to examine the behavior of PGCs. It was found that the knockdown of Puf-A led to the loss of a considerable number of PGCs and a slowdown of the movement of the remaining PGCs. Puf-A and NPM1 colocalized in clusters in the nuclei of the PGCs. The silencing of Puf-A resulted in the translocation of NPM1 from nucleolus to nucleoplasm and the hyperactivation of p53 in the PGCs. The PGCs in Puf-A knockdown embryos showed a significant increase in subpopulations of PGCs at G1 arrest and apoptosis. Moreover, the expression of essential genes associated with PGC maintenance was decreased in the Puf-A knockdown PGCs. Our study showed that Puf-A governed PGC development by regulating the growth, survival, and maintenance of PGCs. We also observed the alterations of NPM1 and p53 upon Puf-A knockdown to be consistent with the previous study in cancer cells, which might explain the molecular mechanism for the role of Puf-A in PGC development.
Collapse
|
17
|
Nakamura H, Iwakawa G, Matsubara K. Activation of Migratory Ability in Male Mouse Primordial Germ Cells by in vitro Organ Culture. JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.3923/jms.2022.53.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
19
|
Azizi H, Niazi Tabar A, Skutella T. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice. Reprod Health 2021; 18:189. [PMID: 34556135 PMCID: PMC8461838 DOI: 10.1186/s12978-021-01242-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 09/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Spermatogonial stem cells (SSCs) in the testis are crucial for transferring genetic information to the next generation. Successful transplantation of SSCs to infertile men is an advanced therapeutic application in reproductive biology research. Methods In this experimental research, both in vitro and in vivo characterization of undifferentiated and differentiated SSCs were performed by morphology—immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm Real-Time polymerase chain reaction (RT-PCR) and flow cytometry analysis. The isolated SSCs were finally microinjected into the rete testis of busulfan-treated mice. The compact undifferentiated and more loosely connected round differentiated SSCs were isolated during testicular cell expansion from their specific feeder layer. Results ICC analysis indicated high and low expression levels of Zbtb16 in undifferentiated and differentiated germ cells. Also, IMH analysis showed different expression levels of Zbtb16 in the two different germ stem cell populations of the testicular tissue. While Fluidigm RT-PCR analysis indicated overexpression of the TAF4B germ cell gene, the expression of DAZL, VASA, and Zbtb16 were down-regulated during the differentiation of SSCs (P < 0.05). Also, flow cytometry analysis confirmed the significant downregulation of Itgb1 and Itga4 during differentiation. By transplantation of SSCs into busulfan-treated NOD/SCID mice, GFP-labeled sperm cells developed. Conclusions In the current study, we performed a transplantation technique that could be useful for the future microinjection of SSCs during infertility treatment and for studying in vivo differentiation of SSCs into sperm. Spermatogonia (SSCs) in the testis transmit genetic information to the next generation. Successful SSC transplantation into infertile men is an advanced therapeutic application in reproductive biology research. In this experimental research, both in vitro and in vivo characterization of undifferentiated and differentiated SSCs were performed by morphology—immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm Real-Time polymerase chain reaction (RT-PCR) and flow cytometry analysis. The isolated SSCs were finally microinjected into the rete testis of busulfan-treated mice. ICC analysis indicated high and low expression levels of Zbtb16 in undifferentiated and differentiated germ cells. IMH analysis showed different expression levels of Zbtb16 in both populations. Fluidigm RT-PCR analysis indicated overexpression of the TAF4B germ cell gene and the down-regulated expression of DAZL, VASA, and Zbtb16 during SSCs differentiation of (P < 0.05). Flow cytometry analysis confirmed the significant downregulation of Itgb1 and Itga4 during differentiation. By transplantation of SSCs into busulfan-treated NOD/SCID mice, GFP-labeled sperm cells developed. We performed a transplantation technique that could be useful for the future microinjection of SSCs during infertility treatment and for studying in vivo differentiation of SSCs into sperm. Data analysis confirmed that zbtb16 is expressed in the undifferentiated germ cells located on the basal membrane of seminiferous tubules and SSCs in vitro. Also, spermatogenesis was resumed, and fertility improved after transplantation of undifferentiated cells into busulfan-treated mice; thus, improvements in vitro SSCs transplantation, isolation and culture would be helpful in future clinical treatments to solve the reproductive problems of families influenced by infertility.
Collapse
Affiliation(s)
- Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 46168-49767, Amol, Iran.
| | - Amirreza Niazi Tabar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 46168-49767, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
20
|
CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice. Sci Rep 2021; 11:15438. [PMID: 34326397 PMCID: PMC8322354 DOI: 10.1038/s41598-021-94851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Male germ cells undergo complex developmental processes eventually producing spermatozoa through spermatogenesis, although the molecular mechanisms remain largely elusive. We have previously identified somatic cell nuclear transfer-reprogramming resistant genes (SRRGs) that are highly enriched for genes essential for spermatogenesis, although many of them remain uncharacterized in knockout (KO) mice. Here, we performed a CRISPR-based genetic screen using C57BL/6N mice for five uncharacterized SRRGs (Cox8c, Cox7b2, Tuba3a/3b, Faiml, and Gm773), together with meiosis essential gene Majin as a control. RT-qPCR analysis of mouse adult tissues revealed that the five selected SRRGs were exclusively expressed in testis. Analysis of single-cell RNA-seq datasets of adult testis revealed stage-specific expression (pre-, mid-, or post-meiotic expression) in testicular germ cells. Examination of testis morphology, histology, and sperm functions in CRISPR-injected KO adult males revealed that Cox7b2, Gm773, and Tuba3a/3b are required for the production of normal spermatozoa. Specifically, Cox7b2 KO mice produced poorly motile infertile spermatozoa, Gm773 KO mice produced motile spermatozoa with limited zona penetration abilities, and Tuba3a/3b KO mice completely lost germ cells at the early postnatal stages. Our genetic screen focusing on SRRGs efficiently identified critical genes for male germ cell development in mice, which also provides insights into human reproductive medicine.
Collapse
|
21
|
Osawa Y, Murata K, Usui M, Kuba Y, Le HT, Mikami N, Nakagawa T, Daitoku Y, Kato K, Shawki HH, Ikeda Y, Kuno A, Morimoto K, Tanimoto Y, Dinh TTH, Yagami KI, Ema M, Yoshida S, Takahashi S, Mizuno S, Sugiyama F. EXOC1 plays an integral role in spermatogonia pseudopod elongation and spermatocyte stable syncytium formation in mice. eLife 2021; 10:59759. [PMID: 33973520 PMCID: PMC8112867 DOI: 10.7554/elife.59759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The male germ cells must adopt the correct morphology at each differentiation stage for proper spermatogenesis. The spermatogonia regulates its differentiation state by its own migration. The male germ cells differentiate and mature with the formation of syncytia, failure of forming the appropriate syncytia results in the arrest at the spermatocyte stage. However, the detailed molecular mechanisms of male germ cell morphological regulation are unknown. Here, we found that EXOC1, a member of the Exocyst complex, is important for the pseudopod formation of spermatogonia and spermatocyte syncytia in mice. EXOC1 contributes to the pseudopod formation of spermatogonia by inactivating the Rho family small GTPase Rac1 and also functions in the spermatocyte syncytia with the SNARE proteins STX2 and SNAP23. Since EXOC1 is known to bind to several cell morphogenesis factors, this study is expected to be the starting point for the discovery of many morphological regulators of male germ cells.
Collapse
Affiliation(s)
- Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Miho Usui
- School of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yumeno Kuba
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hoai Thu Le
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natsuki Mikami
- Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hossam Hassan Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihisa Ikeda
- Doctoral program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Ph.D Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kento Morimoto
- Doctoral program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Ezawa M, Kouno F, Kubo H, Sakuma T, Yamamoto T, Kinoshita T. Pou5f3.3 is involved in establishment and maintenance of hematopoietic cells during Xenopus development. Tissue Cell 2021; 72:101531. [PMID: 33798831 DOI: 10.1016/j.tice.2021.101531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Three POU family class V gene homologues are expressed in the development of Xenopus. In contrast to the expression of Pou5f3.1 and Pou5f3.2 in organogenesis, Pou5f3.3 is expressed during oogenesis in ovary. We investigated the expression and function of Pou5f3.3 in organogenesis of Xenopus laevis. RT-PCR and immunohistochemical analysis indicated that Pou5f3.3 was expressed in a small number of adult liver cells and blood cells. Immunocytochemical investigation proved that Bmi1, a marker for hematopoietic progenitor cells, was co-expressed in Pou5f3.3-expressing small spherical cells in the peripheral blood. In anemic induction by intraperitoneal injection of phenyl hydrazine, the number of Pou5f3.3-expressing cells significantly increased within 3 days after phenyl hydrazine injection. In CRISPR/Cas mutagenesis of Pou5f3.3, Bmi1-positive hematopoietic progenitor cell count decreased in the hematopoietic dorsal-lateral plate (DLP) region, resulting in a considerable reduction in peripheral blood cells. CRISPR/Cas-induced hematopoietic deficiency was completely rescued by Pou5f3.3 supplementation, but not by Pou5f3.1 or Pou5f3.2. Transplantation experiments using the H2B-GFP transgenic line demonstrated that DLP-derived Pou5f3.3-positive and Bmi1-positive cells were translocated into the liver and bone through the bloodstream. These results suggest that Pou5f3.3 plays an essential role in the establishment and maintenance of hematopoietic progenitor cells during Xenopus development.
Collapse
Affiliation(s)
- Minami Ezawa
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Fumika Kouno
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hideo Kubo
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tsutomu Kinoshita
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|